Welcome to visit Communications in Theoretical Physics,
Others

Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration

  • Muhammad Ramzan , 1 ,
  • Hammad Alotaibi 2
Expand
  • 1Department of Computer Science, Bahria University, Islamabad, 44000, Pakistan
  • 2Department of Mathematics, College of Science, Taif University, PO Box 11099, Taif 21944, Saudi Arabia

Received date: 2022-01-15

  Revised date: 2022-03-15

  Accepted date: 2022-04-07

  Online published: 2022-05-03

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This study scrutinizes the flow of engine oil-based suspended carbon nanotubes magneto-hydrodynamics (MHD) hybrid nanofluid with dust particles over a thin moving needle following the Xue model. The analysis also incorporates the effects of variable viscosity with Hall current. For heat transfer analysis, the effects of the Cattaneo-Christov theory and heat generation/absorption with thermal slip are integrated into the temperature equation. The Tiwari-Das nanofluid model is used to develop the envisioned mathematical model. Using similarity transformation, the governing equations for the flow are translated into ordinary differential equations. The bvp4c method based on Runge-Kutta is used, along with a shooting approach. Graphs are used to examine and depict the consequences of significant parameters on involved profiles. The results revealed that the temperature of the fluid and boundary layer thickness is diminished as the solid volume fraction is raised. Also, with an enhancement in the variable viscosity parameter, the velocity distribution becomes more pronounced. The results are substantiated by assessing them with an available study.

Cite this article

Muhammad Ramzan , Hammad Alotaibi . Variable viscosity effects on the flow of MHD hybrid nanofluid containing dust particles over a needle with Hall current—a Xue model exploration[J]. Communications in Theoretical Physics, 2022 , 74(5) : 055801 . DOI: 10.1088/1572-9494/ac64f2

Nomenclature

${E}_{c}$ $\qquad\qquad$ Eckert number
${m}_{d}$ $\qquad\qquad$ Dust particles mass concentration $\left(\mu {\rm{g}}\,{{\rm{m}}}^{-3}\right)$
$N$ $\qquad\qquad$ Density of dust particles $\left({\rm{g}}\,{{\rm{cm}}}^{-2}\right)$
${B}_{0}$ $\qquad\qquad$ Applied magnetic field
$K$ $\qquad\qquad$ Stokes resistance (${\rm{\Omega }}$)
$m$ $\qquad\qquad$ Hall parameter (m3 C−1)
${c}_{m}$ $\qquad\qquad$ Specific heat of the dust particles $\left({{\rm{Jkg}}}^{-1}{{\rm{K}}}^{-1}\right)$
$A$ $\qquad\qquad$ Velocity slip factor
$M$ $\qquad\qquad$ Magnetic field parameter
${\Pr }$ $\qquad\qquad$ Prandtl number
${N}_{1}$ $\qquad\qquad$ Density of the phase particles $\left({\rm{g}}\,{{\rm{cm}}}^{-2}\right)$
${V}_{\infty }$ $\qquad\qquad$ Velocity outside the boundary layer $({\rm{m}}\,{{\rm{s}}}^{-1})$
${D}_{c}$ $\qquad\qquad$ Heat generation/absorption parameter $({\rm{W}}\,{{\rm{V}}}^{-1})$
${T}_{w}$ $\qquad\qquad$ Wall temperature (K)
${V}_{p},{W}_{p}$ $\qquad\qquad$ Velocity component of dust phase $({{\rm{ms}}}^{-1})$
${V}_{w}$ $\qquad\qquad$ Velocity of the moving needle
${C}_{f}$ $\qquad\qquad$ Surface drag force $({\rm{kg}}\,{{\rm{m}}}^{-3})$
$T$ $\qquad\qquad$ Fluid temperature (K)
${T}_{p}$ $\qquad\qquad$ Dust phase temperature (K)
$V,W$ $\qquad\qquad$ Velocity component fluid phase $({\rm{m}}\,{{\rm{s}}}^{-1})$
${T}_{\infty }$ f$\qquad\qquad$ ree stream temperature (K)
Greek symbols
${\rho }_{{\rm{hnf}}}$ $\qquad\qquad$ Hybrid nanofluid density $({\rm{kg}}\,{{\rm{m}}}^{-3})$
${\rho }_{f}$ $\qquad\qquad$ Density of fluid $({\rm{kg}}\,{{\rm{m}}}^{-3})$
$\alpha $ $\qquad\qquad$ Dust particles mass concentration $({\rm{kg}}\,{{\rm{m}}}^{-3})$
${\tau }_{w}$ $\qquad\qquad$ shear stress $\left({\rm{N}}\,{{\rm{m}}}^{-2}\right)$
${\lambda }_{1}$ $\qquad\qquad$ Thermal relaxation
${(\rho {C}_{p})}_{{\rm{hnf}}}$ $\qquad\qquad$ hybrid nanofluid heat capacity $\left({{\rm{Jkg}}}^{-1}{{\rm{K}}}^{-1}\right)$
${\tau }_{T}$ $\qquad\qquad$ Thermal equilibrium time
$\gamma $ $\qquad\qquad$ Specific heat ratio $\left({{\rm{Jkg}}}^{-1}{{\rm{K}}}^{-1}\right)$
${\phi }_{d}$ $\qquad\qquad$ Volume fraction of dust particles
${\beta }_{v}$ $\qquad\qquad$ Fluid velocity particles interaction parameter $({\rm{m}}\,{{\rm{s}}}^{-1})$
${(\rho {C}_{p})}_{{\rm{f}}}$ $\qquad\qquad$ Heat capacity of fluid (J K−1)
$\lambda $ $\qquad\qquad$ velocity ratio parameter $({\rm{m}}\,{{\rm{s}}}^{-1})$
${\tau }_{v}$ $\qquad\qquad$ Dust particles wall temperature Relaxation time (K)
${\mu }_{{\rm{hnf}}}$ $\qquad\qquad$ Hybrid nanofluid viscosity (Ns m−2)
${\theta }_{r}$ $\qquad\qquad$ variable viscosity parameter $({{\rm{kgm}}}^{-1}{{\rm{s}}}^{-1})$
${\gamma }_{T}$ $\qquad\qquad$ Dimensionless thermal relaxation parameter
${\phi }_{1},{\phi }_{2}$ $\qquad\qquad$ Solid volume fraction
${\beta }_{T}$ $\qquad\qquad$ Fluid temperature particle interaction parameter
${\alpha }_{{\rm{hnf}}}$ $\qquad\qquad$ Hybrid nanofluid thermal diffusivity
$\delta $ $\qquad\qquad$ Thermal slip parameter

Introduction

The use of liquid flow for cooling in a range of applications for instance automobiles, metallic plate cooling, and electronics has gained great popularity. In all of these cooling systems, various convectional fluids such as water, ethylene glycol, water mixtures, and other basic fluids are exercised as coolants. Several researchers have made significant contributions to improving the thermal conductivity of coolants for many years. Choi and Eastman [1] proposed the utilization of nanoparticles to increase the thermal conductivity of base liquids. Nanofluids are essentially a mixture of solid nanoparticles and liquid coolants that have been combined. The introduction of this new kind of coolant completely transformed the current manufacturing world. The ability of nanoparticles to enrich the heat transfer phenomena of the base fluid is quite remarkable. Many studies followed up on the pioneering work of Choi and Eastman [1] by looking into the impression of putting different solid nanoparticles into a variety of working fluids along with different geometries and finding interesting results [2-6]. The cutting-edge nanofluid, ‘hybrid nanofluid,' has recently been the subject of several discreet research using two kinds of nanoparticles submerged in a base fluid. To maximize the heat transfer rate of a hybrid nanofluid, a proper combination of nanoparticles must be used. Hybrid nanofluids have a wide variety of applications in medical, lubricating, solar heating, microfluidics, nuclear system and cooling, and thermal management of vehicles. In comparison to ordinary nanofluid, the hybrid nanofluid is more efficient as a cooling agent. The concept of a hybrid nanofluid is discussed in several scholarly works. Waini et al [7] demonstrated the flow of the hybrid nanofluid with (PHF) prescribed heat flux over a thin needle erected vertically. It is noticed that rising the volume fraction of copper (Cu) nanoparticles and lowering the needle size results in a rise in the skin friction coefficient and the heat flux rate on the needle. Additionally, Sulochana et al [8] scrutinized the Al-Cu/menthol flow of the nanofluid (hybrid) across a thin needle with (thermal) radiation effects. It is discovered that increasing the needle thickness has a substantial effect on the heat transfer rate of hybrid nanoliquid. Mousavi et al [9] established the hybrid nanofluid flow comprising TiO2-Cu/H2O along a thin needle accompanying the radiation effects. The results reveal that dual solutions exist for the reverse direction of the free stream of the thin needle. Ramesh et al [10] deliberated the heat transmission of a hybrid liquid across a thin needle in a spongy medium with different effects. Further literature on hybrid nanofluids is available in the [11-18].
It is well established that heat transfer happens between two bodies or inside the same body as a result of a temperature difference. Heat transfer is a tremendously important phenomenon in industrial, technical, and biological applications. Fourier was the first to explain the heat transmission process [19]. However, it has the drawback of producing a parabolic energy equation for the temperature distribution. Cattaneo [20] solved this problem by adding the thermal relaxation period to the basic Fourier formula of heat conduction. Finally, Christov [21] replaced the Cattaneo law with an Oldroyd upper convected derivative in the Maxwell-Cattaneo model to preserve the formulation's material invariance. Cattaneo-Christov (C-C) heat flux model consistency concerns have been examined by Ciarletta and Straughan [22] in both specific and systematic approaches. The latest research has highlighted the significance of the C-C heat flux in varied models [23-27].
Numerous researchers have devoted years to studying the heat transfer properties of dusty fluid flow, which is a two-phase fluid, to better understand a variety of real-world challenges, particularly in the meteorological, medical, and engineering domains. Dust particles are employed in a diverse application, including the petroleum industry, soil erosion caused by natural winds, crude oil purification, aerosol and fluidization, paint spraying, dust entrainment after nuclear explosions in clouds, and wastewater management [28-30]. Saffman [31] developed the first dusty fluid flow equations and analyzed the stability of the laminar flow of a dusty gas with equally distributed particles. Later, Chakrabarti [32] studied dusty gas utilizing boundary layer theory. Numerous scholars have since worked on dusty fluid flow on different geometries. Recently, Kumar et al [33] considered the flow of suspended carbon nanotubes (CNTs) in a dusty nanofluid across a stretched porous rotating disk. The results indicate that SWCNT-water-based fluid exhibits a higher rate of heat transfer than MWCNTs water-based fluid in both the dust and fluid phases. Gireesha et al [34] used numerical simulations to investigate the significance of nonlinear thermal radiation and hall currents on a dusty fluid on a heated stretched sheet, whereas Abbas et al [35] investigated dusty fluid flow in a spongy media while taking slip and MHD into account. More work on dust phase fluid can be found in [36-39].
The main contribution of this investigation is to deal with the MHD nanofluid flow with CNTs in engine oil with thermal slip across a thin moving needle in two dimensions. Dust particles are also studied concerning Hall current and varying viscosity. C-C theory and heat generation/absorption are also cogitated in the temperature equation for heat transfer analysis. CNTs-based hybrid nanofluid's thermal conductivity is analyzed using a new model named the Xue model. Using the relevant similarity transformations, the resultant system of a highly nonlinear system is numerically resolved. The findings are presented using graphs. The leading objective of the present exploration is to look for the answers to the ensuing questions:

What are the consequences of solid volume fraction on the dust and hybrid nanofluid phases?

How does solid volume fraction affect the temperature of the hybrid nanofluid and dust phases?

What is the impact of fluid particles' interaction parameters on the fluid velocity and dust phases?

How hybrid nanofluid particle interaction parameter affects the fluid and dust phases?

What is the consequence of the Eckert number on the fluid temperature?

Mathematical modeling

We consider a hybrid nanofluid flow past a moving needle with temperature-dependent viscosity (figure 1). The Xue model is adopted with single-wall and multi-wall CNTs immersed into the engine oil (base fluid). The radius of the cylindrical needle is presumed as $R=r(X).$ Here, the needle's leading edge is along the X-axis and $R,X$ are assumed as the radial and axial coordinates. Here, the transverse curvature is considered nevertheless the pressure gradient in the body direction is ignored. The wall temperature ${T}_{w}$ and the temperature far away from the wall ${T}_{\infty }$ are taken as constant with ${T}_{w}\gt {T}_{\infty }.$ The movement of the needle is observed with a constant velocity ${V}_{w}.$
Figure 1. Flow problem model.
Nanofluid phase: [5, 43]
$\begin{eqnarray}\displaystyle \frac{\partial \left(rV\right)}{\partial X}+\displaystyle \frac{\partial \left(rW\right)}{\partial R}=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left(1-{\phi }_{d}\right)\left(W\displaystyle \frac{\partial V}{\partial X}+V\displaystyle \frac{\partial V}{\partial R}\right)-\displaystyle \frac{KN}{{\rho }_{{\rm{hnf}}}}\left({V}_{p}-V\right)\\ =\,\displaystyle \frac{\left(1-{\phi }_{d}\right)}{{\rho }_{{\rm{hnf}}}}\displaystyle \frac{1}{R}\displaystyle \frac{\partial }{\partial R}\left(\left({\mu }_{{\rm{hn}}f}\left(T\right)\right)R\,\displaystyle \frac{\partial V}{\partial R}\right)-\displaystyle \frac{{\sigma }_{{\rm{hnf}}}{{B}_{0}}^{2}V}{{\rho }_{{\rm{hnf}}}\left(1+{m}^{2}\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{\partial T}{\partial X}W+\displaystyle \frac{\partial T}{\partial R}V+{\lambda }_{1}\left({V}^{2}\displaystyle \frac{{\partial }^{2}T}{\partial {X}^{2}}+2VW\displaystyle \frac{{\partial }^{2}T}{\partial X\partial R}+{W}^{2}\displaystyle \frac{{\partial }^{2}T}{\partial {R}^{2}}\right.\\ \left.+\,V\displaystyle \frac{\partial W}{\partial X}\displaystyle \frac{\partial T}{\partial R}+W\displaystyle \frac{\partial V}{\partial R}\displaystyle \frac{\partial T}{\partial X}+W\displaystyle \frac{\partial W}{\partial R}\displaystyle \frac{\partial T}{\partial R}+V\displaystyle \frac{\partial V}{\partial X}\displaystyle \frac{\partial T}{\partial X}\right)\\ \,=\,\displaystyle \frac{{\alpha }_{{\rm{hnf}}}}{R}\displaystyle \frac{\partial }{\partial R}\left(R\displaystyle \frac{\partial T}{\partial R}\right)+\displaystyle \frac{N{\left({C}_{p}\right)}_{{\rm{bf}}}}{{\tau }_{T}{\left(\rho {C}_{{\rm{p}}}\right)}_{hnf}}\left({T}_{p}-T\right)\\ \,+\,\displaystyle \frac{{N}_{1}}{{\tau }_{\nu }{\left(\rho {C}_{p}\right)}_{{\rm{hnf}}}}{\left({V}_{p}-V\right)}^{2}+\left(\displaystyle \frac{{\sigma }_{{\rm{hn}}f}{{B}_{0}}^{2}}{{\left(\rho {C}_{p}\right)}_{{\rm{hnf}}}\left(1+{m}^{2}\right)}\right){V}^{2}\\ \,+\,\displaystyle \frac{Q}{{\left(\rho {C}_{p}\right)}_{{\rm{hnf}}}}\left(T-{T}_{\infty }\right).\end{array}\end{eqnarray}$
Dust phase: [42]
$\begin{eqnarray}\displaystyle \frac{\partial \left(r{V}_{p}\right)}{\partial X}+\displaystyle \frac{\partial \left(r{W}_{p}\right)}{\partial R}=0,\end{eqnarray}$
$\begin{eqnarray}\left({W}_{p}\displaystyle \frac{\partial {V}_{p}}{\partial X}+{V}_{p}\displaystyle \frac{\partial {V}_{p}}{\partial R}\right)-\displaystyle \frac{K}{{m}_{d}}\left(V-{V}_{p}\right)=0,\,\end{eqnarray}$
$\begin{eqnarray}{N}_{1}{c}_{m}\left({W}_{p}\displaystyle \frac{\partial T}{\partial X}+{V}_{p}\displaystyle \frac{\partial T}{\partial R}\right)-\left({T}_{p}-T\right)\displaystyle \frac{{\left({C}_{p}\right)}_{{\rm{hnf}}}{N}_{1}}{{\tau }_{T}}=0,\,\end{eqnarray}$
the stretching velocity and thermal slip boundary conditions are given as:
$\begin{eqnarray}\begin{array}{l}V\left(X,R\right)={V}_{w},{V}_{p}\left(X,R\right)={V}_{w},{W}_{p}\left(X,R\right)\,=\,0,W\left(X,R\right)=0,{T}_{w}+\lambda \displaystyle \frac{{k}_{{\rm{hnf}}}}{{k}_{{\rm{f}}}}\displaystyle \frac{\partial T}{\partial R}=\,T\left(X,R\right),{\rm{as}}\,R\to r\left(X\right),\,\\ V\left(X,R\right)\to {V}_{\infty },T\left(X,R\right)\,\to \,{T}_{\infty },{T}_{p}\left(X,R\right)\to {T}_{\infty },{\rm{as}}\,R\to \infty .\end{array}\end{eqnarray}$
Table 1 presents the attributes of the CNTs and the engine oil (base fluid).
Table 1. Thermal and physical traits of engine oil and CNTs (SWCNTs and MWCNTs) [44].
Working fluid Nanoparticles
Thermal attributes Engine oil MWCNTs SWCNTs
${{C}}_{{p}}({\rm{J}}\,{{\rm{kg}}}^{-1}{{\rm{K}}}^{-1})$ 1910.0 796.00 425.00
$K({\rm{W}}\,{{\rm{m}}}^{-1}{{\rm{K}}}^{-1})$ 0.144 3000.00 6600.00
$\rho \left({\rm{kg}}\,{{\rm{m}}}^{-3}\right)$ 884.0 1600.00 2600.00
The variable viscosity, thermal conductivity, density, and specific heat for SWCNTs/engine oil (nanofluid) and SWCNTs-MWCNTs/engine oil (hybrid nanofluid) are specified as [44, 45]:
Algorithm 1. Training variational QSVM
Simple nanofluid Hybrid nanofluid
${\alpha }_{{\rm{nf}}}=\displaystyle \frac{{k}_{{\rm{nf}}}}{{\left(\rho {C}_{p}\right)}_{{\rm{nf}}}},$${\mu }_{nf}=\displaystyle \frac{{\mu }_{{\rm{f}}}}{\left(1-\tfrac{\theta }{{\theta }_{r}}\right){\left(1-\phi \right)}^{2.5}},$ $\begin{array}{c}{\alpha }_{{\rm{hnf}}}=\displaystyle \frac{{k}_{{\rm{hnf}}}}{{\left(\rho {C}_{p}\right)}_{{\rm{hnf}}}},\,\\ {\mu }_{{\rm{hnf}}}=\displaystyle \frac{{\mu }_{f}}{\left(1-\tfrac{\theta }{{\theta }_{r}}\right){\left(1-{\phi }_{1}\right)}^{2.5}{\left(1-{\phi }_{2}\right)}^{2.5}},\end{array}$
$\begin{array}{l}{\left({C}_{p}\rho \right)}_{{\rm{nf}}}={\left({C}_{p}\rho \right)}_{{\rm{SWCNT}}}\ \phi \\ +\,{\left({C}_{p}\rho \right)}_{{\rm{f}}}\left(1-\phi \right),\end{array}$ $\begin{array}{l}{\left({C}_{p}\rho \right)}_{{\rm{hnf}}}={\left({C}_{p}\rho \right)}_{{\rm{SWCN}}T}\ {\phi }_{2}-\left({\phi }_{2}-1\right)\\ \times \left\{\left(1-{\phi }_{1}\right){\left(\rho {C}_{p}\right)}_{f}+{\phi }_{1}{\left(\rho {C}_{p}\right)}_{{\rm{MWCNT}}}\right\},\end{array}$
${\rho }_{{\rm{nf}}}=\phi {\rho }_{{\rm{SWCNT}}}+(1-\phi ){\rho }_{{\rm{f}}},\,\,$ $\begin{array}{l}{\rho }_{{\rm{hnf}}}={\phi }_{2}{\rho }_{{\rm{SWCNT}}}+\left(1-{\phi }_{2}\right)\\ \times \left\{(1-{\phi }_{1}){\rho }_{{\rm{f}}}+{\phi }_{1}{\rho }_{{\rm{MW}}CNT\ }\right\},\end{array}$
$\displaystyle \frac{{k}_{{\rm{nf}}}}{{k}_{{\rm{f}}}}=\displaystyle \frac{(1-\phi )+2\phi \left(\tfrac{{k}_{{\rm{SWCNT}}}}{{k}_{{\rm{SWCN}}T}-\ {k}_{{\rm{f}}}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{SWC}}NT}+\ {k}_{{\rm{f}}}}\ {{k}_{f}}\right)}{(1-\phi )+2\phi \left(\tfrac{{k}_{f}}{{k}_{SWCNT}-\ {k}_{f}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{SWCNT}}}+\ {k}_{{\rm{f}}}}{{k}_{{\rm{f}}}}\right)}.$ $\displaystyle \frac{{k}_{{\rm{hnf}}}}{{k}_{{\rm{nf}}}}=\displaystyle \frac{\left(1-{\phi }_{2}\right)+2{\phi }_{2}\left(\tfrac{{k}_{{\rm{SWCNT}}}}\ {{k}_{{\rm{SWCN}}T}-{k}_{{\rm{nf}}}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{SWCNT}}}\ +{k}_{{\rm{nf}}}}{{k}_{nf}}\right)}{\left(1-{\phi }_{2}\right)+2{\phi }_{2}\left(\tfrac{{k}_{bf}}{{k}_{{\rm{SWCNT}}}\ -{k}_{{\rm{nf}}}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{SWCNT}}}\ +{k}_{{\rm{nf}}}}{{k}_{{\rm{nf}}}}\right)},$
$\displaystyle \frac{{k}_{{\rm{nf}}}}{{k}_{{\rm{f}}}}=\displaystyle \frac{\left(1-{\phi }_{1}\right)+2{\phi }_{1}\left(\tfrac{{k}_{{\rm{MWCNT}}}}{{k}_{{\rm{MWCN}}T}\ -{k}_{{\rm{f}}}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{MWCN}}T}\ +{k}_{{\rm{f}}}}{{k}_{{\rm{f}}}}\right)}{\left(1-{\phi }_{1}\right)+2{\phi }_{1}\left(\tfrac{{k}_{{\rm{f}}}}{{k}_{{\rm{MWCN}}T}\ -{k}_{{\rm{f}}}}\right)\mathrm{ln}\left(\tfrac{{k}_{{\rm{MWCN}}T}\ +{{\rm{k}}}_{{\rm{f}}}}{{k}_{{\rm{f}}}}\right)}.$
The solid volume fraction of SWCNTs is denoted by ${\phi }_{2}$ and that of the MWCNTs is clarified by ${\phi }_{1},$ specific heat and thermal conductivity of regular fluid are correspondingly defined by ${C}_{p}$ and ${k}_{f}.$

Similarity analysis

Using the similarity transformation [46]:
$\begin{eqnarray}\begin{array}{c}\,\eta =\displaystyle \frac{{V}_{0}{R}^{2}}{a{\upsilon }_{f}X},\,\,\psi ={\upsilon }_{f}Xf\left(\eta \right),\,\displaystyle \frac{T-{T}_{\infty }}{{T}_{w}-{T}_{\infty }}=\theta \left(\eta \right),\\ \,{\theta }_{p}\left(\eta \right)=\displaystyle \frac{{T}_{p}-{T}_{\infty }}{{T}_{w}-{T}_{\infty }}.\end{array}\end{eqnarray}$
Applying equation (8), the above nanoparticle phase equations are transmuted to:
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \frac{f^{{\prime}{\prime}} }{\left(1-\theta /{\theta }_{r}\right)}+\displaystyle \frac{\eta f^{{\prime}{\prime}{\prime}} }{\left(1-\theta /{\theta }_{r}\right)}+\displaystyle \frac{\eta \theta ^{\prime} f^{{\prime}{\prime}} }{{\theta }_{r}{\left(1-\theta /{\theta }_{r}\right)}^{2}}\,\right)\\ \,+\,\alpha {\beta }_{v}{A}_{2}\left(f{{\prime} }_{p}-f^{\prime} \right)+(1-{\phi }_{d}){A}_{1}{A}_{2}ff^{{\prime}{\prime}} \\ \,+\,\displaystyle \frac{{A}_{2}M}{(1+{m}^{2})}f^{\prime} =0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{k}_{{\rm{hnf}}}}{{k}_{{\rm{f}}}}\left(\eta \theta ^{\prime\prime} +\theta ^{\prime} \right)+0.5\,{\Pr }{A}_{3}f\theta ^{\prime} \,+\,0.5\,{\Pr }\alpha {\beta }_{T}{A}_{4}\left({\theta }_{p}-\theta \right)+{\Pr }{D}_{c}\theta \,+\,{\gamma }_{T}\left(ff^{\prime\prime} \theta -{f}^{2}\theta ^{\prime\prime} +\left(f-f^{\prime} \right)ff^{\prime\prime} \theta ^{\prime} {\eta }^{2}\right)\\ \,+\,2{\Pr }\alpha {\beta }_{v}{E}_{c}{\left(f{{\prime} }_{p}-f^{\prime} \right)}^{2}+\displaystyle \frac{{\rm{2}}{E}_{c}{\Pr }M}{\left(1+{m}^{2}\right)}f{{\prime} }^{2}=0,\end{array}\end{eqnarray}$
and the dust phase equation becomes:
$\begin{eqnarray}{f}_{p}^{{\prime\prime} }{f}_{p}+{\beta }_{v}(f^{\prime} -f{{\prime} }_{p})=0,\,\end{eqnarray}$
$\begin{eqnarray}{f}_{p}\theta {{\prime} }_{p}-\gamma {A}_{4}{\beta }_{T}({\theta }_{p}-\theta )=0,\end{eqnarray}$
with the transformed conditions:
$\begin{eqnarray}\begin{array}{l}f\left(c\right)=\lambda c/2,\,{f}_{p}\left(c\right)=\lambda c/2,\,f{{\prime} }_{p}\left(c\right)=\lambda /2,f^{\prime} \left(c\right)\,=\,\lambda /2,\,\theta (c)=1+\theta ^{\prime} \left(c\right)\delta \displaystyle \frac{{k}_{{\rm{hn}}f}}{{k}_{{\rm{f}}}},\\ f^{\prime} \left(\eta \right)=\left(1-\lambda \right)/2,\,\theta \left(\eta \right)=0\,,\,{\theta }_{p}\left(\eta \right)=0,\\ {\rm{as}}\,\eta \to \infty .\end{array}\end{eqnarray}$
The parameters involved in equations (9)-(13) is identified as:
$\begin{eqnarray}\begin{array}{l}{A}_{1}=\left(\left(1-{\phi }_{2}\right)\left\{\left(1-{\phi }_{1}\right)+{\phi }_{1}\displaystyle \frac{{\rho }_{{\rm{MWCNT}}}}{{\rho }_{{\rm{f}}}}\right\}+{\phi }_{2}\displaystyle \frac{{\rho }_{{\rm{SWCN}}T}}{{\rho }_{{\rm{f}}}}\right),\,\alpha =\displaystyle \frac{N{m}_{d}}{{\rho }_{{\rm{bf}}}},\,{\beta }_{v}=\displaystyle \frac{K}{2{V}_{0}{m}_{d}},\,{\beta }_{T}=\displaystyle \frac{1}{2{V}_{o}{\tau }_{T}},\,\\ \lambda =\displaystyle \frac{{V}_{w}}{{V}_{0}},\,{\gamma }_{T}={\lambda }_{1}a,\\ {\theta }_{r}=\displaystyle \frac{1}{{\delta }^{* * }\left({T}_{w}-{T}_{\infty }\right)},\,{A}_{2}={\left(1-{\phi }_{1}\right)}^{2.5}{\left(1-{\phi }_{2}\right)}^{2.5},\\ {A}_{4}=\left(\left(1-{\phi }_{2}\right)\left\{\left(1-{\phi }_{1}\right)+{\phi }_{1}\displaystyle \frac{{\left({C}_{p}\right)}_{{\rm{MWCN}}T}}{{\left({C}_{p}\right)}_{{\rm{bf}}}}\right\}\right.\,\left.+\,{\phi }_{2}\displaystyle \frac{{\left({C}_{p}\right)}_{{\rm{SWCNT}}}}{{\left({C}_{p}\right)}_{{\rm{bf}}}}\right),\,\gamma =\displaystyle \frac{{\left({C}_{p}\right)}_{bf}}{{C}_{m}},\\ {A}_{3}=\left(\left(1-{\phi }_{2}\right)\left\{\left(1-{\phi }_{1}\right)+{\phi }_{1}\displaystyle \frac{{\left(\rho {C}_{p}\right)}_{{\rm{MWCNT}}}}{{\left(\rho {C}_{p}\right)}_{f}}\right\}\right.\left.\,+\,{\phi }_{2}\displaystyle \frac{{\left(\rho {C}_{p}\right)}_{{\rm{SWC}}NT}}{{\left(\rho {C}_{p}\right)}_{f}}\right),\\ {{E}}_{{c}}=\displaystyle \frac{{{V}_{0}}^{2}}{{\left({C}_{p}\right)}_{bf}\left({T}_{w}-{T}_{\infty }\right)},\,M=\displaystyle \frac{\sigma {{B}_{o}}^{2}}{2{V}_{o}{\rho }_{bf}},\,{\Pr }=\displaystyle \frac{{\nu }_{f}}{{\alpha }_{f}}{\rm{.}}\end{array}\end{eqnarray}$

Physical engineering quantities

The surface drag coefficient and the rate of heat flux are identified as:
$\begin{eqnarray}\begin{array}{l}{C}_{f}=\displaystyle \frac{{\mu }_{{\rm{hnf}}}}{{\rho }_{f}{{V}_{w}}^{2}}\displaystyle \frac{1}{{\left(1-{\phi }_{2}\right)}^{2.5}{\left(1-{\phi }_{1}\right)}^{2.5}}{\left[\displaystyle \frac{\partial V}{\partial R}\right]}_{R=c},\,{N}_{VX}=-\displaystyle \frac{1}{{k}_{{\rm{hnf}}}\left({T}_{w}-{T}_{\infty }\right)}{\left(\displaystyle \frac{\partial T}{\partial R}\right)}_{R=c}.\end{array}\end{eqnarray}$
Using equation (10) in (17) we gained,
$\begin{eqnarray}\begin{array}{l}{R}{{e}}_{X}^{1/2}{C}_{{f}_{x}}=\left[\displaystyle \frac{4\sqrt{c}}{{\left(1-{\phi }_{2}\right)}^{2.5}{\left(1-{\phi }_{1}\right)}^{2.5}}\right]f^{\prime\prime} (c),{R}{{e}}_{X}^{1/2}{N}_{{u}_{x}}=-2\sqrt{c}\displaystyle \frac{{k}_{{\rm{hnf}}}}{{k}_{f}}\theta ^{\prime} (0).\end{array}\end{eqnarray}$
${R}{{e}}_{{X}}=\tfrac{X{V}_{0}}{{\nu }_{f}},$ represents the local Reynold number.

Numerical appraisal

By implementing the Runge-Kutta-based MATLAB function bvp4c, the existing problem solution is found numerically. In addition, we ‘shoot' directions in this method in different ways until we have the appropriate boundary value. This is a technique that is very simple and effective. We take the convergence criterion to reach the solution, which is ${10}^{-5}.$ The solution is achieved graphically concerning different variables for the velocity and temperature for both the fluid phase and the dust phase.
$\begin{eqnarray}\begin{array}{l}{Y}_{1}=f,\,{Y}_{2}=f^{\prime} ,\,{Y}_{3}=f^{\prime\prime} ,\,Y{Y}_{1}=f^{\prime\prime\prime} ,\,{Y}_{4}={f}_{p},{Y}_{5}={f}_{p}^{{\prime} },\,\\ Y{Y}_{2}={f}_{p}^{{\prime\prime} },{Y}_{6}=\theta ,\,{Y}_{7}=\theta ^{\prime} ,Y{Y}_{3}=\theta ^{\prime\prime} ,{Y}_{8}={\theta }_{p},Y{Y}_{4}={\theta }_{p}^{{\prime} },\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}Y{Y}_{1}=-\displaystyle \frac{\left(1-\theta /{\theta }_{r}\right)}{\eta }\left(\left(\displaystyle \frac{{Y}_{3}}{\left(1-\theta /{\theta }_{r}\right)}+\displaystyle \frac{\eta \theta ^{\prime} {Y}_{3}}{{\theta }_{r}{\left(1-\theta /{\theta }_{r}\right)}^{2}}\,\right)\right.\\ \,\left.+\,\alpha {\beta }_{v}{A}_{2}({Y}_{5}-{Y}_{2})+(1-{\phi }_{d}){A}_{1}{A}_{2}{Y}_{1}{Y}_{3}+\displaystyle \frac{{A}_{2}M}{\left(1+{m}^{2}\right)}{Y}_{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}Y{Y}_{2}=\displaystyle \frac{{\beta }_{v}({Y}_{2}-{Y}_{5})}{{Y}_{4}},Y{Y}_{3}=\displaystyle \frac{-1}{\left(\eta \tfrac{{k}_{hnf}}{{k}_{f}}-{\gamma }_{T}{{Y}_{1}}^{2}\right)}\\ \,\times \,\left(\displaystyle \frac{{k}_{hnf}}{{k}_{f}}{Y}_{6}+0.5{\Pr }{A}_{3}{Y}_{1}{Y}_{7}+0.5{\Pr }\alpha {\beta }_{T}{A}_{4}\left({Y}_{8}-{Y}_{6}\right)\right.\\ +\,{\Pr }{D}_{c}{Y}_{6}+{\gamma }_{T}\left({Y}_{1}{Y}_{3}{Y}_{6}+\left({Y}_{1}-{Y}_{2}\right){Y}_{1}{Y}_{3}{Y}_{7}{\eta }^{2}\right)\\ \left.+\,2{\Pr }\alpha {\beta }_{\upsilon }{E}_{c}{\left({Y}_{5}-{Y}_{2}\right)}^{2}+\displaystyle \frac{{\rm{2}}{E}_{c}{\Pr }M}{\left(1+{m}^{2}\right)}{{Y}_{2}}^{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}Y{Y}_{4}=\displaystyle \frac{\gamma {A}_{4}{\beta }_{T}({Y}_{8}-{Y}_{6})}{{Y}_{4}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{Y}_{1}(c)-\lambda c/2,\,{Y}_{4}(c)-\lambda c/2,\,{Y}_{5}(c)-\lambda /2,\,{Y}_{2}(c)-\lambda /2,\,{Y}_{6}(c)-1-{Y}_{7}(c)\delta \displaystyle \frac{{k}_{hnf}}{{k}_{f}},\,{Y}_{2}({\rm{\inf }})\\ \,-(1-\lambda )/2,\,{Y}_{6}({\rm{\inf }}),\,{Y}_{8}({\rm{\inf }}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{Y}_{1}=f,\,{Y}_{2}=f^{\prime} ,\,{Y}_{3}=f^{\prime\prime} ,\,Y{Y}_{1}=f^{\prime\prime\prime} ,\,{y}_{4}={f}_{p},\,\\ {y}_{5}={f}_{p}^{{\prime} },y{y}_{2}={f}_{p}^{{\prime\prime} },\,{y}_{6}=\theta ,\,\,{y}_{7}=\theta ^{\prime} ,\,y{y}_{3}=\theta ^{\prime\prime} ,\,\\ {y}_{8}={\theta }_{p},\,y{y}_{4}={\theta }_{p}.\end{array}\end{eqnarray}$

Outcomes and discussion

This section describes the salient parameters' correlation with the associated profiles. The values of the involved parameters are taken as: $m=2,\,{\theta }_{r}=0.1,\,{\beta }_{v}=0.3,$ $\alpha =0.2,\,{\gamma }_{T}=0.5,\,\delta =0.1,$ $\lambda =0.2,\,M=0.2,\,{\Pr }=6.2,$ ${\beta }_{T}=3,\,{E}_{c}=0.01,$ ${D}_{c}=0.1,\,c=\mathrm{0.01.}$ Figures 2-5 demonstrate the significance of solid volume fraction of SWCNTs and MWCNTs on velocity and temperature fields of fluid and dust phase. Figures 2 and 3 scrutinized the impact of solid volume fraction on velocity distribution for fluid and dust phases. It is found that the velocity of the fluid and dust phases is enhanced with an increase in the solid volume fraction. The thermal conductivity of the fluid is directly proportionate with the volume fraction that improves the fluid velocity for both fluid and dust phases. Nevertheless, the temperature profile and its related boundary layer thickness diminish for enlarged estimation of solid volume fraction (see in figure 4). While the dust phase temperature and their accompanying boundary layer thickness are enhanced (figure 5). To identify the influence of fluid particles' interaction parameter ${\beta }_{v}$ on both velocities figures 6 and 7 are sketched. It is seen that both the velocities are diminished for ${\beta }_{v}.$ This is owing to intensified fluid particles interaction that creates an opposing force to the fluid flow. This phenomenon continues till the dust phase fluid velocity accesses the fluid phase velocity. That is why declined velocities are seen here. Figures 8 and 9 are plotted for both velocity profiles for varied values of dust particles mass concentration $\alpha .$ Velocity distribution for both fluid and dust phase reduces for enlarged values of $\alpha .$ The accumulation of the dust particles into the fluid strengthens the surface drag force that eventually resists the fluid motion. That is why diminished velocities for both phases are observed. The temperature of the fluid and dust phase is an escalating function of the fluid particle interaction parameter ${\beta }_{T}$ (figures 10 and 11). It is understood from the figures that increasing values of ${\beta }_{T}$ simmer down the fluid. Thus, ${\beta }_{T}$ acts as a controlling agent for the flow behavior. The influence of the Eckert number ${E}_{c}$ on the fluid temperature is exhibited in figure 12. It is concluded that the temperature profile enhances for significant estimates of ${E}_{c}.$ The physical explanation for this outcome is an improvement in kinetic energy and the collision among nanofluid molecules because of its direct association with the Eckert number. Figure 13 examines the impact of the thermal relaxation parameter ${\gamma }_{T}$ on the temperature field. It is comprehended that the temperature of the fluid is on the decline for numerous values of ${\gamma }_{T}.$ Higher estimates of the ${\gamma }_{T}$ specify the qualities of the insulating material that lowers the fluid temperature. That is why we see a diminishing thermal profile. Figure 14 highlighted the impression of the heat generation parameter ${D}_{c}$ on the temperature profile. It is inspected that the temperature and its correlated thermal boundary layer thickness enhance with the large estimation of heat generation parameter. It is because excessive energy is produced for large estimates of heat generation that eventually boosts the fluid temperature.
Figure 2. Association of ${\phi }_{1},{\phi }_{2}$ and $f^{\prime} (\eta ).$
Figure 3. Association of ${\phi }_{1},{\phi }_{2}$ and ${f}_{p}^{\prime} (\eta ).$
Figure 4. Association of ${\phi }_{1},{\phi }_{2}$ and $\theta (\eta ).$
Figure 5. Association of ${\phi }_{1},{\phi }_{2}$ and ${\theta }_{p}(\eta ).$
Figure 6. Association of ${\beta }_{v}$ and $f^{\prime} (\eta ).$
Figure 7. Association of ${\beta }_{v}$ and ${f}_{p}^{\prime} (\eta ).$
Figure 8. Association of $\alpha $ and $f^{\prime} (\eta ).$
Figure 9. Association of $\alpha $ and ${f}_{p}^{\prime} (\eta ).$
Figure 10. Association of ${\beta }_{T}$ and $\theta (\eta ).$
Figure 11. Association of ${\beta }_{T}$ and ${\theta }_{p}(\eta ).$
Figure 12. Association of ${E}_{c}$ and $\theta (\eta ).$
Figure 13. Association of ${\gamma }_{T}$ and $\theta (\eta ).$
Figure 14. Association of ${D}_{c}$ and temperature field $\theta (\eta ).$
Table 2 demonstrates the surface drag coefficient for numerous values of varied parameters. It is demonstrated that the drag coefficient augments with higher the estimation of solid volume fraction and variable viscosity parameter while its declines with higher the estimation of Hall current parameter, fluid particles interaction parameter, and volume fraction of dust particles.
Table 2. Numerical calculations of skin friction when ${\Pr }=6.2,\,M=0.2,\,{\phi }_{1}=0\mathrm{.03},\,\alpha =0.2.$
${\phi }_{2}$ ${\theta }_{r}$ ${\beta }_{v}$ ${\phi }_{d}$ $m$ $R{e}_{X}^{1/2}{C}_{fX}$
0.01 0.2 0.1 0.1 1.8 1.311 023
0.03 1.322 021
0.05 1.333 654
0.3 1.130 921
0.4 1.178 143
0.5 1.223 835
0.2 1.157 031
0.3 1.147 021
0.4 1.135 022
0.2 1.117 345
0.3 1.090 334
0.4 1.063 461
1.0 1.144 932
1.5 1.132 522
2.0 1.120 150
The current result shows good accord with earlier published findings Ishak et al [40], Afridi et al [41], and Tlili et al [42] (see in table 3).
Table 3. Verification of the current problem for the varied values of c where ${\phi }_{i,d}=0=\lambda ={\beta }_{v}=m=M$ with Ishak et al [40], Afridi et al [41], and Tlili et al [42].
$c$ Ishak et al [40] Afridi et al [41] Tlili et al [42] Present
0.1 1.288 80 1.288 81 1.285 08 1.288 78
0.01 8.492 40 8.492 33 8.487 80 8.492 39
0.001 62.1637 62.1637 62.1594 62.1636

Concluding remarks

This research has been established to explore the impact of the magnetohydrodynamics (MHD) 2D, nanoliquid flow of engine oil as a working fluid. CNTs were inserted with thermal slip over a thin moving needle following Xue model. Variable viscosity and thermal C-C heat flux and the heat generation/absorption were supported by the thermal slip. The constructed model has been numerically handled using the bvp4c function of MATLAB software. The corresponding profiles are plotted against their relevant parameters and the findings are described coherently. The following are the most significant outcomes:

The fluid phase and dust phase velocities are boosted as the estimates of solid volume fraction increase.

For larger solid volume fraction estimation, temperature distribution and boundary layer thickness dwindled, while dust phase temperature raised.

The fluid and dust phases velocities have dwindled for the improved fluid particles interaction parameter.

Velocity distribution for fluid and dust phase reduces for enlarged values of dust particles mass concentration.

The temperature distribution heightens for greater estimates of the Eckert number.

The authors are thankful for the Taif University research supporting project number (TURSP-2020/304), Taif University, Saudi Arabia.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MR supervised and conceived the idea; HA wrote the manuscript.

1
Choi S U Eastman J A 1995 Enhancing Thermal Conductivity of Fluids with Nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29) IL (United States) Argonne National Lab.

2
Zhang Y Shahmir N Ramzan M Alotaibi H Aljohani H M 2021 Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with Cattaneo-Christov heat flux Case Stud. Therm. Eng. 26 101149

DOI

3
Shafiq A Çolak A B Naz Sindhu T 2021 Designing artificial neural network of nanoparticle diameter and solid-fluid interfacial layer on single‐walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles Int. J. Numer. Methods Fluids 93 3384 3404

DOI

4
Khan A Kumam W Khan I Saeed A Gul T Kumam P Ali I 2021 Chemically reactive nanofluid flow past a thin moving needle with viscous dissipation, magnetic effects and Hall current PLoS One 16 e0249264

DOI

5
Ramzan M Gul H Kadry S Lim C Nam Y Howari F 2019 Impact of nonlinear chemical reaction and melting heat transfer on an MHD nanofluid flow over a thin needle in porous media Appl. Sci. 9 5492

DOI

6
Waini I Ishak A Pop I 2020 Dufour and Soret effects on Al2O3-water nanofluid flow over a moving thin needle: Tiwari and Das model Int. J. Numer. Methods Heat Fluid Flow 31 766 782

7
Waini I Ishak A Pop I 2019 Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux Int. J. Numer. Methods Heat Fluid Flow 24 4875 94

DOI

8
Sulochana C Aparna S R Sandeep N 2020 Impact of linear/nonlinear radiation on incessantly moving thin needle in MHD quiescent Al-Cu/methanol hybrid nanofluid Int. J. Ambient Energy 1 7

DOI

9
Mousavi S M Rostami M N Yousefi M Dinarvand S 2021 Dual solutions for MHD flow of a water-based TiO2-Cu hybrid nanofluid over a continuously moving thin needle in presence of thermal radiation Rep. Mech. Eng. 2 31 40

DOI

10
Ramesh G K Shehzad S A Izadi M 2020 Thermal transport of hybrid liquid over thin needle with heat sink/source and Darcy-Forchheimer porous medium aspects Arab. J. Sci. Eng. 45 9569 9578

DOI

11
Ashraf M U Qasim M Wakif A Afridi M I Animasaun I L 2020 A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood‐based nanofluid containing magnetite nanoparticles: a physiological application Numer. Methods PDE 38 666 92

DOI

12
Nayak M K Wakif A Animasaun I L Alaoui M 2020 Numerical differential quadrature examination of steady mixed convection nanofluid flows over an isothermal thin needle conveying metallic and metallic oxide nanomaterials: a comparative investigation Arab. J. Sci. Eng. 45 5331 5346

DOI

13
Zaydan M Wakif A Animasaun I L Khan U Baleanu D Sehaqui R 2020 Significances of blowing and suction processes on the occurrence of thermo-magneto-convection phenomenon in a narrow nanofluidic medium: a revised Buongiorno's nanofluid model Case Stud. Therm. Eng. 22 100726

DOI

14
Rasool G Wakif A 2021 Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model J. Therm. Anal. Calorim. 143 2379 2393

DOI

15
Xia W F Animasaun I L Wakif A Shah N A Yook S J 2021 Gear-generalized differential quadrature analysis of oscillatory convective Taylor-Couette flows of second-grade fluids subject to Lorentz and Darcy-Forchheimer quadratic drag forces Int. Commun. Heat Mass Transfer 126 105395

DOI

16
Upreti H Pandey A K Kumar M 2021 Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids J. Porous Media 24 35 50

DOI

17
Bilal S Shah I A Ramzan M Nisar K S Elfasakhany A Eed E M Ghazwani H A S 2022 Significance of induced hybridized metallic and non-metallic nanoparticles in single-phase nano liquid flow between permeable disks by analyzing shape factor Sci. Rep. 12 1 16

DOI

18
Singh K Pandey A K Kumar M 2021 Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method Propulsion Power Res. 10 194 207

DOI

19
Upreti H Pandey A K Rawat S K Kumar M 2021 Modified Arrhenius and thermal radiation effects on three-dimensional magnetohydrodynamic flow of carbon nanotubes nanofluids over bi-directional stretchable surface J. Nanofluids 10 538 551

DOI

20
Baron Fourier J B J 1822 Théorie analytique de la chaleur Chez Firmin Didot, père et fils

21
Cattaneo C 1948 Sulla conduzione del calore Atti Sem. Mat. Fis. Univ. Modena 3 83 101

22
Christov C I 2009 On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction Mech. Res. Commun. 36 481 486

DOI

23
Ciarletta M Straughan B 2010 Uniqueness and structural stability for the Cattaneo-Christov equations Mech. Res. Commun. 37 445 447

DOI

24
Huda N U Hamid A Khan M 2020 Impact of Cattaneo-Christov model on Darcy-Forchheimer flow of ethylene glycol base fluid over a moving needle J. Mater. Res. Technol. 9 4139 4146

DOI

25
Reddy M G Kumari P V Reddy G U Kumar K G Prasannakumara B C 2020 A mathematical framework on Cattaneo-Christov model over an incessant moving needle Multidiscipline Model. Mater. Struct. 17 167 80

DOI

26
Reddy M G Rani M S Kumar K G Prasannakumar B C Lokesh H J 2020 Hybrid dusty fluid flow through a Cattaneo-Christov heat flux model Physica A 551 123975

DOI

27
Lv Y P Gul H Ramzan M Chung J D Bilal M 2021 Bioconvective Reiner-Rivlin nanofluid flow over a rotating disk with Cattaneo-Christov flow heat flux and entropy generation analysis Sci. Rep. 11 1 18

DOI

28
Anuar N S Bachok N Pop I 2021 Numerical computation of dusty hybrid nanofluid flow and heat transfer over a deformable sheet with slip effect Mathematics 9 643

DOI

29
Shaheen N Ramzan M Alshehri A Shah Z Kumam P 2021 Soret-Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media Sci. Rep. 11 1 21

DOI

30
Turkyilmazoglu M 2017 Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces Phys. Fluids 29 013302

DOI

31
Saffman P G 1962 On the stability of laminar flow of a dusty gas J. Fluid Mech. 13 120 128

DOI

32
Chakrabarti K M 1974 Note on boundary layer in a dusty gas AIAA J. 12 1136 1137

DOI

33
Naveen Kumar R Mallikarjuna H B Tigalappa N Punith Gowda R J Umrao Sarwe D 2021 Carbon nanotubes suspended dusty nanofluid flow over stretching porous rotating disk with non-uniform heat source/sink Int. J. Comput. Methods Eng. Sci. Mech. 23 1 10

34
Gireesha B J Mahanthesh B Makinde O D Muhammad T 2018 Effects of Hall current on transient flow of dusty fluid with nonlinear radiation past a convectively heated stretching plate Defect Diffus. Forum 387 352 363

35
Abbas Z Hasnain J Sajid M 2019 Effects of slip on MHD flow of a dusty fluid over a stretching sheet through porous space J. Eng. Thermophys. 28 84 102

DOI

36
Ramzan M Shaheen N Chung J D Kadry S Chu Y M Howari F 2021 Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder Sci. Rep. 11 1 19

DOI

37
Bilal M Ramzan M 2019 Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy-Forchheimer porous media J. Therm. Anal. Calorim. 138 3127 3137

DOI

38
Dey D Chutia B 2020 Dusty nanofluid flow with bioconvection past a vertical stretching surface J. King Saud Univ.—Eng. Sci.

DOI

39
Mallikarjuna H B Nirmala T Punith Gowda R J Manghat R Varun Kumar R S 2021 Two‐dimensional Darcy-Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation Heat Transfer 50 3934 3947

DOI

40
Ishak A Nazar R Pop I 2007 Boundary layer flow over a continuously moving thin needle in a parallel free stream Chin. Phys. Lett. 24 2895

DOI

41
Afridi M I Tlili I Qasim M Khan I 2018 Nonlinear Rosseland thermal radiation and energy dissipation effects on entropy generation in CNTs suspended nanofluids flow over a thin needle Boundary Value Probl. 2018 1 14

DOI

42
Tlili I Ramzan M Kadry S Kim H W Nam Y 2020 Radiative MHD nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and Hall current Entropy 22 354

DOI

43
Ramzan M Shaheen N Kadry S Ratha Y Nam Y 2020 Thermally stratified Darcy Forchheimer flow on a moving thin needle with homogeneous heterogeneous reactions and non-uniform heat source/sink Appl. Sci. 10 432

DOI

44
Ramzan M Gul H Malik M Y Baleanu D Nisar K S 2021 On hybrid nanofluid Yamada-Ota and Xue flow models in a rotating channel with modified Fourier law Sci. Rep. 11 1 19

DOI

45
Riasat S Ramzan M Sun Y L Malik M Y Chinram R 2021 Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics Case Stud. Therm. Eng. 26 101039

DOI

46
Abbas N Malik M Y Nadeem S Alarifi I M 2020 On extended version of Yamada-Ota and Xue models of hybrid nanofluid on moving needle Eur. Phys. J. Plus 135 1 16

DOI

Outlines

/