Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Multi-bright-dark soliton solutions to the AB system in nonlinear optics

  • Yunyun Zhai ,
  • Lifei Wei ,
  • Xianguo Geng ,
  • Jiao Wei
Expand
  • School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, China

Received date: 2021-10-26

  Revised date: 2022-01-03

  Accepted date: 2022-03-10

  Online published: 2022-05-20

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The AB system is the basic integrable model to describe unstable baroclinic wave packets in geophysical fluids and the propagation of mesoscale gravity flows in nonlinear optics. On the basis of the spectral analysis of a Lax pair and the inverse scattering method, we establish the Riemann–Hilbert problem of the AB system. Then, the inverse problems are formulated and solved with the aid of the Riemann–Hilbert problem, from which the potentials can be reconstructed according to the asymptotic expansion of the sectional analytic function and the related symmetry relations. As an application, we obtain the multi-bright-dark soliton solutions to the AB system in the reflectionless case and discuss the dynamic behavior of elastic soliton collisions by choosing appropriate free parameters.

Cite this article

Yunyun Zhai , Lifei Wei , Xianguo Geng , Jiao Wei . Multi-bright-dark soliton solutions to the AB system in nonlinear optics[J]. Communications in Theoretical Physics, 2022 , 74(4) : 045003 . DOI: 10.1088/1572-9494/ac5c40

1. Introduction

In recent decades, integrable systems have attracted extensive attention in describing nonlinear phenomena in various areas, such as fluid mechanics, nonlinear optics, Bose–Einstein condensates, plasma physics and other fields [1, 2]. A crucial feature of an integrable system is that it can be expressed as a compatibility condition of two linear spectral problems, i.e. a Lax pair, which enables researchers to investigate it via the inverse scattering method [1], Darboux transformation [36], algebra-geometric method [79], Riemann–Hilbert approach [1015], etc. The Riemann–Hilbert approach is an effective tool for solving the integrable models and studying their long-time asymptotics and other properties.
In this paper, we will use the Riemann–Hilbert approach to investigate the following AB system
$\begin{eqnarray}{A}_{{xt}}={AB},\quad {B}_{x}=-\displaystyle \frac{1}{2}{\left(| A{| }^{2}\right)}_{t},\end{eqnarray}$
with a normalization condition
$\begin{eqnarray}| {A}_{t}{| }^{2}+{B}^{2}=1,\end{eqnarray}$
where A = A(x, t) is a complex function and B = B(x, t) is a real function [16]. The AB system, first proposed by Pedlosky using the singular perturbation theory [17], is a significant integrable model since it can describe unstable baroclinic wave packets in geophysical fluids and the propagation of mesoscale gravity flow in nonlinear optics [1821]. Moreover, the AB system can be reduced to the sine-Gordon equation for real A or the self-induced transparency equations for complex A [22]. Rogue wave solutions, breathers and N-soliton solutions for the AB system have been derived by resorting to the Darboux transformation [23, 24] and the dressing method [25]. Multi-dark-dark solitons and multi-bright-bright solitons have been found for repulsive AB system via determinants [26, 27]. Recently, long-time asymptotics of solutions for the AB system with initial value problems have been studied through the nonlinear steepest-decent method [28]. For ultra-short optical pulse propagation models such as the short pulse equation, the associated Riemann–Hilbert problem and explicit soliton formulae may help to better understand the propagation mechanism and characteristics [29, 30]. Therefore, the present paper is devoted to exploring the AB system by utilizing the Riemann–Hilbert approach, from which explicit multi-bright-dark soliton solutions in the reflectionless case are obtained with potential functions A decaying to zero and B decaying to 1 at sufficiently fast rates as x → ∞ . In particular, we find that the multi-soliton collisions are elastic.
The arrangement of this paper is as follows. In section 2, we construct the sectional analytic function and establish the Riemann–Hilbert problem on the basis of the spectral analysis. With the aid of symmetry relations, we solve the non-regular matrix Riemann–Hilbert problem. Section 3 focuses on the time evolution of scattering data and the reconstruction of potentials. In section 4, we obtain explicit N-soliton solutions to the AB system in the reflectionless case. In particular, we find that the soliton collisions are elastic. The last section contains some discussions.

2. Riemann–Hilbert problem

The AB system (1.1) is related to the following Lax pair, namely, two 2 × 2 matrix spectral problems [16]
$\begin{eqnarray}{{\rm{\Psi }}}_{x}=U{\rm{\Psi }}=(-{\rm{i}}\lambda {\sigma }_{3}+\widetilde{U}){\rm{\Psi }},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{t}=V{\rm{\Psi }}=\displaystyle \frac{1}{4{\rm{i}}\lambda }(-B{\sigma }_{3}+\widetilde{V}){\rm{\Psi }},\end{eqnarray}$
where $\Psi$ = $\Psi$(x, t, λ) is a matrix-valued function, λ is a constant spectral parameter and $\widetilde{U},\widetilde{V},{\sigma }_{3}$ are defined as follows
$\begin{eqnarray*}\widetilde{U}=\left(\begin{array}{cc}0 & \displaystyle \frac{1}{2}A\\ -\displaystyle \frac{1}{2}{A}^{* } & 0\end{array}\right),\quad \widetilde{V}=\left(\begin{array}{cc}0 & {A}_{t}\\ {A}_{t}^{* } & 0\end{array}\right),\quad {\sigma }_{3}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right).\end{eqnarray*}$
The compatibility condition of (2.1) gives zero-curature equation, UtVx + [U, V] = 0, which is equivalent to the AB system (1.1). We assume that potential function A decays to zero and B decays to 1 at sufficiently fast rates as x → ± ∞ , which implies that matrix solution $\Psi$ of (2.1) has an asymptotic expression ${{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x-\tfrac{1}{4{\rm{i}}\lambda }{\sigma }_{3}t}.$ For convenience, we introduce a new matrix spectral function J = J(x, t, λ) as follows
$\begin{eqnarray}J={\rm{\Psi }}{E}^{-1},\end{eqnarray}$
where $E={{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x-\tfrac{1}{4{\rm{i}}\lambda }{\sigma }_{3}t}$. Through direct calculation, we can see that the Lax pair (2.1) can be rewritten in the following equivalent form
$\begin{eqnarray}{J}_{x}={\rm{i}}\lambda J{\sigma }_{3}+{UJ}={\rm{i}}\lambda J{\sigma }_{3}-{\rm{i}}\lambda {\sigma }_{3}J+\widetilde{U}J,\end{eqnarray}$
$\begin{eqnarray}{J}_{t}=\displaystyle \frac{1}{4{\rm{i}}\lambda }J{\sigma }_{3}+{VJ}=\displaystyle \frac{1}{4{\rm{i}}\lambda }(J{\sigma }_{3}-B{\sigma }_{3}J+\widetilde{V}J).\end{eqnarray}$
In the following, we will carry out spectral analysis, for which we construct the matrix Jost solutions J± = J±(x, λ) of the (2.3a) with the asymptotic condition
$\begin{eqnarray}{J}_{\pm }(x,\lambda )\to I,\quad x\to \pm \infty ,\end{eqnarray}$
where I is the 2 × 2 identity matrix. It is easy to verify that J± are uniquely determined by the Volterra integral equations
$\begin{eqnarray}{J}_{+}(x,\lambda )=I-{\int }_{x}^{+\infty }{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(y-x)}\widetilde{U}(y){J}_{+}(y,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(y-x)}{\rm{d}}y,\end{eqnarray}$
$\begin{eqnarray}{J}_{-}(x,\lambda )=I+{\int }_{-\infty }^{x}{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(y-x)}\widetilde{U}(y){J}_{-}(y,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(y-x)}{\rm{d}}y.\end{eqnarray}$
The Jost solutions can be divided into columns
$\begin{eqnarray}{J}_{\pm }=({\left[{J}_{\pm }\right]}_{1},{\left[{J}_{\pm }\right]}_{2}),\end{eqnarray}$
where ${\left[{J}_{\pm }\right]}_{l},(l=1,2),$ is the lth column of J±. Hence, the convergence of the above Volterra integral equations implies that J± allows analytical continuation off the real axis $\lambda \in {\mathbb{R}}$. It is not difficult to find that ${\left[{J}_{-}\right]}_{1}$ and ${\left[{J}_{+}\right]}_{2}$ can be analytically extended to the upper half-plane D+, and ${\left[{J}_{+}\right]}_{1}$ ang ${\left[{J}_{-}\right]}_{2}$ to the lower half-plane D with
$\begin{eqnarray}\begin{array}{rcl}{D}_{+} & = & \left\{\lambda \in C| \arg \lambda \in (0,\pi )\right\},\\ {D}_{-} & = & \left\{\lambda \in C| \arg \lambda \in (\pi ,2\pi )\right\}.\end{array}\end{eqnarray}$
It is easy to see that
$\begin{eqnarray}{{\rm{\Psi }}}_{\pm }(x,\lambda )={J}_{\pm }{E}_{1},\quad {E}_{1}={{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}\end{eqnarray}$
are the fundamental solution matrixes of (2.1), they must be linearly dependent, so there exists a scattering matrix S(λ) such that
$\begin{eqnarray}{{\rm{\Psi }}}_{-}(x,\lambda )={{\rm{\Psi }}}_{+}(x,\lambda )S(\lambda ),\quad \lambda \in {\mathbb{R}},\end{eqnarray}$
where $S(\lambda )={\left({s}_{{ij}}\right)}_{2\times 2}$. By considering the formulas ${\left(\det {{\rm{\Psi }}}_{\pm }\right)}_{x}=\det {{\rm{\Psi }}}_{\pm }\mathrm{tr}({\left({{\rm{\Psi }}}_{\pm }\right)}_{x}{{\rm{\Psi }}}_{\pm }^{-1})$ and $\mathrm{tr}(U)=0$, we arrive at ${\left(\det {{\rm{\Psi }}}_{\pm }\right)}_{x}=0$, which implies that $\det {{\rm{\Psi }}}_{\pm }(x,\lambda )$ are independent of x. We can also obtain $\det {J}_{\pm }(x,\lambda )=1$ from (2.2) and (2.8). Combining with equation (2.9), we find $\det S(\lambda )=1$. In order to obtain a Riemann–Hilbert problem for the AB system, we define a new matrix function P+ = P+(x, λ):
$\begin{eqnarray}{P}^{+}=({\left[{J}_{-}\right]}_{1},{\left[{J}_{+}\right]}_{2})={J}_{+}({E}_{1}{{SE}}_{1}^{-1}{H}_{1}+{H}_{2}),\end{eqnarray}$
where H1 = diag(1, 0), H2 = diag(0, 1). Based on the analytic properties of ${\left[{J}_{\pm }\right]}_{l}\quad (l=1,2)$, we can see that P+ satisfies (2.3a) and is analytic for λD+ with the following asymptotic condition
$\begin{eqnarray}{P}^{+}(x,\lambda )\to I,\quad \lambda \in {D}_{+}\to \infty .\end{eqnarray}$
Similarly, we introduce that a matrix function P = P(x, λ) is analytic for λD. Consider the inverse matrix of J± satisfying the following adjoint equation of (2.3a)
$\begin{eqnarray}{K}_{x}=-{\rm{i}}\lambda {\sigma }_{3}K-{KU},\end{eqnarray}$
which can be written as
$\begin{eqnarray}{J}_{\pm }^{-1}=\left(\begin{array}{c}{\left[{J}_{\pm }^{-1}\right]}^{1}\\ {\left[{J}_{\pm }^{-1}\right]}^{2}\end{array}\right).\end{eqnarray}$
It is easy to calculate that ${\left[{J}_{+}^{-1}\right]}^{1},{\left[{J}_{-}^{-1}\right]}^{2}$ can be analytically extended to the upper half-plane D+ and ${\left[{J}_{+}^{-1}\right]}^{2},{\left[{J}_{-}^{-1}\right]}^{1}$ to the lower half-plane D. Let us define the matrix function
$\begin{eqnarray}{P}^{-}=\left(\begin{array}{c}{\left[{J}_{-}^{-1}\right]}^{1}\\ {\left[{J}_{+}^{-1}\right]}^{2}\end{array}\right)=({H}_{1}{E}_{1}{{RE}}_{1}^{-1}+{H}_{2}){J}_{+}^{-1},\end{eqnarray}$
where $R(\lambda )={{\rm{\Psi }}}_{-}^{-1}{{\rm{\Psi }}}_{+}={S}^{-1}(\lambda )={\left({r}_{{ij}}\right)}_{2\,\times \,2}$. In addition, by considering the asymptotic behavior of P at large λD, we find that
$\begin{eqnarray}{P}^{-}(x,\lambda )\to I,\quad \lambda \to \infty .\end{eqnarray}$
Note that two matrix functions P+ and P are analytic in D+ and D, respectively. On the real line, they have the following relationship
$\begin{eqnarray}{P}^{-}(x,\lambda ){P}^{+}(x,\lambda )=G(x,\lambda ),\quad \lambda \in {\mathbb{R}},\end{eqnarray}$
where
$\begin{eqnarray}G(x,\lambda )=\left(\begin{array}{cc}1 & {r}_{12}(\lambda ){{\rm{e}}}^{-2{\rm{i}}\lambda x}\\ {s}_{21}(\lambda ){{\rm{e}}}^{2{\rm{i}}\lambda x} & 1\end{array}\right).\end{eqnarray}$
Equation (2.16) is the Riemann–Hilbert problem on the real axis for the AB system with an associated canonical condition
$\begin{eqnarray}{P}^{\pm }\to I,\quad \lambda \to \infty .\end{eqnarray}$
In the subsequent text, we will discuss how to solve the regular and non-regular Riemann–Hilbert problem. From the relations (2.10) and (2.14), we arrive at
$\begin{eqnarray}\det {P}^{+}={s}_{11}(\lambda ),\quad \det {P}^{-}={r}_{11}(\lambda ).\end{eqnarray}$
First, let us consider the regular Riemann–Hilbert problem, i.e. $\det {P}^{+}\ne 0$ in D+ and $\det {P}^{-}\ne 0$ in D, respectively. Formula (2.16) can be rewritten in the following form
$\begin{eqnarray}{\left({P}^{+}\right)}^{-1}(\lambda )-{P}^{-}(\lambda )=\hat{G}(\lambda ){\left({P}^{+}\right)}^{-1}(\lambda ),\quad \lambda \in {\mathbb{R}},\end{eqnarray}$
where
$\begin{eqnarray*}\hat{G}(\lambda )=I-G(\lambda ).\end{eqnarray*}$
Then using the Plemelj formula, we can obtain the solution of (2.16) satisfying the canonical condition (2.18):
$\begin{eqnarray}{\left({P}^{+}\right)}^{-1}(\lambda )=I+\displaystyle \frac{1}{2\pi {\rm{i}}}{\int }_{-\infty }^{+\infty }\displaystyle \frac{\hat{G}(\xi ){\left({P}^{+}\right)}^{-1}(\xi )}{\xi -\lambda }{\rm{d}}\xi ,\quad \lambda \in {D}_{+}.\end{eqnarray}$
Next, we will consider the non-regular Riemann–Hilbert problem based on the symmetry relations. Assume $\det {P}^{+}$ and $\det {P}^{-}$ have simple zeros in D+ and D, respectively. It is easy to see that the matrixes U(λ) and V(λ) satisfy the symmetry relations
$\begin{eqnarray}\begin{array}{l}{U}^{\dagger }({\lambda }^{* })=-U(\lambda ),\\ {V}^{\dagger }({\lambda }^{* })=-V(\lambda ),\end{array}\end{eqnarray}$
where the superscript † is the Hermitian conjugate. We can easily verify that $\Psi$ (λ*) and $\Psi$−1(λ) satisfy the same differential equation and boundary condition. Therefore, by the uniqueness of the solution, we arrive at
$\begin{eqnarray}{{\rm{\Psi }}}^{\dagger }({\lambda }^{* })={{\rm{\Psi }}}^{-1}(\lambda ).\end{eqnarray}$
From (2.2), we obtain
$\begin{eqnarray}{J}^{\dagger }({\lambda }^{* })={J}^{-1}(\lambda ).\end{eqnarray}$
Using the relations (2.8) and (2.9), one infers
$\begin{eqnarray}{S}^{\dagger }({\lambda }^{* })=R(\lambda ),\end{eqnarray}$
which implies that $\overline{{s}_{11}}({\lambda }^{* })={r}_{11}(\lambda )$. Furthermore, from the definitions of P+ and P, we can deduce the following relation
$\begin{eqnarray}{\left({P}^{+}\right)}^{\dagger }({\lambda }^{* })={P}^{-}(\lambda ).\end{eqnarray}$
According to symmetric relations (2.26) and (2.19), we find that if λj is a zero of $\det {P}^{+}(\lambda )$, then ${\hat{\lambda }}_{j}={\lambda }_{j}^{* }$ is a zero of $\det {P}^{-}(\lambda )$ . Assume that $\det {P}^{+}(\lambda )$ has N simple zeros ${\{{\lambda }_{j}\}}_{1}^{N}$, it is easy to see that the kernels of P+(λj) and ${P}^{-}({\hat{\lambda }}_{j})$ contain only a single column vector νj and row vector ${\hat{\nu }}_{j}$, respectively, that is
$\begin{eqnarray}{P}^{+}({\lambda }_{j}){\nu }_{j}=0,\ 1\leqslant j\leqslant N,\end{eqnarray}$
$\begin{eqnarray}{\hat{\nu }}_{j}{P}^{-}({\hat{\lambda }}_{j})=0,\ 1\leqslant j\leqslant N.\end{eqnarray}$
If we take the Hermitian conjugate of (2.27a), we obtain
$\begin{eqnarray}{\nu }_{j}^{\dagger }{\left({P}^{+}\right)}^{\dagger }({\lambda }_{j})=0,\quad 1\leqslant j\leqslant N.\end{eqnarray}$
According to (2.26), we have
$\begin{eqnarray}{\nu }_{j}^{\dagger }{P}^{-}({\lambda }_{j}^{* })=0,\quad 1\leqslant j\leqslant N.\end{eqnarray}$
Equations (2.27b) and (2.29) imply that
$\begin{eqnarray}{\hat{\nu }}_{j}={\nu }_{j}^{\dagger }.\end{eqnarray}$
Based on the above analysis, we could solve the non-regular matrix Riemann–Hilbert problem (2.16) with the canonical condition (2.18) by the following theorem.

The solution of the non-regular matrix Riemann–Hilbert problem (2.16) with zeros (2.27) under the canonical normalization condition (2.18) is

$\begin{eqnarray}{P}^{+}(\lambda )={\hat{P}}^{+}(\lambda ){\rm{\Gamma }}(\lambda ),\end{eqnarray}$
$\begin{eqnarray}{P}^{-}(\lambda )={{\rm{\Gamma }}}^{-1}(\lambda ){\hat{P}}^{-}(\lambda ),\end{eqnarray}$
where
$\begin{eqnarray}{\rm{\Gamma }}(\lambda )=I+\sum _{i,j=1}^{N}\displaystyle \frac{{\nu }_{i}{\hat{\nu }}_{j}{\left({M}^{-1}\right)}_{{ij}}}{\lambda -\hat{{\lambda }_{j}}},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Gamma }}}^{-1}(\lambda )=I-\sum _{i,j=1}^{N}\displaystyle \frac{{\nu }_{i}{\hat{\nu }}_{j}{\left({M}^{-1}\right)}_{{ij}}}{\lambda -{\lambda }_{i}},\end{eqnarray}$
and $M=({M}_{{ij}})$ is an N × N matrix,
$\begin{eqnarray}{M}_{{ij}}=\displaystyle \frac{{\hat{\nu }}_{i}{\nu }_{j}}{{\hat{\lambda }}_{i}-{\lambda }_{j}},\quad 1\leqslant i,j\leqslant N,\end{eqnarray}$
$\begin{eqnarray}\det {\rm{\Gamma }}(\lambda )=\prod _{j=1}^{N}\displaystyle \frac{\lambda -{\lambda }_{j}}{\lambda -{\hat{\lambda }}_{j}}.\end{eqnarray}$
Matrix function ${\hat{P}}^{\pm }(\lambda )$ is the unique solution to the following regular Riemann–Hilbert problem
$\begin{eqnarray}{\hat{P}}^{-}(\lambda ){\hat{P}}^{+}(\lambda )={\rm{\Gamma }}(\lambda )G(\lambda ){{\rm{\Gamma }}}^{-1}(\lambda ),\quad \lambda \in {\mathbb{R}},\end{eqnarray}$
where ${\hat{P}}^{\pm }$ are analytic in ${D}_{\pm }$ and
$\begin{eqnarray}{\hat{P}}^{\pm }(\lambda )\to I,\quad \lambda \in {D}_{\pm }\to \infty .\end{eqnarray}$

3. Reconstruction of potentials

In this section, we shall establish the time evolution of the scattering data and reconstruct the potentials A and B. From the solutions of the non-regular Riemann–Hilbert problem (2.16) as given in theorem 2.1, we find that the scattering data needed to solve this non-regular Riemann–Hilbert problem is
$\begin{eqnarray}\{{s}_{21}(\lambda ),{r}_{12}(\lambda ),\lambda \in {\mathbb{R}};{\lambda }_{j},{\hat{\lambda }}_{j},{\nu }_{j},{\hat{\nu }}_{j},1\leqslant j\leqslant N\}.\end{eqnarray}$
This is called the minimal scattering data. In these scattering data, the vectors νj and ${\hat{\nu }}_{j}$ are related to x, while the other vectors are not related to x.
Our starting point is equation (2.27) for νj and ${\hat{\nu }}_{j}$. Taking the derivative of equation (2.3a) with respect to x, we arrive at
$\begin{eqnarray}{P}_{x}^{+}({\lambda }_{j},x,t){\nu }_{j}+{P}^{+}({\lambda }_{j},x,t)\displaystyle \frac{{\rm{d}}{\nu }_{j}}{{\rm{d}}x}=0,\end{eqnarray}$
and
$\begin{eqnarray}{P}_{x}^{+}({\lambda }_{j},x,t)={\rm{i}}{\lambda }_{j}{P}^{+}({\lambda }_{j},x,t){\sigma }_{3}+{{UP}}^{+}({\lambda }_{j},x,t).\end{eqnarray}$
Thus, we have
$\begin{eqnarray}{\rm{i}}{\lambda }_{j}{\sigma }_{3}{\nu }_{j}+\displaystyle \frac{{\rm{d}}{\nu }_{j}}{{\rm{d}}x}=0.\end{eqnarray}$
Similarly, taking the derivative of equation (2.3b) with respect to t yields
$\begin{eqnarray}\begin{array}{l}{P}_{t}^{+}({\lambda }_{j},x,t){\nu }_{j}+{P}^{+}({\lambda }_{j},x,t)\displaystyle \frac{{\rm{d}}{\nu }_{j}}{{\rm{d}}t}=0,\\ {P}_{t}^{+}({\lambda }_{j},x,t)=\displaystyle \frac{1}{4{\rm{i}}{\lambda }_{j}}{P}^{+}({\lambda }_{j},x,t){\sigma }_{3}+{{VP}}^{+}({\lambda }_{j},x,t),\end{array}\end{eqnarray}$
which implies
$\begin{eqnarray}\displaystyle \frac{1}{4{\rm{i}}{\lambda }_{j}}{\sigma }_{3}{\nu }_{j}+\displaystyle \frac{{\rm{d}}{\nu }_{j}}{{\rm{d}}t}=0.\end{eqnarray}$
By considering (3.4) and (3.6), we obtain
$\begin{eqnarray}{\nu }_{j}={{\rm{e}}}^{-{\rm{i}}{\lambda }_{j}{\sigma }_{3}x-\displaystyle \frac{1}{4{\rm{i}}{\lambda }_{j}}{\sigma }_{3}t}{\nu }_{j}^{0},\end{eqnarray}$
where ${\nu }_{j}^{0}$ is a constant. A similar calculation for ${\hat{\nu }}_{j}$ deduces
$\begin{eqnarray}{\hat{\nu }}_{j}={\nu }_{j}^{1}{{\rm{e}}}^{{\rm{i}}{\lambda }_{j}^{\ast }{\sigma }_{3}x+\displaystyle \frac{1}{4{\rm{i}}{\lambda }_{j}^{\ast }}{\sigma }_{3}t},\end{eqnarray}$
where ${\nu }_{j}^{1}$ is the Hermitian conjugate of ${\nu }_{j}^{0}$.
Since the matrix function J± satisfies the spectral equation (2.3b), we get
$\begin{eqnarray}{\left({J}_{\pm }\right)}_{t}=\displaystyle \frac{1}{4{\rm{i}}\lambda }({J}_{\pm }{\sigma }_{3}-B{\sigma }_{3}{J}_{\pm }+\widetilde{V}{J}_{\pm }).\end{eqnarray}$
Multiplying (3.9) by the matrix ${E}_{1}={{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}$, we arrive at
$\begin{eqnarray}{\left({J}_{\pm }{E}_{1}\right)}_{t}=\displaystyle \frac{1}{4{\rm{i}}\lambda }({J}_{\pm }{E}_{1}{\sigma }_{3}-B{\sigma }_{3}{J}_{\pm }{E}_{1}+\widetilde{V}{J}_{\pm }{E}_{1}).\end{eqnarray}$
The definition (2.9) for the scattering matrix can be rewritten as
$\begin{eqnarray}{J}_{-}{E}_{1}={J}_{+}{E}_{1}S,\lambda \in {\mathbb{R}},\end{eqnarray}$
from which we see that J+E1S also satisfies the same temporal equation (2.3b), that is
$\begin{eqnarray}{\left({J}_{+}{E}_{1}S\right)}_{t}=\displaystyle \frac{1}{4{\rm{i}}\lambda }({J}_{+}{E}_{1}S{\sigma }_{3}-B{\sigma }_{3}{J}_{+}{E}_{1}S+\widetilde{V}{J}_{+}{E}_{1}S).\end{eqnarray}$
Taking the limit x → ∞ and combining the boundary conditions satisfied by A and B, we have:
$\begin{eqnarray}{S}_{t}=\displaystyle \frac{-1}{4{\rm{i}}\lambda }[{\sigma }_{3},S],\end{eqnarray}$
where [σ3, S] = σ3SSσ3 is the commutator. In a similar way, we obtain
$\begin{eqnarray}{R}_{t}=\displaystyle \frac{-1}{4{\rm{i}}\lambda }[{\sigma }_{3},R].\end{eqnarray}$
According to equations (3.13) and (3.14), we deduce
$\begin{eqnarray}\displaystyle \frac{\partial {s}_{21}}{\partial t}=\displaystyle \frac{1}{2{\rm{i}}\lambda }{s}_{21},\quad \displaystyle \frac{\partial {r}_{12}}{\partial t}=\displaystyle \frac{-1}{2{\rm{i}}\lambda }{r}_{12},\quad \displaystyle \frac{\partial {s}_{11}}{\partial t}=\displaystyle \frac{\partial {r}_{11}}{\partial t}=0.\end{eqnarray}$
Thus
$\begin{eqnarray}{s}_{21}(t;\lambda )={s}_{21}(0;\lambda ){{\rm{e}}}^{\tfrac{1}{2{\rm{i}}\lambda }t},\quad {r}_{12}(t;\lambda )={r}_{12}(0;\lambda ){{\rm{e}}}^{\tfrac{-1}{2{\rm{i}}\lambda }t}.\end{eqnarray}$
If the Riemann–Hilbert problem (2.16) can be solved from the given scattering data (s21, r12), then the potentials A and B can be reconstructed from the asymptotic expansion of P+ at large λ. In fact, since P+ is a solution of the scattering problem (2.3a) and its adjoint problem (2.12), respectively, we expand P+ at large λ as
$\begin{eqnarray}{P}^{+}=I+{\lambda }^{-1}{\left({P}^{+}\right)}^{(1)}+{\lambda }^{-2}{\left({P}^{+}\right)}^{(2)}+{\lambda }^{-3}{\left({P}^{+}\right)}^{(3)}+.....,\,\lambda \to \infty .\end{eqnarray}$
Then by substituting (3.17) into (2.3) and collecting terms of the same power in λ, we can derive the following expressions
$\begin{eqnarray}\begin{array}{rcl}A & = & 4{\rm{i}}{\left({\left({P}^{+}\right)}^{(1)}\right)}_{12},\\ B & = & 1-4{\rm{i}}{\left({\left({P}^{+}\right)}_{t}^{(1)}\right)}_{11}=1+4{\rm{i}}{\left({\left({P}^{+}\right)}_{t}^{(1)}\right)}_{22}.\end{array}\end{eqnarray}$
According to theorem 2.1, the solution to equation (2.37) can be solved by the Plemelj formula and expressed as an integral equation:
$\begin{eqnarray}\begin{array}{l}{\left({\hat{P}}^{+}\right)}^{-1}(\lambda )=I+\displaystyle \frac{1}{2\pi {\rm{i}}}\\ \times {\displaystyle \int }_{-\infty }^{+\infty }\displaystyle \frac{{\rm{\Gamma }}(\xi )\hat{G}(\xi ){{\rm{\Gamma }}}^{-1}(\xi ){\left({\hat{P}}^{+}\right)}^{-1}(\xi )}{\xi -\lambda }{\rm{d}}\xi ,\quad \lambda \in {D}_{+},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}\hat{G}(x,t;\lambda )\\ =\,\left(\begin{array}{cc}0 & -{r}_{12}(0;\lambda ){{\rm{e}}}^{-2{\rm{i}}\lambda x-\displaystyle \frac{1}{2{\rm{i}}\lambda }t}\\ -{s}_{21}(0;\lambda ){{\rm{e}}}^{2{\rm{i}}\lambda x+\displaystyle \frac{1}{2{\rm{i}}\lambda }t} & 0\end{array}\right).\end{array}\end{eqnarray}$
As λ → ∞ , we have
$\begin{eqnarray}\begin{array}{l}{\left({\hat{P}}^{+}\right)}^{-1}(\lambda )=I-\displaystyle \frac{1}{2\pi {\rm{i}}\lambda }\\ \times {\displaystyle \int }_{-\infty }^{+\infty }{\rm{\Gamma }}(\xi )\hat{G}(\xi ){{\rm{\Gamma }}}^{-1}(\xi ){\left({\hat{P}}^{+}\right)}^{-1}(\xi )\ {\rm{d}}\xi +O\Space{0ex}{3.3ex}{0ex}(\displaystyle \frac{1}{{\lambda }^{2}}\Space{0ex}{3.3ex}{0ex}),\end{array}\end{eqnarray}$
and thus
$\begin{eqnarray}\begin{array}{l}{\hat{P}}^{+}(\lambda )=I+\displaystyle \frac{1}{2\pi {\rm{i}}\lambda }\\ \times {\displaystyle \int }_{-\infty }^{+\infty }{\rm{\Gamma }}(\xi )\hat{G}(\xi ){{\rm{\Gamma }}}^{-1}(\xi ){\left({\hat{P}}^{+}\right)}^{-1}(\xi )\ {\rm{d}}\xi +O\Space{0ex}{3.3ex}{0ex}(\displaystyle \frac{1}{{\lambda }^{2}}\Space{0ex}{3.3ex}{0ex}).\end{array}\end{eqnarray}$
Using equation (2.33), we arrive at
$\begin{eqnarray}{\rm{\Gamma }}(\lambda )=I+\displaystyle \frac{1}{\lambda }\sum _{i,j=1}^{N}{\nu }_{i}{\left({M}^{-1}\right)}_{{ij}}{\hat{\nu }}_{j}+O\Space{0ex}{3.3ex}{0ex}(\displaystyle \frac{1}{{\lambda }^{2}}\Space{0ex}{2.3ex}{0ex}),\quad \lambda \to \infty .\end{eqnarray}$
According to equations (2.31), (3.22) and (3.23), we obtain from ${\left({P}^{+}\right)}^{(1)}$ in the expansion (3.17) of P+ that
$\begin{eqnarray}\begin{array}{l}{\left({P}^{+}\right)}^{(1)}(x,t)=\displaystyle \sum _{i,j=1}^{N}{\nu }_{i}{\left({M}^{-1}\right)}_{{ij}}{\hat{\nu }}_{j}\\ +\displaystyle \frac{1}{2\pi {\rm{i}}}{\displaystyle \int }_{-\infty }^{+\infty }{\rm{\Gamma }}(\xi )\hat{G}(\xi ){{\rm{\Gamma }}}^{-1}(\xi ){\left({\hat{P}}^{+}\right)}^{-1}(\xi ){\rm{d}}\xi .\end{array}\end{eqnarray}$

4. Soliton solutions

In this section, we shall construct explicit solutions to the AB system in the reflectionless case, i.e. G(λ) = I, which implies that the integral in (3.24) disappears in view of (3.20). Then, we derive N-soliton solutions to the AB system and discuss several special cases respectively.
Under the reflectionless condition, we obtain from (3.24) and (3.18) that
$\begin{eqnarray}{\left({P}^{+}\right)}^{(1)}(x,t)=\sum _{i,j=1}^{N}{\nu }_{i}{\left({M}^{-1}\right)}_{{ij}}{\hat{\nu }}_{j},\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}A & = & 4{\rm{i}}{\left(\displaystyle \sum _{i,j=1}^{N}{\nu }_{i}{\left({M}^{-1}\right)}_{{ij}}{\hat{\nu }}_{j}\right)}_{12},\\ B & = & 1-4{\rm{i}}{\left({\left(\displaystyle \sum _{i,j=1}^{N}{\nu }_{i}{\left({M}^{-1}\right)}_{{ij}}{\hat{\nu }}_{j}\right)}_{t}\right)}_{11},\end{array}\end{eqnarray}$
where the matrix function M is given in formula (2.35) in the theorem 2.1. Define vectors ${\nu }_{j}={\left({a}_{j},{b}_{j}\right)}^{{\rm{T}}},$ ${\hat{\nu }}_{j}=({\hat{a}}_{j},{\hat{b}}_{j}),$ f1 = (a1, a2, a3, ⋯ ,aN), ${g}_{1}={\left({\hat{a}}_{1},{\hat{a}}_{2},\cdots ,{\hat{a}}_{N}\right)}^{{\rm{T}}},$ ${g}_{2}={\left({\hat{b}}_{1},{\hat{b}}_{2},\cdots ,{\hat{b}}_{N}\right)}^{\rm{T}}.$ Then, the N-soliton solution formula of the AB system (1.1) can be expressed in determinant form
$\begin{eqnarray}\begin{array}{rcl}A & = & 4{\rm{i}}{f}_{1}{M}^{-1}{g}_{2}=-\displaystyle \frac{4{\rm{i}}}{\det M}\det \left(\begin{array}{cc}0 & {f}_{1}\\ {g}_{2} & M\end{array}\right),\\ B & = & 1-4{\rm{i}}{\left({f}_{1}{M}^{-1}{g}_{1}\right)}_{t}=1+4{\rm{i}}{\left(\displaystyle \frac{1}{\det M}\det \left(\begin{array}{cc}0 & {f}_{1}\\ {g}_{1} & M\end{array}\right)\right)}_{t}.\end{array}\end{eqnarray}$
For the sake of convenience, we introduce ${\nu }_{j}^{0}={\left({\alpha }_{j},{\beta }_{j}\right)}^{{\rm{T}}},{\lambda }_{j}={\zeta }_{j}+{\rm{i}}{\eta }_{j},j\,=\,1,2,3.$ For N = 1, the solution (4.3) is reduced to
$\begin{eqnarray}\begin{array}{rcl}A & = & -\displaystyle \frac{4{\rm{i}}{\alpha }_{1}{\beta }_{1}^{* }({\lambda }_{1}-{\lambda }_{1}^{* }){{\rm{e}}}^{\tfrac{{\lambda }_{1}+{\lambda }_{1}^{* }}{2{\lambda }_{1}{\lambda }_{1}^{* }}{\rm{i}}t}}{{\alpha }_{1}{\alpha }_{1}^{* }{{\rm{e}}}^{\tfrac{{\rm{i}}(t+4{\lambda }_{1}{\lambda }_{1}^{* }x)}{2{\lambda }_{1}}}+{\beta }_{1}{\beta }_{1}^{* }{{\rm{e}}}^{\tfrac{{\rm{i}}(t+4{\lambda }_{1}{\lambda }_{1}^{* }x)}{2{\lambda }_{1}^{* }}}},\\ B & = & 1+\displaystyle \frac{2{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}{\alpha }_{1}{\alpha }_{1}^{* }{\beta }_{1}{\beta }_{1}^{* }{{\rm{e}}}^{\tfrac{{\rm{i}}({\lambda }_{1}-{\lambda }_{1}^{* })(t+4{\lambda }_{1}{\lambda }_{1}^{* }x)}{2{\lambda }_{1}{\lambda }_{1}^{* }}}}{{\lambda }_{1}{\lambda }_{1}^{* }{\left({\alpha }_{1}{\alpha }_{1}^{* }+{\beta }_{1}{\beta }_{1}^{* }{{\rm{e}}}^{\tfrac{{\rm{i}}({\lambda }_{1}-{\lambda }_{1}^{* })(t+4{\lambda }_{1}{\lambda }_{1}^{* }x)}{2{\lambda }_{1}{\lambda }_{1}^{* }}}\right)}^{2}}\\ & = & 1+\displaystyle \frac{{\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)}^{2}}{2{\lambda }_{1}{\lambda }_{1}^{* }{\cosh }^{2}(\mathrm{ln}\sqrt{\tfrac{{\alpha }_{1}{\alpha }_{1}^{* }}{{\beta }_{1}{\beta }_{1}^{* }}}-\tfrac{{\rm{i}}({\lambda }_{1}-{\lambda }_{1}^{* })(t+4{\lambda }_{1}{\lambda }_{1}^{* }x)}{4{\lambda }_{1}{\lambda }_{1}^{* }})}.\end{array}\end{eqnarray}$
which is a single-soliton solution when α1 = β1 = 1 + i and λ1 = i as shown in figure 1, where A is a bright soliton and B is a dark soliton.
Figure 1. One-soliton solution.
For N = 2, since the explicit expression of the two-soliton solution is quite complex, we omit the detailed calculation and give the figures with some parameters chosen as ${\alpha }_{1}={\beta }_{1}=1,{\alpha }_{2}={\beta }_{2}={\rm{i}},{\lambda }_{1}={\rm{i}},{\lambda }_{2}=\tfrac{1}{2}{\rm{i}}$. It can be seen from figure 2 that the solution is a two-bright-dark soliton solution with collisions at point (0, 0). In particular, we can see from figure 3 that collisions are elastic since waves do not undergo shape-changing collisions as they propagate.
Figure 2. Two-soliton solution.
Figure 3. Two-soliton elastic collision.
For N = 3, we can similarly obtain a three-bright-dark soliton solution as shown in figure 4 by taking α1 = β1 = 2, α2 = β2 = 2i, α3 = β3 = 2, λ1 = i, ${\lambda }_{2}=\tfrac{1}{2}{\rm{i}},{\lambda }_{3}=2{\rm{i}}$. Figure 5 shows that the collisions are still elastic.
Figure 4. Three-soliton solution.
Figure 5. Three-soliton elastic collision.

5. Conclusion and discussion

It is of great significance to investigate the solutions of the AB system, which may help to better understand ultra-short optical pulse propagation in nonlinear optics. The AB system is the negative flow of the Lax pair, so it is very difficult to deal with the system using the Riemann–Hilbert approach. The potential B is at the diagonal position of the matrix V, which is different from other models such as focusing nonlinear Schrödinger equation. Therefore, we need to assume function B decays to 1 as x → ∞ and use evolution equations of the Jost function with respect to both x and t when reconstructing the potentials. For the direct scattering problem, the analyticities, symmetries and asymptotic behaviors of the Jost solutions, scattering matrix and discrete spectra, are established by resorting to the inverse scattering transformation. The inverse problems are formulated and solved with the aid of the matrix Riemann–Hilbert problems, and the reconstruction formulas are obtained. And from that we construct the muti-bright-dark soliton solutions to the AB system. The collisions are elastic, which means that the solitons are capable of propagating over long distances without shape-changing and thus are quite important in optical fiber communication. We also try to find out whether inelastic (shape-changing) collisions exist in the multi-soliton collisions of the AB system. In addition, the study of non-zero boundary problems by the Riemann–Hilbert method has aroused great interest. In the future, we will focus on finding some other explicit solutions such as the breathers, rogue wave solutions and others by using the inverse scattering method with nonzero boundary conditions.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11971441, 11 931017, 11871440, 11901538) and Key Scientific Research Projects of Colleges and Universities in Henan Province (No. 20A110006).

1
Ablowitz M J Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scatterring Cambridge Cambridge University Press

2
Ablowitz M J Kaup D J Newell A C Segur H 1973 Nonlinear evolution equations of physical significance Phys. Rev. Lett. 31 125 127

DOI

3
Matveev V B Salle M A 1991 Darboux Transformations and Solitons Berlin Springer

4
Li R M Geng X G 2020 Rogue periodic waves of the sine-Gordon equation Appl. Math. Lett. 102 106147

DOI

5
Li R M Geng X G 2020 On a vector long wave-short wave-type model Stud. Appl. Math. 144 164 184

DOI

6
Geng X G Li R M Xue B 2020 A vector general nonlinear Schrödinger equation with (m + n) components J. Nonlinear Sci. 30 991 1013

DOI

7
Geng X G Zhai Y Y Dai H H 2014 Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy Adv. Math. 263 123 153

DOI

8
Wei J Geng X G Zeng X 2019 The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices Trans. Amer. Math. Soc. 371 1483 1507

DOI

9
Geng X G Zeng X Wei J 2019 The application of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy Ann. Henri Poincaré 20 2585 2621

DOI

10
Ablowitz M J Fokas A S 2003 Complex Variables: Introduction and Applications Cambridge Cambridge University Press

11
Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems Philadelphia SIAM

12
Ma W X 2018 Riemann–Hilbert problems and N-soliton solutions for a coupled mKdV system J. Geom. Phys. 132 45 54

DOI

13
Geng X G Wu J P 2016 Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation Wave Motion 60 62 72

DOI

14
Geng X G Liu H 2018 The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation J. Nonlinear Sci. 28 739 763

DOI

15
Geng X G Wang K D Chen M M 2021 Long-time asymptotics for the spin-1 Gross-Pitaevskii equation Commun. Math. Phys. 382 585 611

DOI

16
Kamchatnov A M Pavlov M V 1995 Periodic solutions and Whitham equations for the AB system J. Phys. A 28 3279 3288

DOI

17
Pedlosky J 1972 Finite-amplitude baroclinic wave packets J. Atmos. Sci. 29 680 686

DOI

18
Tan B Boyd J P 2002 Envelope solitary waves and periodic waves in the AB equations Stud. Appl. Math. 109 67 87

DOI

19
Fowler A C Gibbon J D McGuinness M J 1983 The real and complex Lorenz equations and their relevance to physical systems Physica D 7 126 134

DOI

20
Moroz I M 1981 Slowly modulated baroclinic waves in a three-layer model J. Atmos. Sci. 38 600 608

DOI

21
Mooney C J Swaters G E 1996 Finite-amplitude baroclinic instability of a mesoscale gravity current in a channel Geophys. Astrophys. Fluid Dyn. 82 173 205

DOI

22
Gibbon J D James I N Moroz I M 1979 An example of soliton behaviour in a rotating baroclinic fluid Proc. R. Soc. A 367 219 237

DOI

23
Wang X Li Y Q Huang F Chen Y 2015 Rogue wave solutions of AB system Commun. Nonlinear Sci. Numer. Simul. 20 434 442

DOI

24
Guo R Hao H Q Zhang L L 2013 Dynamic behaviors of the breather solutions for the AB system in fluid mechanics Nonlinear Dyn. 74 701 709

DOI

25
Zhu J Y Geng X G 2014 The AB equations and the $\bar{\partial }$-dressing method in semi-characteristic coordinates Math. Phys. Anal. Geom. 17 49 65

DOI

26
Zhang G Q Yan Z Y Wen X Y 2017 Multi-dark-dark solitons of the integrable repulsive AB system via the determinants Chaos 27 083110

DOI

27
Yu G X Xu Z W Hu J Zhao H Q 2017 Bright and dark soliton solutions to the AB system and its multi-component generalization Commun. Nonlinear Sci. Numer. Simul. 47 178 189

DOI

28
Chen S Y Yan Z Y 2021 Long-time asymptotics of solutions for the coupled dispersive AB system with initial value problems J. Math. Anal. Appl. 489 124966

DOI

29
Boutet de Monvel A Shepelsky D Zielinski L 2011 The short-wave model for the Camassa-Holm equation: a Riemann–Hilbert approach Inverse Probl. 27 105006

DOI

30
Boutet de Monvel A Shepelsky D Zielinski L 2017 The short pulse equation by a Riemann–Hilbert approach Lett. Math. Phys. 107 1345 1373

DOI

Outlines

/