1. Introduction
Table 1. The best-fit values, 1σ errors and 3σ ranges of six neutrino oscillation parameters extracted from a global analysis of the existing neutrino oscillation data [2]. |
Normal ordering | Inverted ordering | |||
---|---|---|---|---|
bf ± 1σ | 3σ range | bf ± 1σ | 3σ range | |
${\sin }^{2}{\theta }_{12}^{}$ | ${0.318}_{-0.016}^{+0.016}$ | 0.271 → 0.370 | ${0.318}_{-0.016}^{+0.016}$ | 0.271 → 0.370 |
${\sin }^{2}{\theta }_{23}^{}$ | ${0.566}_{-0.022}^{+0.016}$ | 0.441 → 0.609 | ${0.566}_{-0.023}^{+0.018}$ | 0.446 → 0.609 |
${\sin }^{2}{\theta }_{13}^{}$ | ${0.02225}_{-0.00078}^{+0.00055}$ | 0.02015 → 0.024 17 | ${0.02250}_{-0.00076}^{+0.00056}$ | 0.02039 → 0.024 41 |
δ/π | ${1.20}_{-0.14}^{+0.23}$ | 0.80 → 2.00 | ${1.54}_{-0.13}^{+0.13}$ | 1.14 → 1.90 |
${\rm{\Delta }}{m}_{21}^{2}/({10}^{-5}\,{\mathrm{eV}}^{2})$ | ${7.50}_{-0.20}^{+0.22}$ | 6.94 → 8.14 | ${7.50}_{-0.20}^{+0.22}$ | 6.94 → 8.14 |
$| {\rm{\Delta }}{m}_{31}^{2}| /({10}^{-3}\,{\mathrm{eV}}^{2})$ | ${2.56}_{-0.04}^{+0.03}$ | 2.46 → 2.65 | ${2.46}_{-0.03}^{+0.03}$ | 2.37 → 2.55 |
2. FL neutrino model with μ-τ reflection symmetry
3. Summary
• | In the NO case with σ = 0, we have $| ({M}_{\nu }^{}{)}_{\mu \mu }^{}| \sim | ({M}_{\nu }^{}{)}_{\mu \tau }^{}| \,\gg | ({M}_{\nu }^{}{)}_{e\mu }^{}| \gg | ({M}_{\nu }^{}{)}_{{ee}}^{}| $, ∣a∣ ≫ ∣b∣, ${\phi }_{b}^{}\sim \arg [({M}_{\nu }^{}{)}_{e\mu }^{}]$, and $({M}_{\nu }^{}{)}_{\mu \mu }^{}$ being nearly purely real. And $| {\eta }_{\mu }^{}| $ can take the special value of 1/2 that corresponds to the so-called TM1 mixing. |
• | In the NO case with σ = π/2, $| ({M}_{\nu }^{}{)}_{{ee}}^{}| $ becomes comparable to $| ({M}_{\nu }^{}{)}_{e\mu }^{}| $. Note that the results of ${\eta }_{\mu }^{}$ are completely same as in the σ = 0 case. |
• | In the IO case with ρ − σ = 0, one arrives at $| ({M}_{\nu }^{}{)}_{{ee}}^{}| \,\sim 2| ({M}_{\nu }^{}{)}_{\mu \mu }^{}| \sim 2| ({M}_{\nu }^{}{)}_{\mu \tau }^{}| \gg | ({M}_{\nu }^{}{)}_{e\mu }^{}| $, ∣a∣ ∼ ∣b∣, $({M}_{\nu }^{}{)}_{e\mu }^{}$ being nearly purely imaginary, and $({M}_{\nu }^{}{)}_{\mu \mu }^{}$ and b being nearly purely real. In particular, ${\eta }_{\mu }^{}$ is purely imaginary. |
• | In the IO case with ρ − σ = π/2, we have $| ({M}_{\nu }^{}{)}_{e\mu }^{}| \gg | ({M}_{\nu }^{}{)}_{{ee}}^{}| \sim | ({M}_{\nu }^{}{)}_{\mu \mu }^{}| \sim | ({M}_{\nu }^{}{)}_{\mu \tau }^{}| $, ∣b∣ ≫ ∣a∣, $({M}_{\nu }^{}{)}_{e\mu }^{}$ being nearly purely real, and b being nearly purely imaginary. And the results of ${\eta }_{\mu }^{}$ are completely the same as in the ρ − σ = 0 case. |