1. Introduction
2. Lagrangian from heavy quark spin symmetry
2.1. Coupling of light vector mesons and heavy mesons
2.2. Coupling of light vector mesons and heavy baryons
Table 1. The experimental candidates of heavy baryons predicted by quark model. The notations of experimental states are taken from RPP [6]. The ${{\rm{\Sigma }}}_{b}^{(* )0}$, ${{\rm{\Xi }}}_{b}^{{\prime} 0}$ and ${{\rm{\Omega }}}_{b}^{* 0}$ do not have experimental candidates yet. |
Model | Experimental | Model | Experimental |
---|---|---|---|
${{\rm{\Lambda }}}_{c}^{+}$ | ${{\rm{\Lambda }}}_{c}^{+}$ | ${{\rm{\Lambda }}}_{b}^{0}$ | ${{\rm{\Lambda }}}_{b}^{0}$ |
${{\rm{\Xi }}}_{c}^{+}$ | ${{\rm{\Xi }}}_{c}^{+}$ | ${{\rm{\Xi }}}_{b}^{0}$ | ${{\rm{\Xi }}}_{b}^{0}$ |
${{\rm{\Xi }}}_{c}^{0}$ | ${{\rm{\Xi }}}_{c}^{0}$ | ${{\rm{\Xi }}}_{b}^{-}$ | ${{\rm{\Xi }}}_{b}^{-}$ |
Σc | Σc(2455) | Σb | Σb |
${{\rm{\Xi }}}_{c}^{{\prime} +}$ | ${{\rm{\Xi }}}_{c}^{{\prime} +}$ | ${{\rm{\Xi }}}_{b}^{{\prime} 0}$ | − |
${{\rm{\Xi }}}_{c}^{{\prime} 0}$ | ${{\rm{\Xi }}}_{c}^{{\prime} 0}$ | ${{\rm{\Xi }}}_{b}^{{\prime} -}$ | ${{\rm{\Xi }}}_{b}^{{\prime} }{\left(5935\right)}^{-}$ |
${{\rm{\Omega }}}_{c}^{0}$ | ${{\rm{\Omega }}}_{c}^{0}$ | ${{\rm{\Omega }}}_{b}^{-}$ | ${{\rm{\Omega }}}_{b}^{-}$ |
${{\rm{\Sigma }}}_{c}^{* }$ | Σc(2520) | ${{\rm{\Sigma }}}_{b}^{* }$ | ${{\rm{\Sigma }}}_{b}^{* }$ |
${{\rm{\Xi }}}_{c}^{* +}$ | ξc(2645)+ | ${{\rm{\Xi }}}_{b}^{* 0}$ | ξb(5945)0 |
${{\rm{\Xi }}}_{c}^{* 0}$ | ξc(2645)0 | ${{\rm{\Xi }}}_{b}^{* -}$ | ξb(5955)− |
${{\rm{\Omega }}}_{c}^{* 0}$ | ωc(2770)0 | ${{\rm{\Omega }}}_{b}^{* 0}$ | − |
3. Molecular states from resonance-saturated constant interactions
3.1. Potentials from light vector meson exchange
• | ${\tilde{\beta }}_{i}=\beta $ for the S-wave charmed mesons, |
• | ${\tilde{\beta }}_{i}=-\beta $ for the P-wave charmed mesons, |
• | ${\tilde{\beta }}_{i}={\beta }_{B}$ for the anti-triplet charmed baryons, |
• | and ${\tilde{\beta }}_{i}=-{\beta }_{S}/2$ for the sextet charmed baryons. |
3.2. Poles of molecular states
Figure 1. The spectrum of hadronic molecules consisting of a pair of charmed mesons or baryons with I = 0 and P = +. The colored rectangle, green for a bound state and orange for a virtual state, covers the range of the pole position for a given system with the cutoff Λ varying in the range of [0.5, 1.0] GeV. Thresholds are marked by dotted horizontal lines. The rectangle closest to, but below, the threshold corresponds to the hadronic molecule in that system. In some cases, e.g. DD*, there are two rectangles for one system, with the upper edges exactly at the threshold. This corresponds to the situation that the pole moves from the second RS (left orange) to the first RS (right green) when Λ increases in the considered range. In some other cases where the pole positions of two systems overlap, small rectangles are used with the left (right) one for the system with the higher (lower) threshold. |
Figure 2. The spectrum of hadronic molecules consisting of a pair of charmed mesons with I = 0 and P = −. See the caption for figure 1. |
Figure 3. The spectrum of hadronic molecules consisting of a pair of charmed meson and charmed baryon with I = 1/2 and P = −. See the caption for figure 1. The right part of the dashed line for D*Λc marks the real threshold while the left part is deformed to avoid being covered by the rectangle of DΣc system. |
Figure 4. The spectrum of hadronic molecules consisting of a pair of charmed meson and charmed baryon with I = 0 and P = −. See the caption for figure 1. |
Figure 5. The spectrum of hadronic molecules consisting of a pair of charmed meson and charmed baryon with I = 1/2 and P = +. See the caption for figure 1. |
Figure 6. The spectrum of hadronic molecules consisting of a pair of charmed meson and charmed baryon with I = 0 and P = +. See the caption for figure 1. |
Table 3. Pole positions of double-charm-hadron systems with I = 0 and P = +. Eth in the second column is the threshold in MeV. The results as given in the last columns corresponds to using the cutoff Λ = 0.5 (1.0) GeV for equation ( |
System | Eth [MeV] | JP | (RS, EB [MeV]) | |
---|---|---|---|---|
0.5 GeV | 1.0 GeV | |||
DD* | 3876 | 1+ | (2, 3.58) | (1, 5.96) |
D*D* | 4017 | 1+ | (2, 2.68) | (1, 7.07) |
D1D1 | 4844 | 1+ | (2, 0.321) | (1, 12.2) |
D1D2 | 4885 | (1, 2, 3)+ | (2, 0.277) | (1, 12.4) |
D2D2 | 4926 | (1, 3)+ | (2, 0.237) | (1, 12.6) |
ΣcΣc | 4907 | 0+ | (1, 2.72) | (1, 35.2) |
ξcξc | 4939 | 1+ | (2, 43.4) | (2,10.1) |
${{\rm{\Sigma }}}_{c}{{\rm{\Sigma }}}_{c}^{* }$ | 4972 | (1, 2)+ | (1, 2.79) | (1, 35.1) |
${{\rm{\Sigma }}}_{c}^{* }{{\rm{\Sigma }}}_{c}^{* }$ | 5036 | (0, 2)+ | (1, 2.86) | (1, 35.1) |
${{\rm{\Xi }}}_{c}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5048 | (0, 1)+ | (2, 40.1) | (2, 8.55) |
${{\rm{\Xi }}}_{c}{{\rm{\Xi }}}_{c}^{* }$ | 5115 | (1, 2)+ | (2, 38.3) | (2, 7.73) |
${{\rm{\Xi }}}_{c}^{{\prime} }{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5158 | 1+ | (2, 36.9) | (2, 7.14) |
${{\rm{\Xi }}}_{c}^{* }{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5225 | (1, 2)+ | (2, 35.2) | (2, 6.4) |
${{\rm{\Xi }}}_{c}^{* }{{\rm{\Xi }}}_{c}^{* }$ | 5292 | (1, 3)+ | (2, 33.4) | (2, 5.7) |
D1ξc | 4891 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (1, 2.78) | (1, 35.5) |
D2ξc | 4932 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1, 2.83) | (1, 35.5) |
${D}_{1}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5001 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (1, 2.89) | (1, 35.4) |
${D}_{2}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5042 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1, 2.94) | (1, 35.4) |
${D}_{1}{{\rm{\Xi }}}_{c}^{* }$ | 5068 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1, 2.96) | (1, 35.3) |
${D}_{2}{{\rm{\Xi }}}_{c}^{* }$ | 5109 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\tfrac{7}{2}\right)}^{+}$ | (1, 3.0) | (1, 35.3) |
Ds1ωc | 5230 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (1, 0.0298) | (1, 17.4) |
Ds2ωc | 5264 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1,0.039) | (1, 17.5) |
${D}_{s1}{{\rm{\Omega }}}_{c}^{* }$ | 5301 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1, 0.0474) | (1, 17.6) |
${D}_{s2}{{\rm{\Omega }}}_{c}^{* }$ | 5335 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\tfrac{7}{2}\right)}^{+}$ | (1, 0.0588) | (1, 17.7) |
Table 4. Pole positions of double-charm-hadron systems with I = 0 and P = −. See the caption for table 3. |
System | Eth [MeV] | JP | (RS, EB [MeV]) | |
---|---|---|---|---|
0.5 GeV | 1.0 GeV | |||
D D1 | 4289 | 1− | (2, 2.48) | (1, 6.94) |
D D2 | 4330 | 2− | (2, 1.65) | (1, 8.69) |
D*D1 | 4431 | (0, 1, 2)− | (2, 1.35) | (1, 9.12) |
D*D2 | 4472 | (1, 2, 3)− | (2, 1.0) | (1, 10.1) |
| ||||
D ξc | 4337 | ${\tfrac{1}{2}}^{-}$ | (1, 1.92) | (1, 35.3) |
$D\ {{\rm{\Xi }}}_{c}^{{\prime} }$ | 4446 | ${\tfrac{1}{2}}^{-}$ | (1, 2.04) | (1, 35.4) |
D*ξc | 4478 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (1, 2.19) | (1, 35.5) |
$D\ {{\rm{\Xi }}}_{c}^{* }$ | 4513 | ${\tfrac{3}{2}}^{-}$ | (1,2.11) | (1, 35.4) |
${D}^{* }{{\rm{\Xi }}}_{c}^{{\prime} }$ | 4587 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (1, 2.31) | (1, 35.5) |
${D}^{* }{{\rm{\Xi }}}_{c}^{* }$ | 4655 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{-}$ | (1, 2.38) | (1, 35.5) |
| ||||
Dsωc | 4664 | ${\tfrac{1}{2}}^{-}$ | (2, 0.168) | (1, 14.3) |
${D}_{s}{{\rm{\Omega }}}_{c}^{* }$ | 4734 | ${\tfrac{3}{2}}^{-}$ | (2, 0.129) | (1, 14.6) |
${D}_{s}^{* }{{\rm{\Omega }}}_{c}^{{\prime} }$ | 4807 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (2, 0.0507) | (1, 15.3) |
${D}_{s}^{* }{{\rm{\Omega }}}_{c}^{* }$ | 4878 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{-}$ | (2, 0.0308) | (1, 15.6) |
Table 5. Pole positions of double-charm-hadron systems with I = 1/2 and P = −. See the caption for table 3. |
System | Eth [MeV] | JP | (RS, EB [MeV]) | |
---|---|---|---|---|
0.5 GeV | 1.0 GeV | |||
D Λc | 4154 | ${\tfrac{1}{2}}^{-}$ | (2, 3.44) | (1, 5.62) |
D*Λc | 4295 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (2, 2.53) | (1, 6.73) |
D Σc | 4321 | ${\tfrac{1}{2}}^{-}$ | (1, 5.81) | (1, 50.5) |
$D\ {{\rm{\Sigma }}}_{c}^{* }$ | 4385 | ${\tfrac{3}{2}}^{-}$ | (1, 5.85) | (1, 50.2) |
D*Σc | 4462 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (1, 5.97) | (1, 49.7) |
${D}^{* }{{\rm{\Sigma }}}_{c}^{* }$ | 4527 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{-}$ | (1,6.01) | (1, 49.5) |
| ||||
Dsξc | 4438 | ${\tfrac{1}{2}}^{-}$ | (2, 25.7) | (2, 1.76) |
${D}_{s}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 4547 | ${\tfrac{1}{2}}^{-}$ | (2, 23.7) | (2, 1.29) |
${D}_{s}^{* }{{\rm{\Xi }}}_{c}$ | 4582 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (2, 21.8) | (2, 0.882) |
${D}_{s}{{\rm{\Xi }}}_{c}^{* }$ | 4614 | ${\tfrac{3}{2}}^{-}$ | (2, 22.6) | (2, 1.05) |
${D}_{s}^{* }{{\rm{\Xi }}}_{c}^{{\prime} }$ | 4691 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{-}$ | (2, 20.0) | (2, 0.564) |
${D}_{s}^{* }{{\rm{\Xi }}}_{c}^{* }$ | 4758 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{-}$ | (2, 19.0) | (2, 0.416) |
Table 6. Pole positions of double-charm-hadron systems with I = 1/2 and P = +. See the caption for table 3. |
System | Eth [MeV] | JP | (RS, EB [MeV]) | |
---|---|---|---|---|
0.5 GeV | 1.0 GeV | |||
D1Λc | 4708 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (2, 1.04) | (1, 9.31) |
D2Λc | 4750 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (2, 0.95) | (1, 9.51) |
D1Σc | 4876 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (1, 6.25) | (1, 47.5) |
D2Σc | 4917 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1, 6.27) | (1, 47.3) |
${D}_{1}{{\rm{\Sigma }}}_{c}^{* }$ | 4940 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (1,6.28) | (1, 47.2) |
${D}_{2}{{\rm{\Sigma }}}_{c}^{* }$ | 4981 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\tfrac{7}{2}\right)}^{+}$ | (1, 6.29) | (1, 47.0) |
| ||||
Ds1ξc | 5005 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (2, 14.2) | (2, 0.00911) |
Ds2ξc | 5039 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (2, 13.8) | (2, 0.00176) |
${D}_{s1}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5114 | ${\left(\tfrac{1}{2},\tfrac{3}{2}\right)}^{+}$ | (2, 12.8) | (1, 0.00636) |
${D}_{s2}{{\rm{\Xi }}}_{c}^{{\prime} }$ | 5148 | ${\left(\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (2, 12.4) | (1, 0.0175) |
${D}_{s1}{{\rm{\Xi }}}_{c}^{* }$ | 5181 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2}\right)}^{+}$ | (2, 12.0) | (1, 0.0319) |
${D}_{s2}{{\rm{\Xi }}}_{c}^{* }$ | 5215 | ${\left(\tfrac{1}{2},\tfrac{3}{2},\tfrac{5}{2},\tfrac{7}{2}\right)}^{+}$ | (2, 11.6) | (1, 0.0532) |
4. Discussions of selected systems
4.1. Heavy meson–meson molecules versus doubly heavy tetraquarks
4.1.1. Heavy meson–meson molecules
4.1.2. Compact tetraquark states
4.2. Heavy meson-baryon molecules versus doubly heavy baryons
4.3. Heavy di-baryons
5. Summary
• | We have only considered the leading interactions described by constant contact terms The momentum dependent terms (including both spin-dependent and spin-independent contributions) may change the spectrum we obtained visibly, especially for the systems where the poles are far away from the corresponding thresholds. The spin-dependent terms will also lift the degeneracy of the same system with different total spins. |
• | The coupled channel effects have been neglected. In some cases the coupled-channel effects may play an important role in the formation of near threshold states. However, it is common and natural that the near-threshold pole found in a coupled-channel system dominantly couples to a single channel, see, e.g. the ${D}_{s0}^{* }(2317)$, which is dynamically generated in the DK and Dsη system but couples dominantly to DK [236, 237, 94], and the ξcc(4083) state with JP = 1/2−, which is dynamically generated in the ΣcD and ${{\rm{\Xi }}}_{c}^{{\prime} }{D}_{s}$ system but couples dominantly to ΣcD [209].12(12 The ΣcD bound state obtained in this work has a mass around 4.3 GeV, much closer to the threshold; see table 5 and figure 3.) |
• | The hadronic molecules shown in figures 3–6 can couple to normal double-charm baryons as well as channels with a double-charm baryon and a light meson. It is expected that each of these two types of systems also forms a spectrum. The physical spectrum of double-charm baryons should incorporate the mixing among all the three spectra. Coupled channels including both the charm-baryon–charm-meson channels and light-meson–double-charm-baryon channels have been considered in, e.g. [209] for the ξcc type molecular states. Mixing of light-meson–double-charm-baryon molecular states with the normal double-charm baryons with a P-wave excitation inside the charm diquark has been considered in [214]. Yet, a model considering all the three kinds of channels does not exist so far. |
• | The exchange of other particles, such as the light scalar mesons, charmed mesons and charmonia, are not considered, the effect of which can be partly covered by varying the cutoff. In addition, the interactions considered here are of leading order in the 1/Nc expansion, where Nc is the number of colors, i.e. the Okubo–Zweig–Iizuka violating interactions have been neglected. Such contributions will also lift the degeneracy of the same system with different total spins. |
1. Unlike the isovector D*D(*) systems that are repulsive, the isoscalar ones have attractive interaction from the light vector meson exchange and the total potential makes the systems at the edge of forming near-threshold molecules. With a reasonable cutoff regularizing the loop integral, the binding energy of the I(JP) = 0(1+) DD* system is consistent with the double charm tetraquark ${T}_{{cc}}^{+}$ in LHCb observation. If the hadronic molecule structure of the ${T}_{{cc}}^{+}$ is confirmed, which is rather natural given the closeness to the DD* threshold, many other similar states with I = 0 including D*D*, D(*)D1,2, D1,2D1,2 can also exist. | |
2. Given that the famous Pc states are hadronic molecules of ${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$, it is natural to expect the existence of double-charm ${D}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ and ${D}_{\mathrm{1,2}}{{\rm{\Sigma }}}_{c}^{(* )}$ states with I = 1/2 because the attraction from the light vector meson exchange for the latter is stronger than that for the former. Similar conclusions can be made for the ${D}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ and ${D}_{\mathrm{1,2}}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ channels, especially when the Pcs states are established experimentally. The hadronic molecules in other systems including D(*)Λc, D1,2Λc, ${D}_{s}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$, ${D}_{s\mathrm{1,2}}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ ${D}_{s}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$ and ${D}_{s\mathrm{1,2}}{{\rm{\Omega }}}_{c}^{(* )}$ are also predicted. | |
3. Within our simple model, in the double-charm di-baryon sector, only isoscalar ${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ systems are expected to be good candidates of bound di-baryon states. As discussed in the literature, the inclusion of other contributions to the interaction as well as the coupling to other channels may make additional di-baryon bound states possible. |
Appendix. The flavor factor F
Table 7. The group theory factor F, defined in equation ( |
System | I | S | Thresholds [MeV] | Exchanged particles | F |
---|---|---|---|---|---|
${D}^{(* )}{\bar{D}}^{(* )}/{D}^{(* )}{D}^{(* )}$ | 1 | 0/0 | (3734, 3876, 4017) | ρ, ω | $-\tfrac{1}{2},\tfrac{1}{2}/-\tfrac{1}{2},-\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ | ||||
${D}_{s}^{(* )}{\bar{D}}^{(* )}$/${D}_{s}^{(* )}{D}^{(* )}$ | $\tfrac{1}{2}$ | 1/1 | (3836, 3977, 3979, 4121) | K* | 0/−1 |
${D}_{s}^{(* )}{\bar{D}}_{s}^{(* )}$/${D}_{s}^{(* )}{D}_{s}^{(* )}$ | 0 | 0/2 | (3937, 4081, 4224) | φ | 1/−1 |
| |||||
${\bar{D}}^{(* )}{{\rm{\Lambda }}}_{c}$/D(*)Λc | $\tfrac{1}{2}$ | 0/0 | (4154, 4295) | ω | −1/1 |
${\bar{D}}_{s}^{(* )}{{\rm{\Lambda }}}_{c}$/${D}_{s}^{(* )}{{\rm{\Lambda }}}_{c}$ | 0 | − 1/1 | (4255, 4399) | − | 0/0 |
${\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}$/D(*)ξc | 1 | − 1/ − 1 | (4337, 4478) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}/\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${\bar{D}}_{s}^{(* )}{{\rm{\Xi }}}_{c}$/${D}_{s}^{(* )}{{\rm{\Xi }}}_{c}$ | $\tfrac{1}{2}$ | − 2/0 | (4438, 4582) | φ | −1/1 |
| |||||
${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$/${D}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ | $\tfrac{3}{2}$ | 0/0 | (4321, 4385, 4462, 4527) | ρ, ω | − 1, − 1/ − 1, 1 |
$\tfrac{1}{2}$ | 2, − 1/2,1 | ||||
${\bar{D}}_{s}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$/${D}_{s}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ | 1 | − 1/1 | (4422, 4486, 4566, 4630) | − | 0/0 |
${\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$/${D}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | 1 | − 1/ − 1 | (4446, 4513, 4587, 4655) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${\bar{D}}_{s}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$/${D}_{s}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | $\tfrac{1}{2}$ | − 2/0 | (4547, 4614, 4691, 4758) | φ | − 1/1 |
${\bar{D}}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$/${D}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$ | $\tfrac{1}{2}$ | − 2/0 | (4562, 4633, 4704, 4774) | − | 0/0 |
${\bar{D}}_{s}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$/${D}_{s}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$ | 0 | − 3/ − 1 | (4664, 4734, 4807, 4878) | φ | − 2/2 |
| |||||
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Lambda }}}}_{c}$/ΛcΛc | 0 | 0/0 | (4573) | ω | 2/−2 |
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Xi }}}}_{c}$/Λcξc | $\tfrac{1}{2}$ | 1/ − 1 | (4756) | ω/K* | 1, 0/ − 1, − 1 |
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Xi }}}}_{c}$/ξcξc | 1 | 0/ − 2 | (4939) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
| |||||
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Sigma }}}}_{c}^{(* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Sigma }}}_{c}^{(* )}$ | 1 | 0/0 | (4740, 4805) | ω/K* | 1, 0/ − 1, − 1 |
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | $\tfrac{1}{2}$ | 1/ − 1 | (4865, 4932) | ω | 1/−1 |
${{\rm{\Lambda }}}_{c}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Lambda }}}_{c}{{\rm{\Omega }}}_{c}^{(* )}$ | 0 | 2/ − 2 | (4982, 5052) | − | 0/0 |
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Xi }}}}_{c}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}$ | $\tfrac{3}{2}$ | 1/ − 1 | (4923, 4988) | ρ, ω, K* | − 1, 1, 0/ − 1, − 1, − 2 |
$\tfrac{1}{2}$ | 2, 1, 0/2, − 1, − 2 | ||||
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Xi }}}_{c}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | 1 | 0/ − 2 | (5048, 5115) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
${{\rm{\Xi }}}_{c}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Xi }}}_{c}{{\rm{\Omega }}}_{c}^{(* )}$ | $\tfrac{1}{2}$ | 1/ − 3 | (5165, 5235) | φ, K* | 2, 0/ − 2, − 2 |
| |||||
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Sigma }}}}_{c}^{(* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ | 2 | 0/0 | (4907, 4972, 5036) | ρ, ω | − 2, 2/ − 2, − 2 |
1 | 2, 2/2, − 2 | ||||
0 | 4, 2/4, − 2 | ||||
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | $\tfrac{3}{2}$ | 1/ − 1 | (5032, 5097, 5100, 5164) | ρ, ω, K* | − 1, 1, 0/ − 1, − 1 − 2 |
$\tfrac{1}{2}$ | 2, 1, 0/2, − 1, − 2 | ||||
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$ | 0 | 2/ − 2 | (5149, 5213, 5219, 5284) | − | 0/0 |
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{{\rm{\Xi }}}}_{c}^{{\prime} (* )}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{{\rm{\Xi }}}_{c}^{{\prime} (* )}$ | 1 | 0/ − 2 | (5158, 5225, 5292) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{{\rm{\Omega }}}_{c}^{(* )}$ | $\tfrac{1}{2}$ | 1/ − 3 | (5272, 5341, 5345, 5412) | φ, K* | 2, 0/ − 2, − 2 |
${{\rm{\Omega }}}_{c}^{(* )}{\bar{{\rm{\Omega }}}}_{c}^{(* )}$/${{\rm{\Omega }}}_{c}^{(* )}{{\rm{\Omega }}}_{c}^{(* )}$ | 0 | 0/ − 4 | (5390, 5461, 5532) | φ | 4/−4 |
Table 8. The group theory factor F, defined in equation ( |
System | I | S | Thresholds [MeV] | Exchanged particles | F |
---|---|---|---|---|---|
${D}^{(* )}{\bar{D}}_{\mathrm{1,2}}$/D(*)D1,2 | 0 | 0/0 | (4289, 4330, 4431, 4472) | ρ, ω | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ |
1 | 0/0 | $-\tfrac{1}{2},\tfrac{1}{2}$/ $-\tfrac{1}{2},-\tfrac{1}{2}$ | |||
${D}^{(* )}{\bar{D}}_{s1,s2}$/D(*)Ds1,s2 | $\tfrac{1}{2}$ | 1/ − 1 | (4390, 4431, 4534, 4575) | − | 0/0 |
${D}_{s}^{(* )}{\bar{D}}_{\mathrm{1,2}}$/${D}_{s}^{(* )}{D}_{\mathrm{1,2}}$ | $\tfrac{1}{2}$ | − 1/1 | (4402, 4436, 4544, 4578) | − | 0/0 |
${D}_{s}^{(* )}{\bar{D}}_{s1,s2}$/${D}_{s}^{(* )}{D}_{s1,s2}$ | 0 | 0/−2 | (4503, 4537, 4647, 4681) | φ | 1/−1 |
| |||||
${D}_{\mathrm{1,2}}{\bar{D}}_{\mathrm{1,2}}$/D1,2D1,2 | 0 | 0/0 | (4844, 4885, 4926) | ρ, ω | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ |
1 | $-\tfrac{1}{2},\tfrac{1}{2}$/$-\tfrac{1}{2},-\tfrac{1}{2}$ | ||||
${D}_{s1,s2}{\bar{D}}_{\mathrm{1,2}}$/Ds1,s2D1,2 | $\tfrac{1}{2}$ | 1/1 | (4957, 4991, 4998, 5032) | 0/0 | |
${D}_{s1,s2}{\bar{D}}_{s1,s2}$/Ds1,s2Ds1,s2 | 0 | 0/ − 2 | (5070, 5104, 5138) | φ | 1/1 |
| |||||
${{\rm{\Lambda }}}_{c}{\bar{D}}_{\mathrm{1,2}}$/ΛcD1,2 | $\tfrac{1}{2}$ | 0/0 | (4708, 4750) | ω | −1/1 |
${{\rm{\Lambda }}}_{c}{\bar{D}}_{s1,s2}$/ΛcDs1,s2 | 0 | − 1/1 | (4822, 4856) | − | 0/0 |
${{\rm{\Xi }}}_{c}{\bar{D}}_{\mathrm{1,2}}$/ξcD1,2 | 1 | − 1/ − 1 | (4891, 4932) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${{\rm{\Xi }}}_{c}{\bar{D}}_{s1,s2}$/ξcDs1,s2 | $\tfrac{1}{2}$ | − 2/0 | (5005, 5039) | φ | −1/1 |
| |||||
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{D}}_{\mathrm{1,2}}$/${{\rm{\Sigma }}}_{c}^{(* )}{D}_{\mathrm{1,2}}$ | $\tfrac{3}{2}$ | 0/0 | (4876, 4917, 4940, 4981) | ρ, ω | − 1, − 1/ − 1, 1 |
$\tfrac{1}{2}$ | 2, − 1/2,1 | ||||
${{\rm{\Sigma }}}_{c}^{(* )}{\bar{D}}_{s1,s2}$/${{\rm{\Sigma }}}_{c}^{(* )}{D}_{s1,s2}$ | 1 | 1/ − 1 | (4989, 5023, 5053, 5087) | − | 0/0 |
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{D}}_{\mathrm{1,2}}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{D}_{\mathrm{1,2}}$ | 1 | − 1/ − 1 | (5001, 5042, 5068, 5109) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${{\rm{\Xi }}}_{c}^{{\prime} (* )}{\bar{D}}_{s1,s2}$/${{\rm{\Xi }}}_{c}^{{\prime} (* )}{D}_{s1,s2}$ | $\tfrac{1}{2}$ | − 2/0 | (5114, 5148, 5181, 5215) | φ | −1/1 |
${{\rm{\Omega }}}_{c}^{(* )}{\bar{D}}_{\mathrm{1,2}}$/${{\rm{\Omega }}}_{c}^{(* )}{D}_{\mathrm{1,2}}$ | $\tfrac{1}{2}$ | − 2/ − 2 | (5117, 5158, 5188, 5229) | − | 0/0 |
${{\rm{\Omega }}}_{c}^{(* )}{\bar{D}}_{s1,s2}$/${{\rm{\Omega }}}_{c}^{(* )}{D}_{s1,s2}$ | 0 | − 3/ − 1 | (5230, 5264, 5301, 5335) | φ | −2/2 |
Table 9. The group theory factor F, defined in equation ( |
System | I | S | Thresholds [MeV] | Exchanged particles | F |
---|---|---|---|---|---|
${B}^{(* )}{\bar{B}}^{(* )}/{B}^{(* )}{B}^{(* )}$ | 1 | 0/0 | (10559, 10604, 10649) | ρ, ω | $-\tfrac{1}{2},\tfrac{1}{2}/-\tfrac{1}{2},-\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ | ||||
${B}_{s}^{(* )}{\bar{B}}^{(* )}$/${B}_{s}^{(* )}{B}^{(* )}$ | $\tfrac{1}{2}$ | 1/1 | (10646, 10695, 10692, 10740) | K* | 0/ − 1 |
${B}_{s}^{(* )}{\bar{B}}_{s}^{(* )}$/${B}_{s}^{(* )}{B}_{s}^{(* )}$ | 0 | 0/2 | (10734, 10782, 10831) | φ | 1/−1 |
| |||||
${\bar{B}}^{(* )}{{\rm{\Lambda }}}_{b}$/B(*)Λb | $\tfrac{1}{2}$ | 0/0 | (10899, 10944) | ω | −1/1 |
${\bar{B}}_{s}^{(* )}{{\rm{\Lambda }}}_{b}$/${B}_{s}^{(* )}{{\rm{\Lambda }}}_{b}$ | 0 | − 1/1 | (10986, 11035) | − | 0/0 |
${\bar{B}}^{(* )}{{\rm{\Xi }}}_{b}$/B(*)ξb | 1 | − 1/ − 1 | (11074, 11119) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}/\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${\bar{B}}_{s}^{(* )}{{\rm{\Xi }}}_{b}$/${B}_{s}^{(* )}{{\rm{\Xi }}}_{b}$ | $\tfrac{1}{2}$ | − 2/0 | (11161, 11210) | φ | −1/1 |
| |||||
${\bar{B}}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$/${B}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | $\tfrac{3}{2}$ | 0/0 | (11093, 11138, 11112, 11157) | ρ, ω | − 1, − 1/ − 1, 1 |
$\tfrac{1}{2}$ | 2, − 1/2,1 | ||||
${\bar{B}}_{s}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$/${B}_{s}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | 1 | − 1/1 | (11180, 11228, 11199, 11248) | − | 0/0 |
${\bar{B}}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$/${B}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | 1 | − 1/ − 1 | (11215, 11260, 11233, 11279) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${\bar{B}}_{s}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$/${B}_{s}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | $\tfrac{1}{2}$ | − 2/0 | (11302, 11350, 11321, 11369) | φ | − 1/1 |
${\bar{B}}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$/${B}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$ | $\tfrac{1}{2}$ | − 2/0 | (11326, 11371, 11349, 11395) | − | 0/0 |
${\bar{B}}_{s}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$/${B}_{s}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$ | 0 | − 3/ − 1 | (11413, 11462, 11437, 11485) | φ | − 2/2 |
| |||||
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Lambda }}}}_{b}$/ΛbΛb | 0 | 0/0 | (11239) | ω | 2/−2 |
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Xi }}}}_{b}$/Λbξb | $\tfrac{1}{2}$ | 1/ − 1 | (11414) | ω,K* | 1, 0/ − 1, − 1 |
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Xi }}}}_{b}$/ξbξb | 1 | 0/ − 2 | (11589) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
| |||||
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Sigma }}}_{b}^{(* )}$ | 1 | 0/0 | (11433, 11452) | ω | 2/−2 |
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | $\tfrac{1}{2}$ | 1/ − 1 | (11555, 11573) | ω, K* | 1, 0/ − 1, − 1 |
${{\rm{\Lambda }}}_{b}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Lambda }}}_{b}{{\rm{\Omega }}}_{b}^{(* )}$ | 0 | 2/ − 2 | (11666, 11690) | − | 0/0 |
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Sigma }}}_{b}^{(* )}$ | $\tfrac{3}{2}$ | − 1/ − 1 | (11608, 11627) | ρ, ω, K* | − 1, 1, 0/ − 1, − 1, − 2 |
$\tfrac{1}{2}$ | 2, 1, 0/2, − 1, − 2 | ||||
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | 1 | 0/ − 2 | (11729, 11748) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
${{\rm{\Xi }}}_{b}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}{{\rm{\Omega }}}_{b}^{(* )}$ | $\tfrac{1}{2}$ | 1/ − 3 | (11841, 11864) | φ, K* | 2, 0/ − 2, − 2 |
| |||||
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Sigma }}}}_{b}^{(* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | 2 | 0/0 | (11626, 11646, 11665) | ρ, ω | − 2, 2/ − 2, − 2 |
1 | 2, 2/2, − 2 | ||||
0 | 4, 2/4, − 2 | ||||
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | $\tfrac{3}{2}$ | 1/ − 1 | (11748, 11768, 11767, 11786) | ρ, ω, K* | − 1, 1, 0/ − 1, − 1, − 2 |
$\tfrac{1}{2}$ | 2, 1, 0/2, − 1, − 2 | ||||
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$ | 0 | 2/ − 2 | (11859, 11879, 11883, 11903) | K* | 0/−4 |
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{{\rm{\Xi }}}}_{b}^{{\prime} (* )}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{{\rm{\Xi }}}_{b}^{{\prime} (* )}$ | 1 | 0/ − 2 | (11870, 11889, 11908) | ρ, ω, φ | $-\tfrac{1}{2},\tfrac{1}{2},1$/$-\tfrac{1}{2},-\tfrac{1}{2},-1$ |
0 | $\tfrac{3}{2},\tfrac{1}{2},1$/$\tfrac{3}{2},-\tfrac{1}{2},-1$ | ||||
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{{\rm{\Omega }}}_{b}^{(* )}$ | $\tfrac{1}{2}$ | 1/ − 3 | (11981, 12000, 12005, 12024) | φ, K* | 2, 0/ − 2, − 2 |
${{\rm{\Omega }}}_{b}^{(* )}{\bar{{\rm{\Omega }}}}_{b}^{(* )}$/${{\rm{\Omega }}}_{b}^{(* )}{{\rm{\Omega }}}_{b}^{(* )}$ | 0 | 0/ − 4 | (12092, 12116, 12140) | φ | 4/−4 |
Table 10. The group theory factor F, defined in equation ( |
System | I | S | Thresholds [MeV] | Exchanged particles | F |
---|---|---|---|---|---|
${B}^{(* )}{\bar{B}}_{\mathrm{1,2}}$/B(*)B1,2 | 0 | 0/0 | (11005, 11051, 11018, 11063) | ρ, ω | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ |
1 | 0/0 | $-\tfrac{1}{2},\tfrac{1}{2}$/ $-\tfrac{1}{2},-\tfrac{1}{2}$ | |||
${B}^{(* )}{\bar{B}}_{s1,s2}$/B(*)Bs1,s2 | $\tfrac{1}{2}$ | 1/ − 1 | (11093, 11141, 11105, 11154) | − | 0/0 |
${B}_{s}^{(* )}{\bar{B}}_{\mathrm{1,2}}$/${B}_{s}^{(* )}{B}_{\mathrm{1,2}}$ | $\tfrac{1}{2}$ | − 1/1 | (11108, 11153, 11119, 11165) | − | 0/0 |
${B}_{s}^{(* )}{\bar{B}}_{s1,s2}$/${B}_{s}^{(* )}{B}_{s1,s2}$ | 0 | 0/−2 | (11196, 11207, 11244, 11255) | φ | 1/−1 |
| |||||
${B}_{\mathrm{1,2}}{\bar{B}}_{\mathrm{1,2}}$/B1,2B1,2 | 0 | 0/0 | (11452, 11464, 11477) | ρ, ω | $\tfrac{3}{2},\tfrac{1}{2}$/$\tfrac{3}{2},-\tfrac{1}{2}$ |
1 | $-\tfrac{1}{2},\tfrac{1}{2}$/$-\tfrac{1}{2},-\tfrac{1}{2}$ | ||||
${B}_{s1,s2}{\bar{B}}_{\mathrm{1,2}}$/Bs1,s2B1,2 | $\tfrac{1}{2}$ | 1/1 | (11555, 11566, 11567, 11578) | 0/0 | |
${B}_{s1,s2}{\bar{B}}_{s1,s2}$/Bs1,s2Bs1,s2 | 0 | 0/ − 2 | (11657, 11669, 11680) | φ | 1/1 |
| |||||
${{\rm{\Lambda }}}_{b}{\bar{B}}_{\mathrm{1,2}}$/ΛbB1,2 | $\tfrac{1}{2}$ | 0/0 | (11346, 11358) | ω | −1/1 |
${{\rm{\Lambda }}}_{b}{\bar{B}}_{s1,s2}$/ΛbBs1,s2 | 0 | − 1/1 | (11448, 11459) | − | 0/0 |
${{\rm{\Xi }}}_{b}{\bar{B}}_{\mathrm{1,2}}$/ξbB1,2 | 1 | − 1/ − 1 | (11520, 11533) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${{\rm{\Xi }}}_{b}{\bar{B}}_{s1,s2}$/ξbBs1,s2 | $\tfrac{1}{2}$ | − 2/0 | (11623, 11634) | φ | −1/1 |
| |||||
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{B}}_{\mathrm{1,2}}$/${{\rm{\Sigma }}}_{b}^{(* )}{B}_{\mathrm{1,2}}$ | $\tfrac{3}{2}$ | 0/0 | (11539, 11551, 11559, 11571) | ρ, ω | − 1, − 1/ − 1, 1 |
$\tfrac{1}{2}$ | 2, − 1/2,1 | ||||
${{\rm{\Sigma }}}_{b}^{(* )}{\bar{B}}_{s1,s2}$/${{\rm{\Sigma }}}_{b}^{(* )}{B}_{s1,s2}$ | 1 | 1/ − 1 | (11642, 11653, 11661, 11672) | − | 0/0 |
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{B}}_{\mathrm{1,2}}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{B}_{\mathrm{1,2}}$ | 1 | − 1/ − 1 | (11661, 11673, 11680, 11692) | ρ, ω | $-\tfrac{1}{2},-\tfrac{1}{2}$/$-\tfrac{1}{2},\tfrac{1}{2}$ |
0 | $\tfrac{3}{2},-\tfrac{1}{2}$/$\tfrac{3}{2},\tfrac{1}{2}$ | ||||
${{\rm{\Xi }}}_{b}^{{\prime} (* )}{\bar{B}}_{s1,s2}$/${{\rm{\Xi }}}_{b}^{{\prime} (* )}{B}_{s1,s2}$ | $\tfrac{1}{2}$ | − 2/0 | (11764, 11775, 11783, 11794) | φ | −1/1 |
${{\rm{\Omega }}}_{b}^{(* )}{\bar{B}}_{\mathrm{1,2}}$/${{\rm{\Omega }}}_{b}^{(* )}{B}_{\mathrm{1,2}}$ | $\tfrac{1}{2}$ | − 2/ − 2 | (11772, 11784, 11796, 11808) | − | 0/0 |
${{\rm{\Omega }}}_{b}^{(* )}{\bar{B}}_{s1,s2}$/${{\rm{\Omega }}}_{b}^{(* )}{B}_{s1,s2}$ | 0 | − 3/ − 1 | (11875, 11886, 11899, 11910) | φ | −2/2 |