1. Introduction
2. Tetraquark currents of JPC = 1++ and their relations
Figure 1. Three types of tetraquark currents. Quarks and antiquarks are shown in red, green, and blue color. |
2.1. $[{qc}][\bar{q}\bar{c}]$ currents ${\eta }_{\mu }^{i}(x,y)$
2.2. $[\bar{c}q][\bar{q}c]$ currents ${\xi }_{\mu }^{i}(x,y)$
2.3. $[\bar{c}c][\bar{q}q]$ currents ${\theta }_{\mu }^{i}(x,y)$
2.4. Fierz rearrangement
2.5. Isospin of the X(3872) and decay constants
Table 1. Couplings of meson operators to meson states. All the light isovector meson operators ${J}_{(\mu \nu )}^{S/P/V/A/T}$ have the quark content $\bar{q}{\rm{\Gamma }}q=\left(\bar{u}{\rm{\Gamma }}u-\bar{d}{\rm{\Gamma }}d\right)/\sqrt{2}$, and all the light isoscalar meson operators ${P}_{(\mu \nu )}^{S/P/V/A/T}$ have the quark content $\bar{q}{\rm{\Gamma }}q=\left(\bar{u}{\rm{\Gamma }}u+\bar{d}{\rm{\Gamma }}d\right)/\sqrt{2}$. Color indices are omitted for simplicity. |
Operators | IGJPC | Mesons | IGJPC | Couplings | Decay Constants |
---|---|---|---|---|---|
${J}^{S}=\bar{q}q$ | 1−0++ | — | 1−0++ | — | — |
${J}^{P}=\bar{q}{\rm{i}}{\gamma }_{5}q$ | 1−0−+ | π0 | 1−0−+ | 〈0∣JP∣π0〉 = λπ | ${\lambda }_{\pi }=\displaystyle \frac{{f}_{\pi }{m}_{\pi }^{2}}{{m}_{u}+{m}_{d}}$ |
${J}_{\mu }^{V}=\bar{q}{\gamma }_{\mu }q$ | 1+1− | ρ0 | 1+1− | $\langle 0| {J}_{\mu }^{V}| {\rho }^{0}\rangle ={m}_{\rho }{f}_{\rho }{\epsilon }_{\mu }$ | fρ = 216 MeV [94] |
${J}_{\mu }^{A}=\bar{q}{\gamma }_{\mu }{\gamma }_{5}q$ | 1−1++ | π0 | 1−0−+ | $\langle 0| {J}_{\mu }^{A}| {\pi }^{0}\rangle ={\rm{i}}{p}_{\mu }{f}_{\pi }$ | fπ = 130.2 MeV [2] |
a1(1260) | 1−1++ | $\langle 0| {J}_{\mu }^{A}| {a}_{1}\rangle ={m}_{{a}_{1}}{f}_{{a}_{1}}{\epsilon }_{\mu }$ | ${f}_{{a}_{1}}=254$ MeV [95] | ||
${J}_{\mu \nu }^{T}=\bar{q}{\sigma }_{\mu \nu }q$ | 1+1±−−− | ρ0 | 1+1− | $\langle 0| {J}_{\mu \nu }^{T}| {\rho }^{0}\rangle ={\rm{i}}{f}_{\rho }^{T}({p}_{\mu }{\epsilon }_{\nu }-{p}_{\nu }{\epsilon }_{\mu })$ | ${f}_{\rho }^{T}=159$ MeV [94] |
b1(1235) | 1+1+− | $\langle 0| {J}_{\mu \nu }^{T}| {b}_{1}\rangle ={\rm{i}}{f}_{{b}_{1}}^{T}{\epsilon }_{\mu \nu \alpha \beta }{\epsilon }^{\alpha }{p}^{\beta }$ | ${f}_{{b}_{1}}^{T}=180$ MeV [96] | ||
${P}^{S}=\bar{q}q$ | 0+0++ | f0(500) (?) | 0+0++ | $\langle 0| {P}^{S}| {f}_{0}\rangle ={m}_{{f}_{0}}{f}_{{f}_{0}}$ | ${f}_{{f}_{0}}\sim 380$ MeV (?) |
${P}^{P}=\bar{q}{\rm{i}}{\gamma }_{5}q$ | 0+0−+ | η | 0+0−+ | — | — |
${P}_{\mu }^{V}=\bar{q}{\gamma }_{\mu }q$ | 0−1− | ω | 0−1− | $\langle 0| {P}_{\mu }^{V}| \omega \rangle ={m}_{\omega }{f}_{\omega }{\epsilon }_{\mu }$ | fω ≈ fρ = 216 MeV [94] |
${P}_{\mu }^{A}=\bar{q}{\gamma }_{\mu }{\gamma }_{5}q$ | 0+1++ | η | 0+0−+ | $\langle 0| {P}_{\mu }^{A}| \eta \rangle ={\rm{i}}{p}_{\mu }{f}_{\eta }$ | fη = 97 MeV [97, 98] |
f1(1285) | 0+1++ | — | — | ||
${P}_{\mu \nu }^{T}=\bar{q}{\sigma }_{\mu \nu }q$ | 0−1±−−− | ω | 0−1− | $\langle 0| {P}_{\mu \nu }^{T}| \omega \rangle ={\rm{i}}{f}_{\omega }^{T}({p}_{\mu }{\epsilon }_{\nu }-{p}_{\nu }{\epsilon }_{\mu })$ | ${f}_{\omega }^{T}\approx {f}_{\rho }^{T}=159$ MeV [94] |
h1(1170) | 0−1+− | $\langle 0| {P}_{\mu \nu }^{T}| {h}_{1}\rangle ={\rm{i}}{f}_{{h}_{1}}^{T}{\epsilon }_{\mu \nu \alpha \beta }{\epsilon }^{\alpha }{p}^{\beta }$ | ${f}_{{h}_{1}}^{T}\approx {f}_{{b}_{1}}^{T}=180$ MeV [96] | ||
${I}^{S}=\bar{c}c$ | 0+0++ | χc0(1P) | 0+0++ | $\langle 0| {I}^{S}| {\chi }_{c0}\rangle ={m}_{{\chi }_{c0}}{f}_{{\chi }_{c0}}$ | ${f}_{{\chi }_{c0}}=343$ MeV [99] |
${I}^{P}=\bar{c}{\rm{i}}{\gamma }_{5}c$ | 0+0−+ | ηc | 0+0−+ | $\langle 0| {I}^{P}| {\eta }_{c}\rangle ={\lambda }_{{\eta }_{c}}$ | ${\lambda }_{{\eta }_{c}}=\displaystyle \frac{{f}_{{\eta }_{c}}{m}_{{\eta }_{c}}^{2}}{2{m}_{c}}$ |
${I}_{\mu }^{V}=\bar{c}{\gamma }_{\mu }c$ | 0−1− | J/ψ | 0−1− | $\langle 0| {I}_{\mu }^{V}| J/\psi \rangle ={m}_{J/\psi }{f}_{J/\psi }{\epsilon }_{\mu }$ | fJ/ψ = 418 MeV [100] |
${I}_{\mu }^{A}=\bar{c}{\gamma }_{\mu }{\gamma }_{5}c$ | 0+1++ | ηc | 0+0−+ | $\langle 0| {I}_{\mu }^{A}| {\eta }_{c}\rangle ={\rm{i}}{p}_{\mu }{f}_{{\eta }_{c}}$ | ${f}_{{\eta }_{c}}=387$ MeV [100] |
χc1(1P) | 0+1++ | $\langle 0| {I}_{\mu }^{A}| {\chi }_{c1}\rangle ={m}_{{\chi }_{c1}}{f}_{{\chi }_{c1}}{\epsilon }_{\mu }$ | ${f}_{{\chi }_{c1}}=335$ MeV [101] | ||
${I}_{\mu \nu }^{T}=\bar{c}{\sigma }_{\mu \nu }c$ | 0−1±−−− | J/ψ | 0−1− | $\langle 0| {I}_{\mu \nu }^{T}| J/\psi \rangle ={\rm{i}}{f}_{J/\psi }^{T}({p}_{\mu }{\epsilon }_{\nu }-{p}_{\nu }{\epsilon }_{\mu })$ | ${f}_{J/\psi }^{T}=410$ MeV [100] |
hc(1P) | 0−1+− | $\langle 0| {I}_{\mu \nu }^{T}| {h}_{c}\rangle ={\rm{i}}{f}_{{h}_{c}}^{T}{\epsilon }_{\mu \nu \alpha \beta }{\epsilon }^{\alpha }{p}^{\beta }$ | ${f}_{{h}_{c}}^{T}=235$ MeV [100] | ||
${O}^{S}=\bar{q}c$ | 0+ | ${D}_{0}^{* }$ | 0+ | $\langle 0| {O}^{S}| {D}_{0}^{* }\rangle ={m}_{{D}_{0}^{* }}{f}_{{D}_{0}^{* }}$ | ${f}_{{D}_{0}^{* }}=410$ MeV [102] |
${O}^{P}=\bar{q}{\rm{i}}{\gamma }_{5}c$ | 0− | D | 0− | 〈0∣OP∣D〉 = λD | ${\lambda }_{D}=\displaystyle \frac{{f}_{D}{m}_{D}^{2}}{{m}_{c}+{m}_{d}}$ |
${O}_{\mu }^{V}=\bar{c}{\gamma }_{\mu }q$ | 1− | ${\bar{D}}^{* }$ | 1− | $\langle 0| {O}_{\mu }^{V}| {\bar{D}}^{* }\rangle ={m}_{{D}^{* }}{f}_{{D}^{* }}{\epsilon }_{\mu }$ | ${f}_{{D}^{* }}=253$ MeV [103] |
${O}_{\mu }^{A}=\bar{c}{\gamma }_{\mu }{\gamma }_{5}q$ | 1+ | $\bar{D}$ | 0− | $\langle 0| {O}_{\mu }^{A}| \bar{D}\rangle ={\rm{i}}{p}_{\mu }{f}_{D}$ | fD = 211.9 MeV [2] |
D1 | 1+ | $\langle 0| {O}_{\mu }^{A}| {D}_{1}\rangle ={m}_{{D}_{1}}{f}_{{D}_{1}}{\epsilon }_{\mu }$ | ${f}_{{D}_{1}}=356$ MeV [102] | ||
${O}_{\mu \nu }^{T}=\bar{q}{\sigma }_{\mu \nu }c$ | 1± | ${\bar{D}}^{* }$ | 1− | $\langle 0| {O}_{\mu \nu }^{T}| {D}^{* }\rangle ={\rm{i}}{f}_{{D}^{* }}^{T}({p}_{\mu }{\epsilon }_{\nu }-{p}_{\nu }{\epsilon }_{\mu })$ | ${f}_{{D}^{* }}^{T}\approx 220$ MeV [49] |
— | 1+ | — | — |
3. Decay properties of the X(3872) as a diquark-antidiquark state.
3.1. ${\eta }_{\mu }^{{ \mathcal X }}([{qc}][\bar{q}\bar{c}]) \rightarrow {\theta }_{\mu }^{i}([\bar{c}c]\,+\,[\bar{q}q])$
Figure 2. The decay of a compact tetraquark state into one charmonium meson and one light meson, which can happen through either (b) a direct fall-apart process, or (c) a process with gluons exchanged. |
1. The decay of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ into χc0η is contributed by ${I}^{S}\times {P}_{\mu }^{A}$: $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| {\chi }_{c0}({p}_{1})\,\eta ({p}_{2})\rangle \\ \approx -\displaystyle \frac{{\rm{i}}{c}_{1}}{3}\,{m}_{{\chi }_{c0}}{f}_{{\chi }_{c0}}{f}_{\eta }\,\epsilon \cdot {p}_{2}\equiv {g}_{{\chi }_{c0}\eta }\,\epsilon \cdot {p}_{2},\end{array}\end{eqnarray}$ where c1 is an overall factor, related to the coupling of ${\eta }_{\mu }^{{ \mathcal X }}(x,y)$ to the X(3872) as well as the dynamical process $(x,y)\Longrightarrow ({x}^{{\prime} },{y}^{{\prime} })$ shown in figure 2. This decay is kinematically forbidden. | |
2. According to ${I}^{S}\times {P}_{\mu }^{A}$, $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ can also decay into χc0f1(1285): $\begin{eqnarray}| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to {\chi }_{c0}{f}_{1}.\end{eqnarray}$ This decay is kinematically forbidden. | |
3. Decays of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ into ηcf0(500) and χc1f0(500) are both contributed by ${I}_{\mu }^{A}\times {P}^{S}$: $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| {\eta }_{c}({p}_{1})\,{f}_{0}({p}_{2})\rangle \\ \approx \,+\,\displaystyle \frac{{\rm{i}}{c}_{1}}{3}\,{m}_{{f}_{0}}{f}_{{f}_{0}}{f}_{{\eta }_{c}}\,\epsilon \cdot {p}_{1}\equiv {g}_{{\eta }_{c}{f}_{0}}\,\epsilon \cdot {p}_{1},\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| {\chi }_{c1}({p}_{1},{\epsilon }_{1})\,{f}_{0}({p}_{2})\rangle \\ \approx \,+\,\displaystyle \frac{{c}_{1}}{3}\,{m}_{{f}_{0}}{f}_{{f}_{0}}{m}_{{\chi }_{c1}}{f}_{{\chi }_{c1}}\,\epsilon \cdot {\epsilon }_{1}\equiv {g}_{{\chi }_{c1}{f}_{0}}\,\epsilon \cdot {\epsilon }_{1}.\end{array}\end{eqnarray}$ Because it is difficult to observe the f0(500) in experiments, in the present study we shall calculate widths of the $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to {\eta }_{c}{f}_{0}\to {\eta }_{c}\pi \pi $ and $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to {\chi }_{c1}{f}_{0}\to {\chi }_{c1}\pi \pi $ processes. | |
4. The decay of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ into J/ψω is contributed by both IV,ν × PT,ρσ and IT,ρσ × PV,ν: $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| J/\psi ({p}_{1},{\epsilon }_{1})\,\omega ({p}_{2},{\epsilon }_{2})\rangle \\ \approx -\displaystyle \frac{{\rm{i}}{c}_{1}}{3}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{2}^{\sigma }\,{m}_{J/\psi }{f}_{J/\psi }{f}_{\omega }^{T}\\ -\displaystyle \frac{{\rm{i}}{c}_{1}}{3}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{1}^{\sigma }\,{m}_{\omega }{f}_{\omega }{f}_{J/\psi }^{T}\\ \equiv \,{g}_{\psi \omega }^{A}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{2}^{\sigma }+{g}_{\psi \omega }^{B}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{1}^{\sigma }.\end{array}\end{eqnarray}$ This decay is kinematically forbidden, but the $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega \to J/\psi \pi \pi \pi $ process is kinematically allowed. | |
5. According to IV,ν × PT,ρσ, $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ can also decay into J/ψh1(1170): $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| J/\psi ({p}_{1},{\epsilon }_{1})\,{h}_{1}({p}_{2},{\epsilon }_{2})\rangle \\ \approx \,+\,\displaystyle \frac{{\rm{i}}{c}_{1}}{6}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }_{\rho \sigma \alpha \beta }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\alpha }{p}_{2}^{\beta }\,{m}_{J/\psi }{f}_{J/\psi }{f}_{{h}_{1}}^{T}\\ \equiv \,{g}_{\psi {h}_{1}}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }_{\rho \sigma \alpha \beta }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\alpha }{p}_{2}^{\beta }.\end{array}\end{eqnarray}$ This decay is kinematically forbidden, but the $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi {h}_{1}\to J/\psi \rho \pi \to J/\psi \pi \pi \pi $ process is kinematically allowed. | |
6. According to IT,ρσ × PV,ν, $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ can also decay into hcω: $\begin{eqnarray}| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to {h}_{c}\omega .\end{eqnarray}$ This decay is kinematically forbidden. |
3.2. ${\eta }_{\mu }^{{ \mathcal X }}([{qc}][\bar{q}\bar{c}]) \rightarrow {\xi }_{\mu }^{i}([\bar{c}q]\,+\,[\bar{q}c])$
Figure 3. The decay of a compact tetraquark state into two charmed mesons, which can happen through either (b) a direct fall-apart process, or (c) a process with gluons exchanged. |
3.3. ${\eta }_{\mu }^{{ \mathcal X }}([{qc}][\bar{q}\bar{c}]) \rightarrow {\theta }_{\mu }^{1,2,3,4}([\bar{c}c]\,+\,[\bar{q}q])+{\xi }_{\mu }^{1,2,3,4}([\bar{c}q]\,+\,[\bar{q}c])$
4. Decay properties of the X(3872) as a hadronic molecular state
4.1. ${\xi }_{\mu }^{{ \mathcal X }}([\bar{c}q][\bar{q}c])\to {\theta }_{\mu }^{i}([\bar{c}c]\,+\,[\bar{q}q])$
Figure 4. The decay of a hadronic molecular state into one charmonium meson and one light meson, which can happen through either (b) a direct fall-apart process, or (c) a process with gluons exchanged. |
4.2. ${\xi }_{\mu }^{{ \mathcal X }}([\bar{c}q][\bar{q}c])\to {\xi }_{\mu }^{i}([\bar{c}q]\,+\,[\bar{q}c])$
5. Isospin of the X(3872)
5.1. Isospin breaking effect of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $
1. The decay of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ into χc0π is contributed by ${I}^{S}\times {J}_{\mu }^{A}$: $\begin{eqnarray}\begin{array}{l}\langle X(p,\epsilon )| {\chi }_{c0}({p}_{1})\,\pi ({p}_{2})\rangle \\ \approx -\displaystyle \frac{{\rm{i}}{c}_{1}\sin {\theta }_{1}^{{\prime} }}{3}\,{m}_{{\chi }_{c0}}{f}_{{\chi }_{c0}}{f}_{\pi }\,\epsilon \cdot {p}_{2}\equiv {g}_{{\chi }_{c0}\pi }\,\epsilon \cdot {p}_{2}.\end{array}\end{eqnarray}$ This process is kinematically allowed. | |
2. The decay of $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ into J/ψρ is contributed by both IV,ν × JT,ρσ and IT,ρσ × JV,ν: $\begin{array}{l}\langle X(p,\epsilon )| J/\psi ({p}_{1},{\epsilon }_{1})\,\rho ({p}_{2},{\epsilon }_{2})\rangle \\ \approx -\displaystyle \frac{{\rm{i}}{c}_{1}\sin {\theta }_{1}^{{\prime} }}{3}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{2}^{\sigma }\,{m}_{J/\psi }{f}_{J/\psi }{f}_{\rho }^{T}\\ -\displaystyle \frac{{\rm{i}}{c}_{1}\sin {\theta }_{1}^{{\prime} }}{3}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{1}^{\sigma }\,{m}_{\rho }{f}_{\rho }{f}_{J/\psi }^{T}\\ \equiv \,{g}_{\psi \rho }^{A}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{2}^{\sigma }+{g}_{\psi \rho }^{B}\,{\epsilon }_{\mu \nu \rho \sigma }{\epsilon }^{\mu }{\epsilon }_{1}^{\nu }{\epsilon }_{2}^{\rho }{p}_{1}^{\sigma }.\end{array}$ If we use ${m}_{{\rho }^{0}}=775.26\,\mathrm{MeV}$ [2], this decay would be kinematically forbidden, but the $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \,\to J/\psi \rho \to J/\psi \pi \pi $ process is surely kinematically allowed. |
5.2. Isospin breaking effect of $| D{\bar{D}}^{* };{1}^{++}\rangle $
6. Summary and discussions
• | Based on the transformation of $[{qc}][\bar{q}\bar{c}]\to [\bar{c}c][\bar{q}q]$, we study decay properties of the X(3872) as a compact tetraquark state into one charmonium meson and one light meson. |
• | Based on the transformation of $[{qc}][\bar{q}\bar{c}]\to [\bar{c}q][\bar{q}c]$, we study decay properties of the X(3872) as a compact tetraquark state into two charmed mesons. |
• | Based on the transformation of the $[{qc}][\bar{q}\bar{c}]$ currents to the color-singlet-color-singlet $[\bar{c}c][\bar{q}q]$ and $[\bar{c}q][\bar{q}c]$ currents, we obtain the same relative branching ratios as those obtained using the above two transformations. |
• | Based on the transformation of $[\bar{c}q][\bar{q}c]\to [\bar{c}c][\bar{q}q]$, we study decay properties of the X(3872) as a hadronic molecular state into one charmonium meson and one light meson. |
• | Based on the $[\bar{c}q][\bar{q}c]$ currents themselves, we study decay properties of the X(3872) as a hadronic molecular state into two charmed mesons. |
• | In the second, third, and fourth columns of table 2, $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ denotes the compact tetraquark state of JPC = 1++, defined in equation ( $\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{ \mathcal B }\left(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi ):\,\,J/\psi \rho (\to \pi \pi )\,:\,\,{\chi }_{c0}\pi \,:{\eta }_{c}{f}_{0}(\to \pi \pi ):{\chi }_{c1}{f}_{0}(\to \pi \pi ):{D}^{0}{\bar{D}}^{* 0}(\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})\,\right)}{{ \mathcal B }\left(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi )\right)}\\ \qquad \sim 1:0.63\,(\mathrm{input})\,\,:\,0.015\,:\,\,0.091\,(?):0.086(?):0.52\,{t}_{1}\,,\end{array}\end{eqnarray}$ while using the mixing angle ${\theta }_{1}^{{\prime} }=-{15}^{{\rm{o}}}$, we obtain $\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{ \mathcal B }\left(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi ):\,\,J/\psi \rho (\to \pi \pi )\,:\,\,{\chi }_{c0}\pi \,:{\eta }_{c}{f}_{0}(\to \pi \pi ):{\chi }_{c1}{f}_{0}(\to \pi \pi ):{D}^{0}{\bar{D}}^{* 0}(\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})\,\right)}{{ \mathcal B }\left(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi )\right)}\\ \sim 1:\,\,0.63\,(\mathrm{input})\,\,:\,0.015\,:\,\,0.091\,(?)\,:\,\,\,0.086\,(?)\,\,:\,\,\,\,\,\,\,0.17\,{t}_{1}\,.\end{array}\end{eqnarray}$ |
• | In the fifth, sixth, and seventh columns of table 2, $| D{\bar{D}}^{* };{1}^{++}\rangle $ denotes the hadronic molecular state of JPC = 1++, defined in equation ( $\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{ \mathcal B }\left(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi ):\,\,J/\psi \rho (\to \pi \pi )\,:\,{\chi }_{c0}\pi \,:{\eta }_{c}{f}_{0}(\to \pi \pi ):{\chi }_{c1}{f}_{0}(\to \pi \pi ):{D}^{0}{\bar{D}}^{* 0}(\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})\,\right)}{{ \mathcal B }\left(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi )\right)}\\ \sim 1:\,\,0.63\,(\mathrm{input})\,\,:\,0.015\,:\,\,0.091\,(?)\,:\,\,\,0.086\,(?)\,\,:\,\,\,\,\,\,\,7.4\,{t}_{2}\,,\end{array}\end{eqnarray}$ while using the mixing angle ${\theta }_{2}^{{\prime} }=-{15}^{{\rm{o}}}$, we obtain $\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{ \mathcal B }\left(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi ):\,\,J/\psi \rho (\to \pi \pi )\,:\,{\chi }_{c0}\pi \,:{\eta }_{c}{f}_{0}(\to \pi \pi ):{\chi }_{c1}{f}_{0}(\to \pi \pi ):{D}^{0}{\bar{D}}^{* 0}(\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})\,\right)}{{ \mathcal B }\left(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \omega (\to \pi \pi \pi )\right)}\\ \sim 1:\,\,0.63\,(\mathrm{input})\,\,:\,0.015\,:\,\,0.091\,(?)\,:\,\,\,0.086\,(?)\,\,:\,\,\,\,\,\,\,2.4\,{t}_{2}\,.\end{array}\end{eqnarray}$ |
Table 2. Relative branching ratios of the X(3872) evaluated through the Fierz rearrangement. ${\theta }_{1,2}^{{\prime} }$ are the two angles related to the isospin breaking effect, which are fine-tuned to be ${\theta }_{1}^{{\prime} }={\theta }_{2}^{{\prime} }=\pm {15}^{{\rm{o}}}$, so that $\displaystyle \frac{{ \mathcal B }(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \omega \to J/\psi \pi \pi \pi )}{{ \mathcal B }(| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle \to J/\psi \rho \to J/\psi \pi \pi )}$ $=\displaystyle \frac{{ \mathcal B }(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \omega \to J/\psi \pi \pi \pi )}{{ \mathcal B }(| D{\bar{D}}^{* };{1}^{++}\rangle \to J/\psi \rho \to J/\psi \pi \pi )}=1.6$ [41]. |
Channels | $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ | $| D{\bar{D}}^{* };{1}^{++}\rangle $ | ||||
---|---|---|---|---|---|---|
$I=0/{\theta }_{1}^{{\prime} }={0}^{{\rm{o}}}$ | ${\theta }_{1}^{{\prime} }=+{15}^{{\rm{o}}}$ | ${\theta }_{1}^{{\prime} }=-{15}^{{\rm{o}}}$ | $I=0/{\theta }_{2}^{{\prime} }={0}^{{\rm{o}}}$ | ${\theta }_{2}^{{\prime} }=+{15}^{{\rm{o}}}$ | ${\theta }_{2}^{{\prime} }=-{15}^{{\rm{o}}}$ | |
$\displaystyle \frac{{ \mathcal B }(X\to {\eta }_{c}{f}_{0}\to {\eta }_{c}\pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 |
$\displaystyle \frac{{ \mathcal B }(X\to {\chi }_{c1}{f}_{0}\to {\chi }_{c1}\pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 |
$\displaystyle \frac{{ \mathcal B }(X\to J/\psi {h}_{1}\to J/\psi \pi \pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 |
$\displaystyle \frac{{ \mathcal B }(X\to {\chi }_{c0}\pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}$ | — | 0.024 | 0.024 | — | 0.024 | 0.024 |
$\displaystyle \frac{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}$ | — | 1.6 (input) | 1.6 (input) | — | 1.6 (input) | 1.6 (input) |
$\displaystyle \frac{{ \mathcal B }(X\to {D}^{0}{\bar{D}}^{* 0}+{D}^{* 0}{\bar{D}}^{0}\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | 0.32 t1 | 0.52 t1 | 0.17 t1 | 4.5 t2 | 7.4 t2 | 2.4 t2 |
• | The X(3872) can couple to the χc0η, χc0f1(1285), and hcω channels, but all of them are kinematically forbidden. |
• | The X(3872) can couple to the isovector channels J/ψρ and χc0π, but both of them are due to the isospin breaking effect. |
• | The X(3872) can couple to the ${D}^{0}{\bar{D}}^{* 0}$ and J/ψρ channels, but its mass is very close to the relevant thresholds. Hence, in the present study we calculate widths of the three-body decays $X\to {D}^{0}{\bar{D}}^{* 0}+{D}^{* 0}{\bar{D}}^{0}\to {D}^{0}{\bar{D}}^{0}{\pi }^{0}$ and X → J/ψρ → J/ψππ. |
• | The X(3872) can couple to the J/ψω and J/ψh1(1170) channels, but both of them are kinematically forbidden. Hence, in the present study we calculate widths of the four-body decays X → J/ψω → J/ψπππ and X →J/ψh1 → J/ψπππ. |
• | The decay processes X → ηcf0 → ηcππ and X → χc1f0 → χc1ππ might be possible. In this paper we simply use the f0(500) to estimate widths of these two processes, but note that the obtained results do significantly depend on the nature of light scalar mesons, which are still quite ambiguous [77]. |
• | The hadronic molecular state $| D{\bar{D}}^{* };{1}^{++}\rangle $ mainly decays into two charmed mesons, because c5 is probably larger than c4. The compact tetraquark state $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ may also mainly decay into two charmed mesons after taking into account the barrier of the diquark-antidiquark potential (see detailed discussions in [61] proposing c2 ≫ c1). |
• | The isospin breaking effect of the X(3872) is significant and important to understand its nature [3–10]. The isovector decay channel X(3872) → J/ψρ → J/ψππ has been well observed in experiments, and recently measured by the BESIII experiment [41] to be: $\begin{eqnarray}\displaystyle \frac{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}={1.6}_{-0.3}^{+0.4}\pm 0.2.\end{eqnarray}$ In the present study we can well reproduce this value under both the compact tetraquark and hadronic molecule interpretations. Besides this, our result suggests that there can be another isovector decay channel X(3872) → χc0π. Under both the compact tetraquark and hadronic molecule interpretations, we obtain $\begin{eqnarray}\displaystyle \frac{{ \mathcal B }(X\to {\chi }_{c0}\pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}=0.024.\end{eqnarray}$ We refer to [80–87] for more theoretical studies, and propose to study the X(3872) → χc0π decay in the BESIII, Belle-II, and LHCb experiments to better understand the isospin breaking effect of the X(3872). |
• | Our result suggests that the decay processes X(3872) → ηcf0 → ηcππ and X(3872) → χc1f0 → χc1ππ might be possible. We note that light scalar mesons have a complicated nature, so our results on these processes are just roughly estimations. We notice that the BaBar experiment [88] did not observe the γγ → X(3872) → ηcππ process, but that experiment was performed after assuming X(3872) to be a spin-2 state. Moreover, there seems to be a dip structure just at the mass of the X(3872) in the ηcππ invariant mass spectrum, as shown in figure 6(f) of [88]. We also notice that the Belle experiment [89] did not observe the X(3872) → χc1ππ decay. They extracted the following upper limit $\begin{eqnarray*}{ \mathcal B }({B}^{+}\to {K}^{+}X){ \mathcal B }(X\to {\chi }_{c1}\pi \pi )\lt 1.5\times {10}^{-6},\end{eqnarray*}$ at 90% C.L. Together with another Belle experiment [90] measuring $\begin{eqnarray*}{ \mathcal B }({B}^{+}\to {K}^{+}X)=(1.2\pm 1.1\pm 0.1)\times {10}^{-4},\end{eqnarray*}$ one may roughly estimate $\begin{eqnarray}{ \mathcal B }(X\to {\chi }_{c1}\pi \pi )\lt 1.3\times {10}^{-2},\end{eqnarray}$ which value seems not small enough to rule out the X(3872) → χc1ππ decay channel. Again, we refer to [80–87, 91] for more discussions, and propose to reanalysis the X(3872) → ηcf0 → ηcππ and X(3872) → χc1f0 → χc1ππ processes in the BESIII, Belle-II, and LHCb experiments to search for more decay channels of the X(3872). |
Acknowledgments
Appendix A. Formulae of decay amplitudes and decay widths
A.1. Two-body decay X → χc0π0
A.2. Three-body decay X → J/ψρ0 → J/ψπ+π−
A.3. Three-body decay X → ηcf0 → ηcππ
A.4. Three-body decay $X \rightarrow {D}^{0}{\bar{D}}^{* 0} \rightarrow {D}^{0}{\bar{D}}^{0}{\pi }^{0}$
A.5. Four-body decay X → J/ψω → J/ψπ+π−π0
A.6. Four-body decay X → J/ψh1 → J/ψπ+π−π0
Appendix B. Uncertainties due to the phase angle
Table 3. Relative branching ratios of the X(3872) evaluated through the Fierz rearrangement. In this table we fix the phase angle θ between the S- and D-wave coupling constants, ${g}_{D{\bar{D}}^{* }}^{S}$ and ${g}_{D{\bar{D}}^{* }}^{D}$, to be θ = π. |
Channels | $| {0}_{{qc}}{1}_{\bar{q}\bar{c}};{1}^{++}\rangle $ | $| D{\bar{D}}^{* };{1}^{++}\rangle $ | ||||
---|---|---|---|---|---|---|
$I=0/{\theta }_{1}^{{\prime} }={0}^{{\rm{o}}}$ | ${\theta }_{1}^{{\prime} }=+{15}^{{\rm{o}}}$ | ${\theta }_{1}^{{\prime} }=-{15}^{{\rm{o}}}$ | $I=0/{\theta }_{2}^{{\prime} }={0}^{{\rm{o}}}$ | ${\theta }_{2}^{{\prime} }=+{15}^{{\rm{o}}}$ | ${\theta }_{2}^{{\prime} }=-{15}^{{\rm{o}}}$ | |
$\displaystyle \frac{{ \mathcal B }(X\to {\eta }_{c}{f}_{0}\to {\eta }_{c}\pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 | ∼0.091 |
$\displaystyle \frac{{ \mathcal B }(X\to {\chi }_{c1}{f}_{0}\to {\chi }_{c1}\pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 | ∼0.086 |
$\displaystyle \frac{{ \mathcal B }(X\to J/\psi {h}_{1}\to J/\psi \pi \pi \pi )}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 | 1.4 × 10−3 |
$\displaystyle \frac{{ \mathcal B }(X\to {\chi }_{c0}\pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}$ | — | 0.024 | 0.024 | — | 0.024 | 0.024 |
$\displaystyle \frac{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}{{ \mathcal B }(X\to J/\psi \rho \to J/\psi \pi \pi )}$ | — | 1.6 (input) | 1.6 (input) | — | 1.6 (input) | 1.6 (input) |
$\displaystyle \frac{{ \mathcal B }(X\to {D}^{0}{\bar{D}}^{* 0}+{D}^{* 0}{\bar{D}}^{0}\to {D}^{0}{\bar{D}}^{0}{\pi }^{0})}{{ \mathcal B }(X\to J/\psi \omega \to J/\psi \pi \pi \pi )}$ | 0.021 t1 | 0.034 t1 | 0.011 t1 | 4.5 t2 | 7.4 t2 | 2.4 t2 |