Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Reduced nonlocal integrable mKdV equations of type (−λ, λ) and their exact soliton solutions

  • Wen-Xiu Ma
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
  • Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, United States of America
  • School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

Received date: 2022-03-04

  Revised date: 2022-05-28

  Accepted date: 2022-06-06

  Online published: 2022-06-27

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

We conduct two group reductions of the Ablowitz–Kaup–Newell–Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg–de Vries equations. One reduction is local, replacing the spectral parameter with its negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues.

Cite this article

Wen-Xiu Ma . Reduced nonlocal integrable mKdV equations of type (−λ, λ) and their exact soliton solutions[J]. Communications in Theoretical Physics, 2022 , 74(6) : 065002 . DOI: 10.1088/1572-9494/ac75e0

1. Introduction

Group reductions of matrix spectral problems can produce nonlocal integrable equations and keep the corresponding integrable structures that the original integrable equations possess [13]. If one group reduction is taken, we can obtain three kinds of nonlocal nonlinear Schrödinger equations and two kinds of nonlocal modified Kortweweg-de Vries (mKdV) equations [1, 4]. Recently, we have shown that a new kind of nonlocal integrable equations could be generated by conducting two group reductions simultaneously. The inverse scattering transform, Darboux transformation and the Hirota bilinear method can be applied to analysis of soliton solutions to nonlocal integrable equations [57].
The Riemann–Hilbert technique has been proved to be another powerful method to solve integrable equations, and especially to construct their soliton solutions [8, 9]. Various kinds of integrable equations have been investigated via analyzing the associated Riemann–Hilbert problems and we refer the interested readers to the recent studies [1012] and [3, 1315] for details in the local and nonlocal cases, respectively. In this paper, we would like to present a kind of novel reduced nonlocal integrable mKdV equations by taking two group reductions and construct their soliton solutions through the relectionless Riemann–Hilbert problems.
The rest of this paper is structured as follows. In section 2, we make two group reductions of the Ablowitz–Kaup–Newell–Segur (AKNS) matrix spectral problems to generate type $(-\lambda ,\lambda )$ reduced nonlocal integrable mKdV equations. Two scalar examples are
$\begin{eqnarray*}{p}_{1,t}={p}_{1,{xxx}}-6\sigma {p}_{1}^{2}{p}_{1,x}-3\sigma {p}_{1}(-x,-t)({p}_{1}{p}_{1}(-x,-t){)}_{x},\end{eqnarray*}$
and
$\begin{eqnarray*}{p}_{1,t}={p}_{1,{xxx}}+6\delta {p}_{1}{p}_{1}(-x,-t){p}_{1,x}+3\delta ({p}_{1}{p}_{1}(-x,-t){)}_{x}{p}_{1},\end{eqnarray*}$
where $\sigma =\delta =\pm 1.$ In section 3, based on distribution of eigenvalues, we establish a formulation of solutions to the corresponding reflectionless Riemann–Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and compute soliton solutions to the resulting reduced nonlocal integrable mKdV equations. In the last section, we gives a conclusion, together with a few concluding remarks.

2. Reduced nonlocal integrable mKdV equations

2.1. The matrix AKNS integrable hierarchies revisited

Let us recall the AKNS hierarchies of matrix integrable equations, which will be used in the subsequent analysis. As normal, let $\lambda $ denote the spectral parameter, and assume that $m,n\geqslant 1$ are two given integers and $p,q$ are two matrix potentials:
$\begin{eqnarray}p=p(x,t)=({p}_{{jk}}{)}_{m\times n},\,q=q(x,t)=({q}_{{kj}}{)}_{n\times m}.\end{eqnarray}$
The matrix AKNS spectral problems are defined as follows:
$\begin{eqnarray}\left\{\begin{array}{c}-{\rm{i}}{\phi }_{x}=U\phi =U(u,\lambda )\phi =(\lambda {\rm{\Lambda }}+P)\phi ,\\ -{\rm{i}}{\phi }_{t}={V}^{[r]}\phi ={V}^{[r]}(u,\lambda )\phi =({\lambda }^{r}{\rm{\Omega }}+{Q}^{[r]})\phi ,\,r\geqslant 0.\end{array}\right.\end{eqnarray}$
Here the constant square matrices ${\rm{\Lambda }}$ and ${\rm{\Omega }}$ are defined by
$\begin{eqnarray}{\rm{\Lambda }}={\rm{diag}}({\alpha }_{1}{I}_{m},{\alpha }_{2}{I}_{n}),\,{\rm{\Omega }}={\rm{diag}}({\beta }_{1}{I}_{m},{\beta }_{2}{I}_{n}),\end{eqnarray}$
with ${I}_{s}$ being the identity matrix of size $s,$ and ${\alpha }_{1},{\alpha }_{2}$ and ${\beta }_{1},{\beta }_{2}$ being two arbitrary pairs of distinct real constants. The other two involved square matrices of size $m+n$ are defined by
$\begin{eqnarray}P=P(u)=\left[\begin{array}{cc}0 & p\\ q & 0\end{array}\right],\end{eqnarray}$
called the potential matrix, and
$\begin{eqnarray}{Q}^{[r]}=\displaystyle \sum _{s=0}^{r-1}{\lambda }^{s}\left[\begin{array}{cc}{a}^{[r-s]} & {b}^{[r-s]}\\ {c}^{[r-s]} & {d}^{[r-s]}\end{array}\right],\end{eqnarray}$
where ${a}^{[s]},{b}^{[s]},{c}^{[s]}$ and ${d}^{[s]}$ are defined recursively as follows:
$\begin{eqnarray}{b}^{[0]}=0,\,{c}^{[0]}=0,\,{a}^{[0]}={\beta }_{1}{I}_{m},\,{d}^{[0]}={\beta }_{2}{I}_{n},\end{eqnarray}$
$\begin{eqnarray}{b}^{[s+1]}=\frac{1}{\alpha }(-{\rm{i}}{b}_{x}^{[s]}-p{d}^{[s]}+{a}^{[s]}p),\,s\geqslant 0,\end{eqnarray}$
$\begin{eqnarray}{c}^{[s+1]}=\frac{1}{\alpha }({\rm{i}}{c}_{x}^{[s]}+q{a}^{[s]}-{d}^{[s]}q),\,s\geqslant 0,\end{eqnarray}$
$\begin{eqnarray}{a}_{x}^{[s]}={\rm{i}}(p{c}^{[s]}-{b}^{[s]}q),\,{d}_{x}^{[s]}={\rm{i}}(q{b}^{[s]}-{c}^{[s]}p),\,s\geqslant 1,\end{eqnarray}$
with zero constants of integration being taken. Particularly, we can obtain
$\begin{eqnarray*}{Q}^{[1]}=\frac{\beta }{\alpha }P,\,{Q}^{[2]}=\frac{\beta }{\alpha }\lambda P-\frac{\beta }{{\alpha }^{2}}{I}_{m,n}({P}^{2}+{\rm{i}}{P}_{x}),\end{eqnarray*}$
and
$\begin{eqnarray*}{Q}^{\left[3\right]}=\frac{\beta }{\alpha }{\lambda }^{2}P-\frac{\beta }{{\alpha }^{2}}\lambda {I}_{m,n}\left({P}^{2}+{\rm{i}}{P}_{x}\right)\end{eqnarray*}$
$\begin{eqnarray*}-\frac{\beta }{{\alpha }^{3}}({\rm{i}}[P,{P}_{x}]+{P}_{{xx}}+2{P}^{3}),\end{eqnarray*}$
where $\alpha ={\alpha }_{1}-{\alpha }_{2},$ $\beta ={\beta }_{1}-{\beta }_{2}$ and ${I}_{m,n}={\rm{diag}}({I}_{m},-{I}_{n}).$ The relations in (6) also imply that
$\begin{eqnarray}W=\displaystyle \sum _{s\geqslant 0}{\lambda }^{-s}\left[\begin{array}{cc}{a}^{[s]} & {b}^{[s]}\\ {c}^{[s]} & {d}^{[s]}\end{array}\right],\end{eqnarray}$
solves the stationary zero curvature equation
$\begin{eqnarray}{W}_{x}={\rm{i}}[U,W],\end{eqnarray}$
which is crucial in defining an integrable hierarchy.
The compatibility conditions of the two matrix spectral problems in (2), i.e. the zero curvature equations
$\begin{eqnarray}{U}_{t}-{V}_{x}^{[r]}+{\rm{i}}[U,{V}^{[r]}]=0,\,r\geqslant 0,\end{eqnarray}$
generate one so-called matrix AKNS integrable hierarchy (see, e.g. [16]):
$\begin{eqnarray}{p}_{t}={\rm{i}}\alpha {b}^{[r+1]},\,{q}_{t}=-{\rm{i}}\alpha {c}^{[r+1]},\,r\geqslant 0,\end{eqnarray}$
which has a bi-Hamiltonian structure. The second ($r=3$) nonlinear integrable equations in the hierarchy give us the AKNS matrix mKdV equations:
$\begin{eqnarray*}{p}_{t}=-\frac{\beta }{{\alpha }^{3}}\left({p}_{{xxx}}+3{pq}{p}_{x}+3{p}_{x}{qp}\right),\end{eqnarray*}$
$\begin{eqnarray}\,{q}_{t}=-\frac{\beta }{{\alpha }^{3}}({q}_{{xxx}}+3{q}_{x}{pq}+3{qp}{q}_{x}),\end{eqnarray}$
where the two matrix potentials, $p$ and $q,$ are defined by (1).

2.2. Reduced nonlocal integrable mKdV equations

We would like to construct a kind of novel reduced nonlocal integrable mKdV equations by taking two group reductions for the matrix AKNS spectral problems in (2). One reduction is local while the other is nonlocal (see also [17] for the local case).
Let ${{\rm{\Sigma }}}_{1},{{\rm{\Delta }}}_{1}$ and ${{\rm{\Sigma }}}_{2},{{\rm{\Delta }}}_{2}$ be two pairs of constant invertible symmetric matrices of sizes $m$ and $n,$ respectively. We consider two group reductions for the spectral matrix $U:$
$\begin{eqnarray}{U}^{{\rm{T}}}(x,t,-\lambda )={(U(x,t,-\lambda ))}^{{\rm{T}}}=-{\rm{\Sigma }}U(x,t,\lambda ){{\rm{\Sigma }}}^{-1},\end{eqnarray}$
and
$\begin{eqnarray}{U}^{{\rm{T}}}(-x,-t,\lambda )={(U(-x,-t,\lambda ))}^{{\rm{T}}}={\rm{\Delta }}U(x,t,\lambda ){{\rm{\Delta }}}^{-1},\end{eqnarray}$
where the two constant invertible matrices, ${\rm{\Sigma }}$ and ${\rm{\Delta }},$ are defined by
$\begin{eqnarray}{\rm{\Sigma }}=\left[\begin{array}{cc}{{\rm{\Sigma }}}_{1} & 0\\ 0 & {{\rm{\Sigma }}}_{2}\end{array}\right],\,{\rm{\Delta }}=\left[\begin{array}{cc}{{\rm{\Delta }}}_{1} & 0\\ 0 & {{\rm{\Delta }}}_{2}\end{array}\right].\end{eqnarray}$
These two group reductions lead equivalently to
$\begin{eqnarray}{P}^{{\rm{T}}}(x,t)=-{\rm{\Sigma }}P(x,t){{\rm{\Sigma }}}^{-1},\end{eqnarray}$
and
$\begin{eqnarray}{P}^{{\rm{T}}}(-x,-t)={\rm{\Delta }}P(x,t){{\rm{\Delta }}}^{-1},\end{eqnarray}$
respectively. More precisely, they enable us to make the reductions for the matrix potentials:
$\begin{eqnarray}q(x,t)=-{{\rm{\Sigma }}}_{2}^{-1}{p}^{{\rm{T}}}(x,t){{\rm{\Sigma }}}_{1},\end{eqnarray}$
and
$\begin{eqnarray}q(x,t)={{\rm{\Delta }}}_{2}^{-1}{p}^{{\rm{T}}}(-x,-t){{\rm{\Delta }}}_{1},\end{eqnarray}$
respectively. It then follows that to satisfy both group reductions in (12) and (13), an additional constraint is required for the matrix potential $p:$
$\begin{eqnarray}-{{\rm{\Sigma }}}_{2}^{-1}{p}^{{\rm{T}}}(x,t){{\rm{\Sigma }}}_{1}={{\rm{\Delta }}}_{2}^{-1}{p}^{{\rm{T}}}(-x,-t){{\rm{\Delta }}}_{1}.\end{eqnarray}$
Moreover, we notice that under the group reductions in (12) and (13), we have that
$\begin{eqnarray}\left\{\begin{array}{l}{W}^{{\rm{T}}}(x,t,-\lambda )={(W(x,t,-\lambda ))}^{{\rm{T}}}={\rm{\Sigma }}W(x,t,\lambda ){{\rm{\Sigma }}}^{-1},\\ {W}^{{\rm{T}}}(-x,-t,\lambda )={(W(-x,-t,\lambda ))}^{{\rm{T}}}={\rm{\Delta }}W(x,t,\lambda ){{\rm{\Delta }}}^{-1},\end{array}\right.\end{eqnarray}$
which implies that
$\begin{eqnarray}\left\{\begin{array}{l}\begin{array}{l}{V}^{[2s+1]{\rm{T}}}(x,t,-\lambda )={({V}^{[2s+1]}(x,t,-\lambda ))}^{{\rm{T}}}\\ \,=-{\rm{\Sigma }}{V}^{[2s+1]}(x,t,\lambda ){{\rm{\Sigma }}}^{-1},\end{array}\\ \begin{array}{l}{V}^{[2s+1]{\rm{T}}}(-x,-t,\lambda )={({V}^{[2s+1]}(-x,-t,\lambda ))}^{{\rm{T}}}\\ \,={\rm{\Delta }}{V}^{[2s+1]}(x,t,\lambda ){{\rm{\Delta }}}^{-1},\end{array}\end{array}\right.\end{eqnarray}$
and
$\begin{eqnarray}\left\{\begin{array}{l}\begin{array}{l}{Q}^{[2s+1]{\rm{T}}}(x,t,-\lambda )={({Q}^{[2s+1]}(x,t,-\lambda ))}^{{\rm{T}}}\\ \,=-{\rm{\Sigma }}{Q}^{[2s+1]}(x,t,\lambda ){{\rm{\Sigma }}}^{-1},\end{array}\\ \begin{array}{l}{Q}^{[2s+1]{\rm{T}}}(-x,-t,\lambda )={({Q}^{[2s+1]}(-x,-t,\lambda ))}^{{\rm{T}}}\\ \,={\rm{\Delta }}{Q}^{[2s+1]}(x,t,\lambda ){{\rm{\Delta }}}^{-1},\end{array}\end{array}\right.\end{eqnarray}$
where s ≥ 0.
Consequently, we see that under the potential reductions (15) and (16), the integrable matrix AKNS equations in (10) with $r=2s+1,\,s\geqslant 0,$ reduce to a hierarchy of nonlocal reverse-spacetime integrable matrix mKdV type equations:
$\begin{eqnarray}{p}_{t}={\rm{i}}\alpha {b}^{[2s+2]}{| }_{q=-{{\rm{\Sigma }}}_{2}^{-1}{p}^{{\rm{T}}}{{\rm{\Sigma }}}_{1}={{\rm{\Delta }}}_{2}^{-1}pT(-x,-t){{\rm{\Delta }}}_{1}},s\geqslant 0,\end{eqnarray}$
where $p$ is an $m\times n$ matrix potential which satisfies (19), ${{\rm{\Sigma }}}_{1},{{\rm{\Delta }}}_{1}$ are a pair of arbitrary invertible symmetric matrices of size $m,$ and ${{\rm{\Sigma }}}_{2},{{\rm{\Delta }}}_{2}$ are a pair of arbitrary invertible symmetric matrices of size $n.$ Each reduced equation in the hierarchy (23) with a fixed integer $s\geqslant 0$ possesses a Lax pair of the reduced spatial and temporal matrix spectral problems in (2) with $r=2s+1,$ and infinitely many symmetries and conservation laws reduced from those for the integrable matrix AKNS equations in (10) with $r=2s+1.$
If we fix $s=1,$ i.e. $r=3,$ then the reduced matrix integrable mKdV type equations in (23) give a kind of reduced nonlocal integrable matrix mKdV equations:
$\begin{eqnarray}\begin{array}{l}{p}_{t}=-\displaystyle \frac{\beta }{{\alpha }^{3}}({p}_{xxx}-3p{{\rm{\Sigma }}}_{2}^{-1}{p}^{{\rm{T}}}{{\rm{\Sigma }}}_{1}{p}_{x}-3{p}_{x}{{\rm{\Sigma }}}_{2}^{-1}{p}^{{\rm{T}}}{{\rm{\Sigma }}}_{1}p)\\ \,=-\displaystyle \frac{\beta }{{\alpha }^{3}}\left({p}_{xxx}\right.+3p{{\rm{\Delta }}}_{2}^{-1}{p}^{{\rm{T}}}(-x,-t){{\rm{\Delta }}}_{1}{p}_{x}\\ \,+3{p}_{x}{{\rm{\Delta }}}_{2}^{-1}{p}^{{\rm{T}}}(-x,-t){{\rm{\Delta }}}_{1}\left.p\right),\end{array}\end{eqnarray}$
where $p$ is an $m\times n$ matrix potential satisfying (19).
In what follows, we would like to present a few examples of these novel reduced nonlocal integrable matrix mKdV equations, by taking different values for $m,n$ and appropriate choices for ${\rm{\Sigma }},{\rm{\Delta }}.$
Let us first consider $m=1$ and $n=2.$ We take
$\begin{eqnarray*}{{\rm{\Sigma }}}_{1}=1,\,{{\rm{\Sigma }}}_{2}^{-1}=\left[\begin{array}{cc}\sigma & 0\\ 0 & \sigma \end{array}\right],\,\end{eqnarray*}$
$\begin{eqnarray}{{\rm{\Delta }}}_{1}=1,\,{{\rm{\Delta }}}_{2}^{-1}=\left[\begin{array}{cc}0 & \delta \\ \delta & 0\end{array}\right],\end{eqnarray}$
where $\sigma $ and $\delta $ are real constants and satisfy ${\sigma }^{2}={\delta }^{2}=1.$ Then the potential constraint (19) requires
$\begin{eqnarray}{p}_{2}=-\sigma \delta {p}_{1}(-x,-t),\end{eqnarray}$
where $p=({p}_{1},{p}_{2}),$ and thus, the corresponding potential matrix $P$ reads
$\begin{eqnarray}P=\left[\begin{array}{ccc}0 & {p}_{1} & -\sigma \delta {p}_{1}(-x,-t)\\ -\sigma {p}_{1} & 0 & 0\\ \delta {p}_{1}(-x,-t) & 0 & 0\end{array}\right].\end{eqnarray}$
Further, the corresponding novel reduced nonlocal integrable mKdV equations become
$\begin{eqnarray*}{p}_{1,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{1,{xxx}}-6\sigma {p}_{1}^{2}{p}_{1,x}\end{eqnarray*}$
$\begin{eqnarray}-3\sigma {p}_{1}(-x,-t)({p}_{1}{p}_{1}(-x,-t){)}_{x}],\end{eqnarray}$
where $\sigma =\pm 1.$ These two equations are quite different from the ones studied in [1, 18, 19], in which only one nonlocal factor appears. Similarly, if we take
$\begin{eqnarray*}{{\rm{\Sigma }}}_{1}=1,\,{{\rm{\Sigma }}}_{2}^{-1}=\left[\begin{array}{cc}0 & \sigma \\ \sigma & 0\end{array}\right],\end{eqnarray*}$
$\begin{eqnarray}{{\rm{\Delta }}}_{1}=1,\,{{\rm{\Delta }}}_{2}^{-1}=\left[\begin{array}{cc}\delta & 0\\ 0 & \delta \end{array}\right],\end{eqnarray}$
where $\sigma $ and $\delta $ are real constants and satisfy ${\sigma }^{2}={\delta }^{2}=1$ again, then we obtain another pair of novel scalar nonlocal integrable mKdV equations:
$\begin{eqnarray*}{p}_{1,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{1,{xxx}}+6\delta {p}_{1}{p}_{1}(-x,-t){p}_{1,x}\end{eqnarray*}$
$\begin{eqnarray}{\rm{}}+3\delta ({p}_{1}{p}_{1}(-x,-t){)}_{x}{p}_{1}],\end{eqnarray}$
where $\delta =\pm 1.$ This pair has a different nonlocality pattern from the one in (28). Moreover, in each of these two equations, there are two nonlocal nonlinear terms, but in each of their counterparts in [1, 18, 19], there is only one nonlocal nonlinear term.
Let us second consider $m=1$ and $n=4.$ We take
$\begin{eqnarray*}{{\rm{\Sigma }}}_{1}=1,\,{{\rm{\Sigma }}}_{2}^{-1}=\left[\begin{array}{cccc}{\sigma }_{1} & 0 & 0 & 0\\ 0 & {\sigma }_{1} & 0 & 0\\ 0 & 0 & {\sigma }_{2} & 0\\ 0 & 0 & 0 & {\sigma }_{2}\end{array}\right],\,\end{eqnarray*}$
$\begin{eqnarray}{{\rm{\Delta }}}_{1}=1,\,{{\rm{\Delta }}}_{2}^{-1}=\left[\begin{array}{cccc}0 & {\delta }_{1} & 0 & 0\\ {\delta }_{1} & 0 & 0 & 0\\ 0 & 0 & 0 & {\delta }_{2}\\ 0 & 0 & {\delta }_{2} & 0\end{array}\right],\end{eqnarray}$
where ${\sigma }_{j}$ and ${\delta }_{j}$ are real constants and satisfy ${\sigma }_{j}^{2}={\delta }_{j}^{2}=1,\,j=1,2.$ Then the potential constraint (19) generates
$\begin{eqnarray}{p}_{2}=-{\sigma }_{1}{\delta }_{1}{p}_{1}(-x,-t),\,{p}_{4}=-{\sigma }_{2}{\delta }_{2}{p}_{3}(-x,-t),\end{eqnarray}$
where $p=({p}_{1},{p}_{2},{p}_{3},{p}_{4}),$ and so the corresponding potential matrix $P$ becomes
$\begin{eqnarray*}P\end{eqnarray*}$
$\begin{eqnarray}=\left[\begin{array}{ccccc}0 & {p}_{1} & -{\sigma }_{1}{\delta }_{1}{p}_{1}(-x,-t) & {p}_{3} & -{\sigma }_{2}{\delta }_{2}{p}_{3}(-x,-t)\\ -{\sigma }_{1}{p}_{1} & 0 & 0 & 0 & 0\\ {\delta }_{1}{p}_{1}(-x,-t) & 0 & 0 & 0 & 0\\ -{\sigma }_{2}{p}_{3} & 0 & 0 & 0 & 0\\ {\delta }_{2}{p}_{3}(-x,-t) & 0 & 0 & 0 & 0\end{array}\right].\end{eqnarray}$
This enables us to obtain a class of two-component reduced nonlocal integrable mKdV equations:
$\begin{eqnarray}\left\{\begin{array}{c}{p}_{1,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{1,{xxx}}-6{\sigma }_{1}{p}_{1}^{2}{p}_{1,x}-3{\sigma }_{1}{p}_{1}(-x,-t)({p}_{1}{p}_{1}(-x,-t){)}_{x}\\ \,-3{\sigma }_{2}{p}_{3}({p}_{1}{p}_{3}{)}_{x}-3{\sigma }_{2}{p}_{3}(-x,-t)({p}_{1}{p}_{3}(-x,-t){)}_{x}],\\ {p}_{3,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{3,{xxx}}-3{\sigma }_{1}{p}_{1}({p}_{1}{p}_{3}{)}_{x}-3{\sigma }_{1}{p}_{1}(-x,-t)({p}_{1}(-x,-t){p}_{3}{)}_{x}\\ \,-6{\sigma }_{2}{p}_{3}^{2}{p}_{3,x}-3{\sigma }_{2}{p}_{3}(-x,-t)({p}_{3}{p}_{3}(-x,-t){)}_{x}],\end{array}\right.\end{eqnarray}$
where ${\sigma }_{j}$ are real constants and satisfy ${\sigma }_{j}^{2}=1,\,j=1,2.$
Let us third consider $m=2$ and $n=2.$ We take
$\begin{eqnarray*}{{\rm{\Sigma }}}_{1}={I}_{2},\,{{\rm{\Sigma }}}_{2}^{-1}=\left[\begin{array}{cc}\sigma & 0\\ 0 & \sigma \end{array}\right],\,\end{eqnarray*}$
$\begin{eqnarray}{{\rm{\Delta }}}_{1}=\left[\begin{array}{cc}0 & 1\\ 1 & 0\end{array}\right],\,{{\rm{\Delta }}}_{2}^{-1}=\left[\begin{array}{cc}0 & \delta \\ \delta & 0\end{array}\right],\end{eqnarray}$
where $\sigma $ and $\delta $ are real constants and satisfy ${\sigma }^{2}={\delta }^{2}=1.$ Then the potential constraint (19) tells
$\begin{eqnarray}{p}_{21}=\sigma \delta {p}_{12}(-x,-t),\,{p}_{22}=\sigma \delta {p}_{11}(-x,-t),\end{eqnarray}$
and so the corresponding matrix potentials reads
$\begin{eqnarray*}p=\left[\begin{array}{cc}{p}_{11} & {p}_{12}\\ \sigma \delta {p}_{12}\left(-x,-t\right) & \sigma \delta {p}_{11}\left(-x,-t\right)\end{array}\right],\end{eqnarray*}$
$\begin{eqnarray}q=\left[\begin{array}{cc}\sigma {p}_{11} & \delta {p}_{12}(-x,-t)\\ \sigma {p}_{12} & \delta {p}_{11}(-x,-t)\end{array}\right].\end{eqnarray}$
This enables us to get another class of two-component reduced nonlocal integrable mKdV equations:
$\begin{eqnarray}\left\{\begin{array}{c}{p}_{11,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{11,{xxx}}+6\sigma {p}_{11}^{2}{p}_{11,x}+3\sigma {p}_{12}({p}_{11}{p}_{12}{)}_{x}\\ \,+3\sigma {p}_{12}(-x,-t)({p}_{11}{p}_{12}(-x,-t){)}_{x}+3\sigma {p}_{11}(-x,-t)({p}_{12}{p}_{12}(-x,-t){)}_{x}],\\ {p}_{12,t}=-\frac{\beta }{{\alpha }^{3}}[{p}_{12,{xxx}}+3\sigma {p}_{11}({p}_{11}{p}_{12}{)}_{x}+6\sigma {p}_{12}^{2}{p}_{12,x}\\ \,+3\sigma {p}_{12}(-x,-t)({p}_{11}{p}_{11}(-x,-t){)}_{x}+3\sigma {p}_{11}(-x,-t)({p}_{12}{p}_{11}(-x,-t){)}_{x}],\end{array}\right.\end{eqnarray}$
where $\sigma =\pm 1.$ The pattern of the second nonlocal nonlinear terms in these two equations is different from the one in (34).
In the second and third cases, we can also take other similar choices for ${\rm{\Sigma }}$ and ${\rm{\Delta }}$ as did in the first case, and generate different two-component reduced integrable mKdV equations.

3. Soliton solutions

3.1. Distribution of eigenvalues

Under the group reduction in (12) (or (13)), we can see that $\lambda $ is an eigenvalue of the matrix spectral problems in (2) if and only if $\hat{\lambda }=-\lambda $ (or $\hat{\lambda }=\lambda $) is an adjoint eigenvalue, i.e. the adjoint matrix spectral problems hold:
$\begin{eqnarray}{\rm{i}}{\tilde{\phi }}_{x}=\tilde{\phi }U=\tilde{\phi }U(u,\hat{\lambda }),\,{\rm{i}}{\tilde{\phi }}_{t}=\tilde{\phi }{V}^{[r]}=\tilde{\phi }{V}^{[r]}(u,\hat{\lambda }),\end{eqnarray}$
where $r=2s+1,\,s\geqslant 0.$ Consequently, we can assume to have eigenvalues $\lambda :\,\mu ,\,-\mu ,$ and adjoint eigenvalues $\hat{\lambda }:\,-\mu ,\,\mu ,$ where $\mu \in {\mathbb{C}}.$
Moreover, under the group reduction in (12) (or (13)), if $\phi (\lambda )$ is an eigenfunction of the matrix spectral problems in (2) associated with an eigenvalue $\lambda ,$ then $\phi T(-\lambda ){\rm{\Sigma }}$ (or $\phi T(-x,-t,\lambda ){\rm{\Delta }}$) presents an adjoint eigenfunction associated with the same eigenvalue $\lambda .$

3.2. General solutions to reflectionless Riemann–Hilbert problems

We would like to present a formulation of solutions to the corresponding reflectionless Riemann–Hilbert problems.
Let ${N}_{1},{N}_{2}\geqslant 0$ be two integers such that $N\,=2{N}_{1}+{N}_{2}\geqslant 1.$ First, we take $N$ eigenvalues ${\lambda }_{k}$ and $N$ adjoint eigenvalues ${\hat{\lambda }}_{k}$ as follows:
$\begin{eqnarray*}{\lambda }_{k},\,1\leqslant k\leqslant N:\,{\mu }_{1},\,\cdots ,\,{\mu }_{{N}_{1}},-{\mu }_{1},\,\cdots ,\end{eqnarray*}$
$\begin{eqnarray}\,{\rm{}}-{\mu }_{{N}_{1}},\,{\nu }_{1},\,\cdots ,\,{\nu }_{{N}_{2}},\end{eqnarray}$
and
$\begin{eqnarray*}{\hat{\lambda }}_{k},\,1\leqslant k\leqslant N:\,-{\mu }_{1},\,\cdots ,\,-{\mu }_{{N}_{1}},{\mu }_{1},\,\cdots ,\,{\mu }_{{N}_{1}},\,\end{eqnarray*}$
$\begin{eqnarray}{\rm{}}-{\nu }_{1},\,\cdots ,\,-{\nu }_{{N}_{2}},\end{eqnarray}$
where ${\mu }_{k}\in {\mathbb{C}},1\leqslant k\leqslant {N}_{1},$ and ${\nu }_{k}\in {\mathbb{C}},1\leqslant k\leqslant {N}_{2},$ and assume that their corresponding eigenfunctions and adjoint eigenfunctions are given by
$\begin{eqnarray}{v}_{k},\,1\leqslant k\leqslant N,\,{\rm{and}}\,{\hat{v}}_{k},\,1\leqslant k\leqslant N,\end{eqnarray}$
respectively. We point out that in the current nonlocal case, we do not have the property
$\begin{eqnarray*}\{{\lambda }_{k}{\rm{| }}1\leqslant k\leqslant N\}\cap \{{\hat{\lambda }}_{k}{\rm{| }}1\leqslant k\leqslant N\}={\rm{\varnothing }},\end{eqnarray*}$
and thus, we need generalized solutions to reflectionless Riemann–Hilbert problems. Such solutions are provided by
$\begin{eqnarray*}{G}^{+}(\lambda )={I}_{m+n}-\displaystyle \sum _{k,l=1}^{N}\frac{{v}_{k}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l}}{\lambda -{\hat{\lambda }}_{l}},\end{eqnarray*}$
$\begin{eqnarray}{({G}^{-})}^{-1}(\lambda )={I}_{m+n}{\rm{}}+\displaystyle \sum _{k,l=1}^{N}\frac{{v}_{k}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l}}{\lambda -{\lambda }_{k}},\end{eqnarray}$
where $M$ is a square matrix $M=({m}_{{kl}}{)}_{N\times N}$ with its entries defined by
$\begin{eqnarray}{m}_{{kl}}=\left\{\begin{array}{cc}\frac{{\hat{v}}_{k}{v}_{l}}{{\lambda }_{l}-{\hat{\lambda }}_{k}}, & {\rm{if}}{\lambda }_{l}\ne {\hat{\lambda }}_{k},\\ 0, & {\rm{if}}{\lambda }_{l}={\hat{\lambda }}_{k},\end{array}\right.\,{where}\,1\leqslant k,l\leqslant N.\end{eqnarray}$
As shown in [14], these two matrices ${G}^{+}(\lambda )$ and ${G}^{-}(\lambda )$ solve the reflectionless Riemann–Hilbert problem:
$\begin{eqnarray}{({G}^{-})}^{-1}(\lambda ){G}^{+}(\lambda )={I}_{m+n},\,\lambda \in {\mathbb{R}},\end{eqnarray}$
when the orthogonal condition:
$\begin{eqnarray}{\hat{v}}_{k}{v}_{l}=0\,{\rm{if}}\,{\lambda }_{l}={\hat{\lambda }}_{k},\end{eqnarray}$
is satisfied.
As a consequence of the matrix spectral problems in (2) with zero potentials, we can derive
$\begin{eqnarray}{v}_{k}={v}_{k}(x,t,{\lambda }_{k})={{\rm{e}}}^{{\rm{i}}{\lambda }_{k}{\rm{\Lambda }}x+{\rm{i}}{\lambda }_{k}^{2s+1}{\rm{\Omega }}t}{w}_{k},\,1\leqslant k\leqslant N,\end{eqnarray}$
and based on the preceding analysis, we can take
$\begin{eqnarray*}{\hat{v}}_{k}={\hat{v}}_{k}\left(x,t,{\hat{\lambda }}_{k}\right)={v}_{k}^{{\rm{T}}}\left(x,t,-{\lambda }_{k}\right){\rm{\Sigma }}={\hat{w}}_{k}{e}^{-{\rm{i}}{\hat{\lambda }}_{k}{\rm{\Lambda }}x-{\rm{i}}{\hat{\lambda }}_{k}^{2s+1}{\rm{\Omega }}t},\,\end{eqnarray*}$
$\begin{eqnarray}{\hat{w}}_{k}={w}_{k}^{{\rm{T}}}{\rm{\Sigma }},\,1\leqslant k\leqslant N,\end{eqnarray}$
where ${w}_{k},$ $1\leqslant k\leqslant N,$ are constant column vectors. In this way, the orthogonal condition (46) becomes
$\begin{eqnarray}{w}_{k}^{{\rm{T}}}{\rm{\Sigma }}{w}_{l}=0\,{\rm{if}}\,{\lambda }_{l}={\hat{\lambda }}_{k},\end{eqnarray}$
where $1\leqslant k,l\leqslant N.$
Now, making an asymptotic expansion
$\begin{eqnarray}{G}^{+}(\lambda )={I}_{m+n}+\frac{1}{\lambda }{G}_{1}^{+}+O\left(\frac{1}{{\lambda }^{2}}\right),\end{eqnarray}$
as $\lambda \to {\rm{\infty }},$ we obtain
$\begin{eqnarray}{G}_{1}^{+}=-\displaystyle \sum _{k,l=1}^{N}{v}_{k}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l},\end{eqnarray}$
and further, substituting this into the matrix spatial spectral problems, we obtain
$\begin{eqnarray}P=-[{\rm{\Lambda }},{G}_{1}^{+}]=\mathop{{\rm{lim}}}\limits_{\lambda \to {\rm{\infty }}}[{G}^{+}(\lambda ),{\rm{\Lambda }}].\end{eqnarray}$
This give rise to the $N$-soliton solutions to the matrix AKNS equation (13):
$\begin{eqnarray}p=\alpha \displaystyle \sum _{k,l=1}^{N}{v}_{k}^{1}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l}^{2},\,q=-\alpha \displaystyle \sum _{k,l=1}^{N}{v}_{k}^{2}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l}^{1}.\end{eqnarray}$
Here for each $1\leqslant k\leqslant N,$ we have made the splittings, ${v}_{k}={({({v}_{k}^{1})}^{{\rm{T}}},{({v}_{k}^{2})}^{{\rm{T}}})}^{{\rm{T}}}$ and ${\hat{v}}_{k}=({\hat{v}}_{k}^{1},{\hat{v}}_{k}^{2}),$ where ${v}_{k}^{1}$ and ${\hat{v}}_{k}^{1}$ are column and row vectors of dimension $m,$ respectively, while ${v}_{k}^{2}$ and ${\hat{v}}_{k}^{2}$ are column and row vectors of of dimension $n,$ respectively.
To present $N$-soliton solutions for the reduced nonlocal integrable mKdV equation (23), we need to check if ${G}_{1}^{+}$ defined by (51) satisfies the involution properties:
$\begin{eqnarray}{({G}_{1}^{+})}^{{\rm{T}}}={\rm{\Sigma }}{G}_{1}^{+}{{\rm{\Sigma }}}^{-1},\,\,{({G}_{1}^{+})}^{{\rm{T}}}(-x,-t)=-{\rm{\Delta }}{G}_{1}^{+}{{\rm{\Delta }}}^{-1}.\end{eqnarray}$
These mean that the resulting potential matrix $P$ given by (52) will satisfy the two group reduction conditions in (15) and (16). Therefore, the above $N$-soliton solutions to the matrix AKNS equation (10) reduce to the following class of $N$-soliton solutions:
$\begin{eqnarray}p=\alpha \displaystyle \sum _{k,l=1}^{N}{v}_{k}^{1}({M}^{-1}{)}_{{kl}}{\hat{v}}_{l}^{2},\end{eqnarray}$
to the reduced nonlocal integrable mKdV equation (23).

3.3. Realization

Let us now check how to realize the involution properties in (54).
First, following the preceding analysis in section 3.1, all adjoint eigenfunctions ${\hat{v}}_{k},\,1\leqslant k\leqslant 2{N}_{1},$ can be determined by
$\begin{eqnarray*}{\hat{v}}_{k}={\hat{v}}_{k}\left(x,t,{\hat{\lambda }}_{k}\right)={v}_{k}^{{\rm{T}}}\left(-{\lambda }_{k}\right){\rm{\Sigma }}\end{eqnarray*}$
$\begin{eqnarray}\,=\,{v}_{{N}_{1}+k}^{{\rm{T}}}(-x,-t,{\lambda }_{k}){\rm{\Delta }},\,1\leqslant k\leqslant {N}_{1},\end{eqnarray}$
and
$\begin{eqnarray*}{\hat{v}}_{{N}_{1}+k}={\hat{v}}_{{N}_{1}+k}\left(x,t,{\hat{\lambda }}_{{N}_{1}+k}\right)={v}_{{N}_{1}+k}^{{\rm{T}}}\left(-{\lambda }_{{N}_{1}+k}\right){\rm{\Sigma }}\end{eqnarray*}$
$\begin{eqnarray}\,=\,{v}_{k}^{{\rm{T}}}(-x,-t,{\lambda }_{k}){\rm{\Delta }},\,1\leqslant k\leqslant {N}_{1}.\end{eqnarray}$
These choices in (56) (or (57)) engender the selections on ${w}_{k},\,1\leqslant k\leqslant N:$
$\begin{eqnarray}\left\{\begin{array}{c}({\rm{\Sigma }}{{\rm{\Delta }}}^{-1}{\rm{\Sigma }}-{{\rm{\Sigma }}}^{-1}{\rm{\Delta }}){w}_{k}=0,\,1\leqslant k\leqslant {N}_{1},\\ {w}_{k}={{\rm{\Sigma }}}^{-1}{\rm{\Delta }}{w}_{k-{N}_{1}},\,{N}_{1}+1\leqslant k\leqslant 2{N}_{1}.\end{array}\right.\end{eqnarray}$
We emphasize that all these selections aim to satisfy the reduction conditions in (15) and (16).
Now, note that when the solutions to the reflectionless Riemann–Hilbert problems, defined by (43) and (44), possess the involution properties in (54), the corresponding relevant matrix ${G}_{1}^{+}$ will satisfy the involution properties in (54), which are consequences of the group reductions in (12) and (13). Therefore, when the selections in (58) are made and the orthogonal condition for ${w}_{k}$ in (49) is satisfied, the formula (55), together with (43), (44), (47) and (48), gives rise to $N$-soliton solutions to the reduced nonlocal matrix integrable mKdV equation (23).
Finally, let us consider the case of $m=n/2=s\,=N=1.$ We take ${\lambda }_{1}=\nu ,\,{\hat{\lambda }}_{1}=-\nu ,\,\nu \in {\mathbb{C}},$ and choose
$\begin{eqnarray}{w}_{1}={({w}_{1,1},{w}_{1,2},{w}_{1,3})}^{{\rm{T}}},\end{eqnarray}$
where ${w}_{1,1},{w}_{1,2},{w}_{1,3}$ are arbitrary complex numbers and ${w}_{1,3}^{2}={w}_{1,2}^{2}.$ Such a situation leads to a class of one-soliton solutions to the reduced nonlocal integrable mKdV equation (28):
$\begin{eqnarray}{p}_{1}=\frac{2\sigma \nu ({\alpha }_{1}-{\alpha }_{2}){w}_{1,1}{w}_{1,2}}{{w}_{1,1}^{2}{{\rm{e}}}^{{\rm{i}}({\alpha }_{1}-{\alpha }_{2})\nu x+{\rm{i}}({\beta }_{1}-{\beta }_{2}){\nu }^{3}t}+2\sigma {w}_{1,2}^{2}{{\rm{e}}}^{-{\rm{i}}({\alpha }_{1}-{\alpha }_{2})\nu x-{\rm{i}}({\beta }_{1}-{\beta }_{2}){\nu }^{3}t}},\end{eqnarray}$
where $\nu \in {\mathbb{C}}$ is arbitrary and ${w}_{1,1},{w}_{1,2}\in {\mathbb{C}}$ are arbitrary but need to satisfy ${w}_{1,1}^{2}=\pm 2{w}_{1,2}^{2},$ which is a consequence of the involution properties in (54).

4. Concluding remarks

Type $(-\lambda ,\lambda )$ reduced nonlocal reverse-spacetime integrable mKdV hierarchies and their soliton solutions were presented. The analysis is based on two group reductions, one of which is local while the other is nonlocal. The resulting nonlocal integrable mKdV hierarchies are different from the existing ones in the literature.
We remark that it would also be interesting to search for other kinds of reduced nonlocal integrable equations from different kinds of Lax pairs [20], integrable couplings [21] and variable coefficient integrable equations [22]. In the pair of the considered two group reductions, we can also take
$\begin{eqnarray*}{U}^{{\rm{T}}}(x+{x}_{0},t+{t}_{0},-\lambda )={(U\left(x+{x}_{0},t+{t}_{0},-\lambda \right))}^{{\rm{T}}}=-{\rm{\Sigma }}U(x,t,,\lambda ){{\rm{\Sigma }}}^{-1},\end{eqnarray*}$
and
$\begin{eqnarray*}{U}^{{\rm{T}}}(-x+{x}_{{0}^{{\prime} }},-t+{t}_{{0}^{{\prime} }},\lambda )={(U\left(-x+{x}_{{0}^{{\prime} }},-t+{t}_{{0}^{{\prime} }},\lambda \right))}^{{\rm{T}}}={\rm{\Delta }}U(x,t,,\lambda ){{\rm{\Delta }}}^{-1},\end{eqnarray*}$
with the shifted potentials, where ${x}_{0},{x}_{0^{\prime} },{t}_{0},{t}_{0^{\prime} }$ are arbitrary constants (see, e.g. [23]). Another interesting topic is to study dynamical properties of exact solutions, including lump solutions [24], soliton solutions [2527], rogue wave solutions [28, 29], solitonless solutions [30] and algebro-geometric solutions [31, 32], from a perspective of Riemann–Hilbert problems. All this will greatly enrich the mathematical theory of nonlocal integrable equations.

The work was supported in part by NSFC under the grants 11975145, 11972291 and 51771083, the Ministry of Science and Technology of China (G2021016032L), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).

1
Ablowitz M J Musslimani Z H 2017 Integrable nonlocal nonlinear equations Stud. Appl. Math. 139 7

DOI

2
Ma W X 2020 Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations Appl. Math. Lett. 102 106161

DOI

3
Ma W X Huang Y H Wang F D 2020 Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies Stud. Appl. Math. 145 563

DOI

4
Ma W X 2021 Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems Partial Differ. Equ. Appl. Math. 4 100190

DOI

5
Ablowitz M J Musslimani Z H 2016 Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation Nonlinearity 29 915

DOI

6
Song C Q Xiao D M Zhu Z N 2017 Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation Commun. Nonlinear Sci. Numer. Simul. 45 13

DOI

7
Gürses M Pekcan A 2018 Nonlocal nonlinear Schrödinger equations and their soliton solutions J. Math. Phys. 59 051501

DOI

8
Novikov S P Manakov S V Pitaevskii L P Zakharov V E 1984 Theory of Solitons: the Inverse Scattering Method New York Consultants Bureau

9
Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems Philadelphia SIAM

10
Wang D S Zhang D J Yang J 2010 Integrable properties of the general coupled nonlinear Schrödinger equations J. Math. Phys. 51 023510

DOI

11
Xiao Y Fan E G 2016 A Riemann–Hilbert approach to the Harry-Dym equation on the line Chin. Ann. Math. Ser. B 37 373

DOI

12
Geng X G Wu J P Geng X G Wu J P 2016 Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation Wave Motion 60 62

DOI

13
Yang J 2019 General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations Phys. Lett. A 383 328

DOI

14
Ma W X 2021 Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations Proc. Amer. Math. Soc. 149 251

DOI

15
Ma W X 2022 Riemann–Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies Acta Math. Sci. 42B 127

DOI

16
Ma W X 2022 Riemann–Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies Physica D 430 133078

DOI

17
Ma W X 2019 Riemann–Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction Math. Meth. Appl. Sci. 42 1099

DOI

18
Ji J L Zhu Z N 2017 On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions Commun. Nonlinear Sci. Numer. Simul. 42 699

DOI

19
Gürses M Pekcan A 2019 Nonlocal modified KdV equations and their soliton solutions by Hirota method Commun. Nonlinear Sci. Numer. Simul. 67 427

DOI

20
Ma W X 2022 Integrable nonlocal nonlinear Schrödinger equations associated with so(3, ℝ) Proc. Amer. Math. Soc. Ser. B 9 1

DOI

21
Xin X P Liu Y T Xia Y R Liu H Z 2021 Integrability, Darboux transformation and exact solutions for nonlocal couplings of AKNS equations Appl. Math. Lett. 119 107209

DOI

22
Wazwaz A M 2021 Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions Waves Random Complex Media 31 867

DOI

23
Ablowitz M J Musslimani Z H 2021 Integrable space-time shifted nonlocal nonlinear equations Phys. Lett. A 409 127516

DOI

24
Ma W X Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ. 264 2633

DOI

25
Kaplan M Ozer M N 2018 Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation Opt. Quant. Electron. 50 2

DOI

26
Kaplan M Ozer M N 2018 Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation Opt. Quant. Electron. 50 33

DOI

27
Kaplan M 2018 Two different systematic techniques to find analytical solutions of the (2 + 1)-dimensional Boiti-Leon–Manna–Pempinelli equation Chin. J. Phys. 56 2523

DOI

28
Xu Z X Chow K W 2016 Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation Appl. Math. Lett. 56 72

DOI

29
Rao J G Zhang Y S Fokas A S He J S 2018 Rogue waves of the nonlocal Davey–Stewartson I equation Nonlinearity 31 4090

DOI

30
Ma W X 2019 Long-time asymptotics of a three-component coupled mKdV system Mathematics 7 573

DOI

31
Gesztesy F Holden H 2003 Soliton Equations and their Algebro-Geometric Solutions: (1 + 1)- Dimensional Continuous Models Cambridge : Cambridge University Press

32
Ma W X 2017 Trigonal curves and algebro-geometric solutions to soliton hierarchies I, II Proc. R. Soc. A 473 20170232

DOI

Outlines

/