1. Introduction
2. Mathematical modeling
Figure 1. Flow configuration of the problem. |
2.1. Similarity transformation
2.2. Physical quantities
3. Results and discussion
Table 1. Estimation of $f^{\prime\prime} (0)$ and $g^{\prime\prime} (0)$ with previous data, when $M={\alpha }_{1}=0={K}_{1}={K}_{2}.$ |
Nandi et al [40] | Presents results | ||||
---|---|---|---|---|---|
$n$ | $A$ | $f^{\prime\prime} (0)$ | $g^{\prime\prime} (0)$ | $f^{\prime\prime} (0)$ | $g^{\prime\prime} (0)$ |
1.0 | 0.0 | −1.000 007 | 0.000 00 | −1.000 008 | 0.000 00 |
1.0 | 0.5 | −1.224 76 | −0.612 373 | −1.224 78 | −0.612 374 |
1.0 | 1.0 | −1.414 422 | −0.414 212 | −1.414 424 | −0.414 215 |
3.0 | 0.0 | −1.624 357 | 0.000 00 | −1.624 355 | 0.000 000 |
3.0 | 0.5 | −1.989 423 | −0.994 711 | −1.989 425 | −0.994 713 |
3.0 | 1.0 | −2.229 7188 | −2.297 188 | −2.229 7186 | −2.297 186 |
Table 2. Numerical values of $R{e}_{x}^{-1/2}N{u}_{x}$ for several parameters. |
${R}_{d}$ | $n$ | $Q$ | ${N}_{t}$ | ${K}_{2}$ | $M$ | $R{e}_{x}^{-1/2}N{u}_{x}$ |
---|---|---|---|---|---|---|
0.1 | 0.3 | 1.0 | 0.1 | 0.5 | 0.1 | 0.795 52 |
0.3 | 0.880 35 | |||||
0.5 | 0.938 24 | |||||
0.3 | 0.606 36 | |||||
0.4 | 0.634 21 | |||||
0.5 | 0.663 52 | |||||
0.2 | 0.434 22 | |||||
0.3 | 0.273 19 | |||||
0.4 | 0.226 14 | |||||
0.2 | 0.663 15 | |||||
0.3 | 0.608 27 | |||||
0.4 | 0.553 11 | |||||
0.2 | 0.407 81 | |||||
0.4 | 0.385 21 | |||||
0.6 | 0.360 43 | |||||
0.1 | 0.761 42 | |||||
0.3 | 0.702 80 | |||||
0.5 | 0.686 30 |
Table 3. Numerical values of $R{e}_{x}^{-1/2}S{h}_{x}$ for several parameters. |
${N}_{b}$ | $n$ | ${S}_{c}$ | $\delta $ | ${K}_{3}$ | ${K}_{r}$ | $R{e}_{x}^{-1/2}S{h}_{x}$ |
---|---|---|---|---|---|---|
0.2 | 0.3 | 3.0 | 1.0 | 0.5 | 1.0 | 0.411 74 |
0.4 | 0.455 79 | |||||
0.8 | 0.496 71 | |||||
0.2 | 0.616 15 | |||||
0.4 | 0.617 19 | |||||
0.6 | 0.618 19 | |||||
2.0 | 0.461 96 | |||||
2.5 | 0.566 21 | |||||
2.9 | 0.589 19 | |||||
0.2 | 0.155 61 | |||||
0.3 | 0.425 01 | |||||
0.4 | 0.645 22 | |||||
1.0 | 0.546 21 | |||||
1.5 | 0.373 52 | |||||
2.0 | 0.247 71 | |||||
0.1 | 0.263 76 | |||||
0.3 | 0.465 22 | |||||
0.5 | 0.856 34 |
Figure 2. (a), (b): Variation in ${\alpha }_{1}$ along $f^{\prime} (\zeta )$ and $g^{\prime} (\zeta )$ sketch. |
Figure 3. (a), (b): Variation in $\beta $ along $f^{\prime} (\zeta )$ and $g^{\prime} (\zeta )$ sketch. |
Figure 4. (a), (b): Plots of $Q$ and ${R}_{d}$ along $\theta (\zeta ).$ |
Figure 5. (a)–(c): Plots of $M$ along $f^{\prime} (\zeta ),g^{\prime} (\zeta )$ and $\theta (\zeta ).$ |
Figure 6. (a), (b): Plot of ${K}_{1}$ along $f^{\prime} (\zeta )$ and $g^{\prime} (\zeta ).$ |
Figure 7. (a), (b): Plots of ${K}_{2}$ and ${K}_{3}$ along $\theta (\zeta )$ and $\phi (\zeta ).$ |
Figure 8. (a), (b): Plot of ${N}_{t}$ along $\theta (\zeta )$ and $\phi ({\rm{\zeta }}).$ |
Figure 9. (a), (b): Plot of ${N}_{b}$ along $\theta (\zeta )$ and $\phi ({\rm{\zeta }}).$ |
Figure 10. (a), (b): Plots of $Sc$ and $\delta $ along $\phi ({\rm{\zeta }}).$ |
4. Conclusions
• | The thickness of the momentum layer is reduced by the wall thickness parameter, Deborah number, and magnetic parameter. Such that, the fluid velocities are reduced. |
• | The thermal thickness layer boosts with heat generation, radiation, and magnetic parameters, while it reduces for larger amount of thermophoresis, temperature jump and Brownian motion parameter. |
• | The concentration function is lessened when the Schmidt number, concentration difference parameter, concentration jump parameter, and Brownian motion parameter improve, however it is enhanced as the thermophoresis parameter increases. |
• | The velocity gradient $f^{\prime\prime} (0)$ and $g^{\prime\prime} (0)$ rises by boosting the value of the wall thickness characteristic and power-law index characteristic. |
• | Characteristic of radiation and power-law index parameter enhance the heat transfer rate, while the heat generation, magnetic characteristic, and temperature jump characteristic reduced the heat transfer rate. |
• | Schmidt number and Binary chemical reaction characteristics increase the mass transport rate, while the concentration jump parameter decreases the mass transfer rate. |