Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Diverse acoustic wave propagation to confirmable time–space fractional KP equation arising in dusty plasma

  • Aly R Seadawy , 1 ,
  • Muhammad Younis 2 ,
  • Muhammad Z Baber 3 ,
  • Syed T R Rizvi 4 ,
  • Muhammad S Iqbal 3
Expand
  • 1Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
  • 2Department of Computer Science, University of the Punjab, Lahore, Pakistan
  • 3Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
  • 4Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan

Received date: 2021-04-05

  Revised date: 2021-07-20

  Accepted date: 2021-07-29

  Online published: 2021-11-08

Copyright

© 2021 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this study, the (3+1)-dimensional fractional time–space Kadomtsev–Petviashivili (FTSKP) equation is considered and analyzed analytically, which propagates the acoustic waves in an unmagnetized dusty plasma. The fractional derivatives are studied in a confirmable sense. The new modified extended direct algebraic (MEDA) approach is adopted to investigate the diverse nonlinear wave structures. A variety of new families of hyperbolic and trigonometric solutions are obtained in single and different combinations. The obtained results are also constructed graphically with the different parametric choices.

Cite this article

Aly R Seadawy , Muhammad Younis , Muhammad Z Baber , Syed T R Rizvi , Muhammad S Iqbal . Diverse acoustic wave propagation to confirmable time–space fractional KP equation arising in dusty plasma[J]. Communications in Theoretical Physics, 2021 , 73(11) : 115004 . DOI: 10.1088/1572-9494/ac18bb

1. Introduction

Fractional partial differential equations (FPDEs) describe the nonlinear behavior of many physical phenomena in different fields. Therefore, it is imperative to find exact solutions of such type of model. Kadomtsev and Petviashvili extracted solutions to a (2+1)-dimensional KP equation [1, 2].
FPDEs are commonly used to describe problems in fluid mechanics, geographies, plasma physics, and thermal and mechanical systems. Increasing attention has been given by different scientists to find the exact solution for the fractional order reasoning. Many methods are being developed and are gradually maturing [39].
In this paper, the (3+1)-dimensional FTSKP equation is under investigation. This equation is used to analyze the complex dust acoustic wave structures [10, 11]. Diverse families of hyperbolic, trigonometric and plane wave solutions are constructed with different arguments. The new MEDA method [1215] is adopted to derive the exact solutions. The (3+1)-dimensional FTSKP equation is read as follow [16, 17];
$\begin{eqnarray}\begin{array}{l}{{\rm{D}}}_{t}^{\alpha }{{\rm{D}}}_{x}^{\alpha }u+{a}_{1}{\left({{\rm{D}}}_{x}^{\alpha }u\right)}^{2}+{a}_{1}u{{\rm{D}}}_{x}^{2\alpha }u\\ +{a}_{2}{{\rm{D}}}_{x}^{4\alpha }u+{a}_{3}{{\rm{D}}}_{y}^{2\alpha }u+{a}_{3}{{\rm{D}}}_{z}^{2\alpha }u=0.\end{array}\end{eqnarray}$
In recent decades, exact solutions [18], analytical solutions [19] and numerical solutions [20] of many NPDEs have been successfully obtained. For example, the construction of bright-dark solitary waves and elliptic function solutions are observed in [21]. A fractional order model was used to find lump solutions in dusty plasma [22]. Dispersive shock wave solutions were also constructed in [23]. There are also many different methods for obtaining exact explicit solutions; the exp-function method [24, 25], the MEDA method [26], the extended auxiliary equation method [27] and modified method of simplest equation, the $(G^{\prime} /{G}^{2})$-expansion method [28], modified mapping method [29], extended homogeneous balance method [30] and extended Fan's sub-equation method [31], Lie algebraic discussion for affinity based information diffusion in social networks; analytical solution for an in-host viral infection model with time-inhomogeneous rates [3234]; extended and modified direct algebraic method, extended mapping method, and Seadawy techniques [3543].

2. Wave propagation

To find the exact solutions of equation (1) we convert it into an ordinary differential equation by using the following transformation
$\begin{eqnarray}\begin{array}{l}u(x,y,z,t)=U(\xi ),\quad {\rm{where}}\\ \xi =\displaystyle \frac{p}{\alpha }{x}^{\alpha }+\displaystyle \frac{q}{\alpha }{y}^{\alpha }+\displaystyle \frac{r}{\alpha }{z}^{\alpha }-\displaystyle \frac{c}{\alpha }{t}^{\alpha }.\end{array}\end{eqnarray}$
Equation (1) changes into the fractional order ordinary deferential equation as
$\begin{eqnarray}\begin{array}{l}{{pcU}}^{{\prime\prime} }(\xi )+{\alpha }_{1}{\left({{pU}}^{{\prime} }(\xi )\right)}^{2}+{\alpha }_{1}{{pUU}}^{{\prime\prime} }(\xi )\\ +{\alpha }_{2}{p}^{4}{U}^{{\prime} \prime\prime\prime }(\xi )+{\alpha }_{3}{q}^{2}{U}^{{\prime\prime} }(\xi )+{\alpha }_{3}{r}^{2}{U}^{{\prime\prime} }(\xi )=0.\end{array}\end{eqnarray}$
Suppose the solutions of equation (3) can be expressed as U(ξ) in the form of [15].
$\begin{eqnarray}U(\xi )=\sum _{i=0}^{N}{b}_{i}{Q}^{i}(\xi ),\quad {b}_{i}\ne 0,\end{eqnarray}$
where bi(0 ≤ iN) are constants and Q(ξ) is satisfy the equation (3). Here we take
$\begin{eqnarray}\begin{array}{l}{Q}^{{\prime} }(\xi )=\mathrm{ln}(B)(\mu +\lambda Q(\xi )+{{rQ}}^{2}(\xi ))\\ B\ne 0,1\end{array}\end{eqnarray}$
The value of N for equation (4) is taken by homogeneous balancing principle from equation (3) by putting equal to highest derivative term and highest nonlinear term. It gives N = 1 and takes expression from the solutions of equation (4) as
$\begin{eqnarray}u(\xi )={b}_{0}+{b}_{1}Q(\xi ).\end{eqnarray}$
Substituting equation (6) and its derivatives in equation (3) and equating the co-efficients of the same power of Q(ξ) equal to zero, we get the system of equations easily. We further solve this system of equations by using the mathematica or maple, and get the solutions set as follows:
Case 1: where free parameters are r and μ while along with b0 = 0, ${b}_{1}=-\tfrac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}$,$\lambda =\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}$
Type 1: For λ2μr < 0 and r ≠ 0, the mixed trigonometric solutions are found as
$\begin{eqnarray*}\begin{array}{l}{u}_{1}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\tan }_{B}\left(\displaystyle \frac{\sqrt{-(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solution u1(x, t) are depicted in figure 1, for the different choices of parameters c = 100, p = 100.101, μ = 0.1, s = 0.0005, α1 =20, α2 = 0.9, α3 = 1, r = 0.0002, q = 0.1, and B = 5.
$\begin{eqnarray*}\begin{array}{l}{u}_{2}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\cot }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solution u1(x, t) are depicted in figure 2, for the values of parameters c = 120, p = 1, μ = 0.1, s = 0.0005, α1 = 20, α2 = 0.9, α3 = 1, q = 0.0002, q = 0.1, and B = 5.
$\begin{eqnarray*}\begin{array}{l}{u}_{3}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tan }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm \sqrt{({pq})}{\sec }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u3(x, t) are depicted in figure 3, for the values of parameters c = 20, p = 20, μ = 2.1, s = 10.5, α1 = 20, α2 = 0.9, α3 = 1, q = 2.2, q = 1.1, and B = 2.
$\begin{eqnarray*}\begin{array}{l}{u}_{4}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\cot }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm \sqrt{({pq})}{\csc }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u4(x, t) are depicted in figure 4, for the values of parameters c = 10, p = 20, μ = 21, s = 15, α1 = 30, α2 = 1.9, α3 = 10, q = 22.2, q = 1.1, and B = 5.
$\begin{eqnarray*}\begin{array}{l}{u}_{5}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tan }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right.\\ \left.\left.-\sqrt{({pq})}{\cot }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u5(x, t) are depicted in figure 5, for the values of parameters c = 10, p = 20, μ = 21, s = 15, α1 = 30, α2 = 1.9, α3 = 10, q = 22.2, q = 1.1, and B = 5.
Figure 1. Graphical representation and corresponding contour of u1(x, t) for different values of parameters.
Figure 2. Graphical representation and corresponding contour of u2(x, t) for different values of parameters.
Figure 3. Graphical representation and corresponding contour of u3(x, t) for different values of parameters.
Figure 4. Graphical representation and corresponding contour of u4(x, t) for different values of parameters.
Figure 5. Graphical representation and corresponding contour of u5(x, t) for different values of parameters.
Type 2: For λ2μr > 0 and r ≠ 0, different types of solutions are obtained.
The dark solutions are obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{6}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\tanh }_{B}\left(\displaystyle \frac{\sqrt{-(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u6(x, t) are depicted in figure 6, for the values of parameters c = 10, p = 10.101, μ = 0.1, s = 11.5, α1 = 20, α2 = 0.9, α3 = 1, q = 0.0002, q = 0.1, and B = 5.
Figure 6. Graphical representation and corresponding contour of u6(x, t) for different values of parameters.
The singular solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{7}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left.{\coth }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The complex dark bright solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{8}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\tanh }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm {\rm{i}}\sqrt{({pq})}{{\rm{{\rm{sech}} }}}_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u6(x, t) are depicted in figure 7, for the values of parameters c = 100, p = 100, μ = 21, s = 10.5, α1 = 200, α2 = 10.9, α3 = 1, q = 20.2, q = 11, and B = 20.
Figure 7. Graphical representation and corresponding contour of u8(x, t) for different values of parameters.
The mixed singular solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{9}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}-\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{2r}\right.\\ \left({\coth }_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right.\\ \left.\left.\pm \sqrt{({pq})}{{\rm{csch}}}_{B}\left(\sqrt{-\left(\displaystyle \frac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The dark solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{10}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \left(-\displaystyle \frac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{2\sqrt{5}\sqrt{{\alpha }_{2}}{{rp}}^{2}\mathrm{ln}(B)}+\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4r}\right.\\ \left({\tanh }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right.\\ \left.\left.+{\coth }_{B}\left(\displaystyle \frac{\sqrt{-\left(\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}{\mathrm{ln}}^{2}(B)}-4\mu r\right)}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
Type 3: For μr > 0 and λ = 0, we obtained trigonometric solutions as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{11}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\tan }_{B}(\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u11(x, t) are depicted in figure 8, for the values of parameters c = 80, p = 1.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.
$\begin{eqnarray*}\begin{array}{rcl}{u}_{12}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\cot }_{B}(\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u12(x, t) are depicted in figure 9, for the values of parameters c = 80, p = 0.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.
Figure 8. Graphical representation and corresponding contour of u11(x, t) for different values of parameters.
Figure 9. Graphical representation and corresponding contour of u12(x, t) for different values of parameters.
The mixed trigonometric solutions are obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{13}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(2\sqrt{\mu r}\xi )\pm \sqrt{{pq}}{\sec }_{B}(2\sqrt{\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u13(x, t) are depicted in figure 10, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.
$\begin{eqnarray*}\begin{array}{rcl}{u}_{14}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \sqrt{\displaystyle \frac{\mu }{r}}\left({\cot }_{B}\left(2\sqrt{\mu r}\xi \right)\pm \sqrt{{pq}}{\csc }_{B}\left(2\sqrt{\mu r}\xi \right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{15}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )-\sqrt{{pq}}{\cot }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )\right),\end{array}\end{eqnarray*}$
Figure 10. Graphical representation and corresponding contour of u13(x, t) for different values of parameters.
Type 4: For μr < 0 and λ = 0, we obtained dark solutions as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{16}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\tanh }_{B}(\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u16(x, t) are depicted in figure 11, for the values of parameters c = 80, p = 1.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3. We get the singular solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{17}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\coth }_{B}(\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u17(x, t) are depicted in figure 12, for the values of parameters c = 80, p = 0.01, μ = 0.1, s = 0.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.002, q = 0.1, and B = 3.
Figure 11. Graphical representation and corresponding contour of u16(x, t) for different values of parameters.
Figure 12. Graphical representation and corresponding contour of u17(x, t) for different values of parameters.
The different type of complex combo solutions are obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{18}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\tanh }_{B}(2\sqrt{-\mu r}\xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{{\rm{sech}} }}}_{B}(2\sqrt{-\mu r}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u18(x, t) are depicted in figure 13, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.
$\begin{eqnarray*}\begin{array}{l}{u}_{19}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\coth }_{B}(2\sqrt{-\mu r}\xi )\pm \sqrt{{pq}}{{csch}}_{B}(2\sqrt{-\mu r}\xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{20}(\xi )=-\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{-\mu }{r}}\left({\tanh }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )-{\coth }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u20(x, t) are depicted in figure 14, for the values of parameters c = 100, p = 100, μ = 1.1, s = 1.05, α1 = 10, α2 = 0.9, α3 = 1, q = 0.02, q = 0.1, and B = 3.
Figure 13. Graphical representation and corresponding contour of u18(x, t) for different values of parameters.
Figure 14. Graphical representation and corresponding contour of u20(x, t) for different values of parameters.
Type 5: For λ = 0 and μ = r, the periodic and mixed periodic solutions are obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{21}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\tan }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{22}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(-{\cot }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{23}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\tan }_{B}(2\mu \xi )\pm \sqrt{{pq}}{\sec }_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{24}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\cot }_{B}(2\mu \xi )\pm \sqrt{{pq}}{{\csc }}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{25}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \displaystyle \frac{1}{2}\left({\tan }_{B}(\displaystyle \frac{\sqrt{\mu }}{2}\xi )-{\cot }_{B}(\displaystyle \frac{\mu }{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 6: For λ = 0 and r = −μ, we obtained different types of solutions as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{26}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\tanh }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{27}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\coth }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{28}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\tanh }_{B}(2\mu \xi )\pm {\rm{i}}\sqrt{{pq}}{{{\rm{sech}} }}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{29}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({\coth }_{B}(2\mu \xi )\pm \sqrt{{pq}}{{csch}}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{30}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \displaystyle \frac{1}{2}\left({\tanh }_{B}(\displaystyle \frac{\sqrt{\mu }}{2}\xi )+{\coth }_{B}(\displaystyle \frac{\mu }{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 7: For λ2 = 4μr we obtained only one solutions as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{31}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\displaystyle \frac{2\mu \left(\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}}\right)\xi +2\right)}{\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}\mathrm{ln}(B)}\xi }\right).\end{array}\end{eqnarray*}$
Type 8: For λ = χ, μ = νχ(ν ≠ 0) and r = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{32}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left({B}^{\chi \xi }-\nu \right).\end{array}\end{eqnarray*}$
Type 9: For λ = r = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{33}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \left(\mu \xi \mathrm{ln}(B)\right).\end{array}\end{eqnarray*}$
Type 10: For λ = μ = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{34}(\xi ) & = & \displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\displaystyle \frac{1}{r\xi \mathrm{ln}(B)}\right).\end{array}\end{eqnarray*}$
Type 11: For μ = 0, and λ ≠ 0 we obtained mixed hyperbolic solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{35}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}}{r\left({\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)-{\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{36}(\xi )=\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)\right)}{r\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
Type 12: For λ = χ, r = νχ(ν ≠ 0) and μ = 0, we obtained a plane solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{37}(\xi ) & = & -\displaystyle \frac{6\sqrt{5}\sqrt{{\alpha }_{2}}{pr}\mathrm{ln}(B)\sqrt{{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{{\alpha }_{1}+{\alpha }_{1}p}\\ & & \times \left(\displaystyle \frac{{{pB}}^{\chi \xi }}{p-\nu {{qB}}^{\chi \xi }}\right).\end{array}\end{eqnarray*}$
Case 2: where free parameters are μ, r and λ while along with ${b}_{0}=\tfrac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}$, ${b}_{1}=-\tfrac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)},\mu =-\tfrac{{\lambda }^{2}}{2r}$.
Type 1: For λ2μr < 0 and r ≠ 0, the mixed trigonometric solutions are found as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{38}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}{\tan }_{B}\left(\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2}\xi \right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{39}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}{\cot }_{B}\left(\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2}\xi \right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{40}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}\left({\tan }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm \sqrt{({pq})}{\sec }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{41}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}\left({\cot }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm \sqrt{({pq})}{\csc }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{u}_{42}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}\left({\tan }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.-\sqrt{({pq})}{\cot }_{B}\left(\sqrt{-3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
Type 2: For λ2μr > 0 and r ≠ 0, there are different types of solutions are obtained.
The dark solutions are obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{43}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}{\tanh }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u43(x, t) are depicted in figure 15, for the values of parameters c = 2, p = 2, μ = 3.1, s = 10.05, α1 = 3, α2 = 1.9, α3 = 1, q = 0.2, q = 0.1, and B = 3.
Figure 15. Graphical representation and corresponding contour of u43(x, t) for different values of parameters.
The singular solution is obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{44}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}{\coth }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u44(x, t) are depicted in figure 16, for the values of parameters c = 2, p = 2, μ = 3.1, s = 10.05, α1 = 3, α2 = 1.9, α3 = 1, q = 0.2, q = 0.1, and B = 3.
Figure 16. Graphical representation and corresponding contour of u44(x, t) for different values of parameters.
The complex dark bright solution is obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{45}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{2r}\left({\tanh }_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm {\rm{i}}\sqrt{({pq})}{{{\rm{sech}} }}_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u45(x, t) are depicted in figure 17, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 17. Graphical representation and corresponding contour of u45(x, t) for different values of parameters.
The mixed singular solution is obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{46}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ & & \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-3{\lambda }^{2}}}{2r}\left({\coth }_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right.\right.\\ & & \left.\left.\pm \sqrt{({pq})}{{csch}}_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u46(x, t) are depicted in figure 18, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 18. Graphical representation and corresponding contour of u46(x, t) for different values of parameters.
The dark solution is obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{47}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4r}\right.\\ & & \left.\times \left({\tanh }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4}\xi \right)+{\coth }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u47(x, t) are depicted in figure 19, for the values of parameters c = 20, p = 20, μ = 1.011, s = 1.05, α1 = 10, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
Figure 19. Graphical representation and corresponding contour of u47(x, t) for different values of parameters.
Type 3: For λ2 = μr we have trigonometric solutions obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{48}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(\displaystyle \frac{\lambda \mathrm{ln}(B)\xi +2}{\rho r\mathrm{ln}(B)}\right).\end{array}\end{eqnarray*}$
Type 4: For λ = χ, μ = νχ(ν ≠ 0) and r = 0 we have trigonometric solutions obtained as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{49}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left({B}^{\chi \rho }-\nu \right).\end{array}\end{eqnarray*}$
Type 5: For λ = χ, r = νχ(ν ≠ 0) and μ = 0 we have obtained a plane solution as
$\begin{eqnarray*}\begin{array}{rcl}{u}_{50}(\xi ) & = & \displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ & & -\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\left(\displaystyle \frac{{{pB}}^{\chi \rho }}{p-\nu {{qB}}^{\chi \rho }}\right).\end{array}\end{eqnarray*}$
Type 6: For μ = 0, and λ ≠ 0 we obtained mixed hyperbolic solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{51}(\xi )=\displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}}{r\left({\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)-{\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u51(x, t) are depicted in figure 20, for the values of parameters c = 200, p = 20, μ = 100, s = 1.05, α1 = 100, α2 = 10.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
$\begin{eqnarray*}\begin{array}{l}{u}_{52}(\xi )=\displaystyle \frac{{\alpha }_{2}\left(-{\lambda }^{2}\right){p}^{4}{\mathrm{ln}}^{2}(B)-{cp}-{\alpha }_{3}{q}^{2}-{\alpha }_{3}{s}^{2}}{{\alpha }_{1}p}\\ +\displaystyle \frac{12{\alpha }_{2}\lambda {p}^{3}r{\mathrm{ln}}^{2}(B)}{{\alpha }_{1}(2p+1)}\\ \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)\right)}{r\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
Figure 20. Graphical representation and corresponding contour of u51(x, t) for different values of parameters.
Case 3: Where free parameters are μ, r and λ while along with b0 = b0, ${b}_{1}=-\tfrac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}$
Type 1:For λ2μr < 0 and r ≠ 0, the mixed trigonometric solutions are found as
$\begin{eqnarray*}\begin{array}{l}{u}_{53}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}{\tan }_{B}\left(\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2}\xi \right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{54}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}{\cot }_{B}\left(\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2}\xi \right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{55}(\xi )={b}_{0}-\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}\left({\tan }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right.\right.\\ \left.\left.\pm \sqrt{({pq})}{\sec }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
The plot and its corresponding contour plot of the solutions u55(x, t) are depicted in figure 21, for the values of parameters c = 2, p = 2, μ = 0.011, s = 1.05, α1 = 1, α2 = 0.9, α3 = 2, q = 10.2, q = 10.1, and B = 5.
$\begin{eqnarray*}\begin{array}{l}{u}_{56}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}\left({\cot }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right.\right.\\ \left.\left.\pm \sqrt{({pq})}{\csc }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{57}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}\left({\tan }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right.\right.\\ \left.\left.-\sqrt{({pq})}{\cot }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
Figure 21. Graphical representation and corresponding contour of u55(x, t) for different values of parameters.
Type 2 For λ2μr > 0 and r ≠ 0, different types of solutions are obtained.
The dark solutions are obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{58}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}{\tanh }_{B}\left(\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2}\xi \right)\right),\end{array}\end{eqnarray*}$
The singular solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{59}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}{\coth }_{B}\left(\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2}\xi \right)\right).\end{array}\end{eqnarray*}$
The complex dark bright solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{60}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \,\left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}\left({\tanh }_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right.\right.\\ \left.\left.\pm {\rm{i}}\sqrt{({pq})}{{{\rm{sech}} }}_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
The mixed singular solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{61}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}-\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{2r}\left({\coth }_{B}\left(\sqrt{-({\lambda }^{2}-4\mu r)}\xi \right)\right.\right.\\ \left.\left.\pm \sqrt{({pq})}{{csch}}_{B}\left(\sqrt{3{\lambda }^{2}}\xi \right)\right)\Space{0ex}{3.5ex}{0ex}\right).\end{array}\end{eqnarray*}$
The dark solution is obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{62}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-\displaystyle \frac{\lambda }{2r}+\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{4r}\left({\tanh }_{B}\left(\displaystyle \frac{\sqrt{3{\lambda }^{2}}}{4}\xi \right)\right.\right.\\ \left.\left.+{\coth }_{B}\left(\displaystyle \frac{\sqrt{-({\lambda }^{2}-4\mu r)}}{4}\xi \right)\right)\right).\end{array}\end{eqnarray*}$
Type 3: For μr > 0 and λ = 0, we obtained trigonometric solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{63}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\tan }_{B}(\sqrt{\mu r}\xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{64}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{\displaystyle \frac{\mu }{r}}{\cot }_{B}(\sqrt{\mu r}\xi )\right),\end{array}\end{eqnarray*}$
The mixed trigonometric solutions were obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{65}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(2\sqrt{\mu r}\xi )\pm \sqrt{{pq}}{\sec }_{B}(2\sqrt{\mu r}\xi )\right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{66}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{\displaystyle \frac{\mu }{r}}\left({\cot }_{B}(2\sqrt{\mu r}\xi )\pm \sqrt{{pq}}{\csc }_{B}(2\sqrt{\mu r}\xi )\right)\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{67}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\mu }{r}}\left({\tan }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )-\sqrt{{pq}}{\cot }_{B}(\displaystyle \frac{\sqrt{\mu r}}{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 4: For μr < 0 and λ = 0, we obtained dark solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{68}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\tanh }_{B}(\sqrt{-\mu r}\xi )\right),\end{array}\end{eqnarray*}$
We get the singular solution as
$\begin{eqnarray*}\begin{array}{l}{u}_{69}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\sqrt{-\displaystyle \frac{\mu }{r}}{\coth }_{B}(\sqrt{-\mu r}\xi )\right),\end{array}\end{eqnarray*}$
The different type of complex combo solutions are obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{70}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\tanh }_{B}(2\sqrt{-\mu r}\xi )\right.\\ \left.\pm {\rm{i}}\sqrt{{pq}}{{\rm{{\rm{sech}} }}}_{B}(2\sqrt{-\mu r}\xi \right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{71}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \sqrt{-\displaystyle \frac{\mu }{r}}\left({\coth }_{B}(2\sqrt{-\mu r}\xi )\right.\\ \left.\pm \sqrt{{pq}}{{\rm{csch}}}_{B}(2\sqrt{-\mu r}\xi \right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{72}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{-\mu }{r}}\left({\tanh }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )-{\coth }_{B}(\displaystyle \frac{\sqrt{-\mu r}}{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 5: For λ = 0 and μ = r, the periodic and mixed periodic solutions are obtained as
$\begin{eqnarray*}\begin{array}{l}{u}_{73}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\tan }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{74}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(-{\cot }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{75}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\tan }_{B}(2\mu \xi )\pm \sqrt{{pq}}{\sec }_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{76}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\cot }_{B}(2\mu \xi )\pm \sqrt{{pq}}{{\rm{\csc }}}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{77}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \displaystyle \frac{1}{2}\left({\tan }_{B}(\displaystyle \frac{\sqrt{\mu }}{2}\xi )-{\cot }_{B}(\displaystyle \frac{\mu }{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 6: For λ = 0 and r = −μ, we obtained different types of solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{78}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\tanh }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{79}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\coth }_{B}(\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{80}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\tanh }_{B}(2\mu \xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{{\rm{sech}} }}}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{81}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left({\coth }_{B}(2\mu \xi )\pm \sqrt{{pq}}{{\rm{csch}}}_{B}(2\mu \xi )\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{82}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \displaystyle \frac{1}{2}\left({\tanh }_{B}(\displaystyle \frac{\sqrt{\mu }}{2}\xi )+{\coth }_{B}(\displaystyle \frac{\mu }{2}\xi )\right).\end{array}\end{eqnarray*}$
Type 7: For λ2 = 4μr we obtained only one solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{83}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\displaystyle \frac{2\mu \left(\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}}\right)\xi +2\right)}{\tfrac{{\alpha }_{3}({q}^{2}+{s}^{2})}{5{\alpha }_{2}{p}^{4}\mathrm{ln}(B)}\xi }\right).\end{array}\end{eqnarray*}$
Type 8: For λ = χ, μ = νχ(ν ≠ 0) and r = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{l}{u}_{84}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \left({B}^{\chi \xi }-\nu \right).\end{array}\end{eqnarray*}$
Type 9: For λ = r = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{l}{u}_{85}(\xi )=-{b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \left(\mu \xi \mathrm{ln}(B)\right).\end{array}\end{eqnarray*}$
Type 10: For λ = μ = 0, we obtained only one solution as
$\begin{eqnarray*}\begin{array}{l}{u}_{86}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \left(\displaystyle \frac{1}{r\xi \mathrm{ln}(B)}\right).\end{array}\end{eqnarray*}$
Type 11: For μ = 0, and λ ≠ 0 we obtained mixed hyperbolic solutions as
$\begin{eqnarray*}\begin{array}{l}{u}_{87}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}}{r\left({\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)-{\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}{u}_{88}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \times \left(\displaystyle \frac{p\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)\right)}{r\left({\sinh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+{\cosh }_{B}\left(\tfrac{\sqrt{{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}}}{\sqrt{5}\sqrt{{\alpha }_{2}}{p}^{2}\mathrm{ln}(B)}\xi \right)+p\right)}\right).\end{array}\end{eqnarray*}$
Type 12: For λ = χ, r = νχ(ν ≠ 0) and μ = 0, we obtained a plane solution as
$\begin{eqnarray*}\begin{array}{l}{u}_{89}(\xi )={b}_{0}\\ -\displaystyle \frac{\lambda \left({\alpha }_{1}{b}_{0}p+{\alpha }_{2}{\lambda }^{2}{p}^{4}{\mathrm{ln}}^{2}(B)+8{\alpha }_{2}\mu {p}^{4}r{\mathrm{ln}}^{2}(B)+{cp}+{\alpha }_{3}{q}^{2}+{\alpha }_{3}{s}^{2}\right)}{{\alpha }_{1}\mu {p}^{2}}\\ \left(\displaystyle \frac{{{pB}}^{\chi \xi }}{p-\nu {{qB}}^{\chi \xi }}\right).\end{array}\end{eqnarray*}$
In the all above solutions, the generalized hyperbolic and trigonometric functions are defined as
${\sinh }_{B}(\rho )$ $\tfrac{{{pB}}^{\rho }-{{qB}}^{-\rho }}{2}$ ${\cosh }_{B}(\rho )$ $\tfrac{{{pB}}^{\rho }+{{qB}}^{-\rho }}{2}$
${\tanh }_{B}(\rho )$ $\tfrac{{{pB}}^{\rho }-{{qB}}^{-\rho }}{{{pB}}^{\rho }+{{qB}}^{-\rho }}$ ${\coth }_{B}(\rho )$ $\tfrac{{{pB}}^{\rho }+{{qB}}^{-\rho }}{{{pB}}^{\rho }-{{qB}}^{-\rho }}$
${\sin }_{B}(\rho )$ $\tfrac{{{pB}}^{{\rm{i}}\rho }-{{qB}}^{-{\rm{i}}\rho }}{2}$ ${\cos }_{B}(\rho )$ $\tfrac{{{pB}}^{{\rm{i}}\rho }+{{qB}}^{-{\rm{i}}\rho }}{2}$
${\cot }_{B}(\rho )$ $-{\rm{i}}\tfrac{{{pB}}^{{\rm{i}}\rho }-{{qB}}^{-{\rm{i}}\rho }}{{{pB}}^{{\rm{i}}\rho }+{{qB}}^{-{\rm{i}}\rho }}$ ${\cot }_{B}(\rho )$ $i\tfrac{{{pB}}^{{\rm{i}}\rho }+{{qB}}^{-{\rm{i}}\rho }}{{{pB}}^{{\rm{i}}\rho }-{{qB}}^{-{\rm{i}}\rho }}$
where ρ = ρ(x, y, z, t) and p, q > 0.

3. Conclusion

In this work, the (3 + 1)-dimensional fractional time-space KP (FTSKP) equation is under investigation, which propagates the acoustic waves in an unmagnetized dusty plasma. This fractional model is defined using the confirmable fractional derivatives. The diverse new families of hyperbolic, trigonometric, rational, and plane wave solutions are obtained in single and different combinations using the new modified extended direct algebraic (MEDA) technique. Graphical representations of the obtained results are also depicted with different choices of parameters.
1
Xu Z Chen H Dai Z 2014 Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation Appl. Math. Lett. 37 34 38

DOI

2
Seadawy A R 2017 Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma, Mathematical methods and applied Sciences 40 1598 1607

3
Kalim Ul-Haq Tariq Seadawy Aly R 2019 Soliton solutions of (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony, Kadomtsev-Petviashvili Benjamin-Bona-Mahony and modified Korteweg de Vries-Zakharov-Kuznetsovequations and their applications in water waves J. King Saud University—Sci. 31 8 13

DOI

4
Seadawy Aly R 2017 Travelling wave solutions of a weakly nonlinear two-dimensional higher order Kadomtsev-Petviashvili dynamical equation for dispersive shallow water waves Eur. Phys. J Plus 132 1 13 29

DOI

5
Aly R 2017 Seadawy, Solitary wave solutions of tow-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in a dust acoustic plasmas The Pramana—J. Phys. 89 1 11 49

6
Seadawy A El-Rashidy K 2018 Dispersive Solitary wave solutions of Kadomtsev-Petviashivili and modified Kadomtsev-Petviashivili dynamical equations in unmagnetized dust plasma Results Phys. 8 1216 1222

DOI

7
Ul-Haq Tariq K Seadawy A R 2018 Computational soliton solutions to (3+1)-dimensional generalized Kadomtsev-Petviashvili and (2+1)-dimensional Gardner-Kadomtsev-Petviashvili models and their applications The Pramana—J. Phys. 91 1 13

8
Ahmed I Seadawy A R Lu D 2019 Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev-Petviashvili dynamical equation Int. J. Mod. Phys. B 33 1950019

DOI

9
Seadawy A R Ali A Albarakati W A 2019 Analytical wave solutions of the (2+1)-dimensional first integro-differential Kadomtsev-Petviashivili hierarchy equation by using modified mathematical methods Results Phys. 15 102775

DOI

10
Guo M 2018 Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional Schamel-KdV equation Complexity 2018 6852548

DOI

11
Fu L Yang H 2019 An application of (3+1)-dimensional time-space fractional ZK model to analyze the complex dust acoustic waves Complexity 2019 2806724

DOI

12
Ma S H Fang J P Zheng C L 2009 New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method Chaos Solitons and Fractals 40 210 214

DOI

13
Soliman A A Abdo H A 2012 New exact Solutions of nonlinear variants of the RLW, the PHI-four and Boussinesq equations based on modified extended direct algebraic method 11 45 57 arXiv:1207.5127

14
Younas U Younis M Seadawy A R Rizvi S T R Althobaiti S Sayed S 2021 Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative Results Phys. 20 103766

DOI

15
Younas U Seadawy A R Younis M Rizvi S T R 2020 Dispersive of propagation wave structures to the Dullin-Gottwald-Holm dynamical equation in a shallow water waves Chin. J. Phys. 68 348 364

DOI

16
Sun J Fu L Yang H 2019 Analytical study of (3+1)-dimensional fractional ultralow-frequency dust acoustic waves in a dual-temperature plasma J. Low Freq. Noise Vib. Active Control 38 928 952

DOI

17
Fu L Yang H 2019 An application of (3+1)-dimensional time-space fractional ZK model to analyze the complex dust acoustic waves Complexity 2019

DOI

18
Obaidullah U Jamal S 2020 A computational procedure for exact solutions of Burgers' hierarchy of nonlinear partial differential equations J. Appl. Math. Comput. 1 11

DOI

19
Zhang R F Bilige S 2019 Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation Nonlinear Dyn. 95 3041 3048

DOI

20
Tu K M Yih K A Chou F I Chou J H 2020 Numerical solution and Taguchi experimental method for variable viscosity and non-Newtonian fluids effects on heat and mass transfer by natural convection in porous media Int. J. Comput. Sci. Eng. 22 252 261

21
Sarwar A Gang T Arshad M Ahmed I 2020 Construction of bright-dark solitary waves and elliptic function solutions of space-time fractional partial differential equations and their applications Phys. Scr. 95 045227

DOI

22
Sun J C Zhang Z G Dong H H Yang H W 2019 Fractional Order Model and Lump Solution in Dusty Plasma 68 210201

23
Bettelheim E Abanov A G Wiegmann P 2006 Nonlinear quantum shock waves in fractional quantum Hall edge states Phys. Rev. Lett. 97 246401

DOI

24
Younas U Younis M Seadawy A R Rizvi S T R Althobaiti S Sayed S 2020 Diverse exact solutions for modified nonlinear Schrödinger equation with conformable fractional derivative Results Phys. 20 103766

25
Manafian J Zamanpour I 2013 Analytical treatment of the coupled Higgs equation and the Maccari system via exp-function method Acta Univ. Apulensis 33 276 287

26
Elwakil S A El-Labany S K Zahran M A Sabry R 2002 Modified extended tanh-function method for solving nonlinear partial differential equations Phys. Lett. A 299 179 188

DOI

27
Rizvi S T R Seadawy A R Ashraf F Younis M Iqbal H 2020 Dumitru Baleanu, Lump and Interaction solutions of a geophysical Korteweg-de Vries equation Results Phys. 19 103661

DOI

28
Lu D Seadawy A R Yaro D 2019 Analytical wave solutions for the nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov and two-dimensional Kadomtsev-Petviashvili-Burgers equations Results Phys. 12 2164 2168

DOI

29
Zhang Z Y Liu Z H Miao X J Chen Y Z 2010 New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity Appl. Math. Comput. 216 3064 3072

DOI

30
Mirzazadeh M 2015 The extended homogeneous balance method and exact 1- soliton solutions of Maccari system Comput. Methods Differ. Equ. 2 1523 1536

31
Yomba E 2005 The extended Fan's sub-equation method and its application to (2.1)-dimensional dispersive long wave and Whitham-Broer-Kaup equations Chinese J Phys 43 789 805

32
Shang Y 2015 Analytical solution for an in-host viral infection model with time-inhomogeneous rates Acta Phys. Pol. B 46 1567 1577

DOI

33
Shang Y 2017 Lie algebraic discussion for affinity based information diffusion in social networks Open Physics 15 705 711

DOI

34
Shang Yilun 2013 Lie algebra method for solving biological population model J. Theor. Appl. Phys. 7 67

DOI

35
Ali A Seadawy A R Lu D 2018 Computational methods and traveling wave solutions for the fourth-Order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications Open Physics 16 219 226

DOI

36
Asghar A R Seadawy A Lu D 2018 New solitary wave solutions of some nonlinear models and their Applications Advances in Difference Equations 2018 1 12 232

37
Arshad M Seadawy A Lu D 2017 Bright-Dark Solitary Wave Solutions of generalized higher-order nonlinear Schrodinger equation and its applications in optics J. Electromagn. Waves Appl. 31 1711 1721

DOI

38
Ahmed I Seadawy A R Lu D 2019 M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation Phys. Scr. 94 055205

DOI

39
Farah N Seadawy A R Ahmad S Rizvi S T R Younis M 2020 Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model Opt. Quantum Electron. 52 1 15

DOI

40
Seadawy A R Tariq K U Liu J-G 2019 Symbolic computations: Dispersive Soliton solutions for (3+1)-dimensional Boussinesqand Kadomtsev-Petviashvili dynamical equations and its applications Int. J. Mod. Phys. B 33 1950342

DOI

41
Çelik N Seadawy A R Özkan Y S Yasar E 2021 A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws Chaos Solitons Fractals 143 110486

DOI

42
Younas U Younis M Seadawy A R Rizvi S T R 2020 Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation Int. J. Mod. Phys. B 34 2050291

DOI

43
Ali I Seadawy A R Rizvi S T R Younis M 2021 Painlevé analysis for various nonlinear Schrödinger dynamical equations Int. J. Mod. Phys. B 35 2150038

DOI

Outlines

/