1. Introduction
2. The EiBI equations
Let $k\ne 0$. The Eddington-inspired-Born-Infeld evolution system in $\left(g,q,\rho \right)$ can be written as the following nonlinear second order system
From equations (
Assuming that $\lambda +k\rho \gt 0$ and $\lambda -\tfrac{k}{3}\rho \gt 0$. The Eddington-inspired-Born-Infeld constraints system can be written as
From equations (
Let $k\ne 0$, $\lambda +k\rho \gt 0$ and $\lambda -\tfrac{k}{3}\rho \gt 0$. The Eddington-inspired-Born-Infeld evolution system (
Using equations (
We assume that $\lambda +k\rho \gt 0$ and $\lambda -\tfrac{k}{3}\rho \gt 0$. Then the Eddington-inspired-Born-Infeld constraints system can be written as an equation of degree 3 for ρ, as follows:
From equations (
Let $k\ne 0$. The Eddington-inspired-Born-Infeld evolution system (
By substituting equations (
Assume that $k\gt 0$ and λ satisfy the inequality $\sqrt[3]{2-\sqrt{4{\lambda }^{2}+1}}+\sqrt[3]{2+\sqrt{4{\lambda }^{2}+1}}\leqslant \lambda $ or $k\lt 0$ and λ satisfy the inequality $\sqrt[3]{2-\sqrt{4{\lambda }^{2}+1}}+\sqrt[3]{2+\sqrt{4{\lambda }^{2}+1}}\geqslant \lambda $. Then the initial constraint equation (
By setting ${\gamma }_{0}={\rho }_{0}-\tfrac{3\lambda }{k}$ i.e. ${\rho }_{0}={\gamma }_{0}+\tfrac{3\lambda }{k}$, equation (
Let $k\gt 0$ and $\lambda \in \left(\tfrac{k}{3}{\rho }_{0},\infty \right)$ or $k\lt 0$ and $\lambda \in (-k{\rho }_{0},\infty )$. The Eddington-inspired-Born-Infeld evolution system (
By summing up equations (
Let $(v,M)\in {C}^{1}({\mathbb{R}},{\mathbb{R}})\times {C}^{1}({\mathbb{R}},[0,\infty ))$. $(v,M)$ is called a solution-tube of (
i | (i)$\left(x-v(t)\right)\left(F(t,x)-\dot{v}(t)\right)\geqslant M(t)\dot{M}(t)$ for all $t\in {\mathbb{R}}$, $x\in {\mathbb{R}}$ such that $| x-v(t)| $=$M(t);$ |
ii | (ii)$\dot{v}(t)=F(t,v(t))$ and $\dot{M}(t)=0$ for all $t\in {\mathbb{R}}$ such that $M(t)=0;$ |
iii | (iii)$| v(T)-v({t}_{0})| \leqslant M(T)-M({t}_{0})$. |
[38] Let W be an open set of ${\mathbb{R}}$ and t be a real number. If $g:{\mathbb{R}}\longrightarrow {\mathbb{R}}$ is differentiable in t and if $f:W\longrightarrow {\mathbb{R}}$ is differentiable in $g(t)\in W$, then $f\circ g$ is differentiable in t and $\dot{\overbrace{\left(f\circ g\right)}}(t)=\langle \dot{f}(g(t)),\dot{g}(t)\rangle $.
Let a function $\chi :{\mathbb{R}}\longrightarrow {\mathbb{R}}$ differentiable in $t\in {\mathbb{R}}$. We know that the function $| \bullet | :{\mathbb{R}}-\{0\}\longrightarrow (0,\infty )$ is differentiable. If $| \chi (t)| \gt 0$, then by continuity, there exists $\delta \gt 0$ such that $| \chi (s)| \gt 0$ for $s\in \left(t-\delta ,t+\delta \right)$. Moreover, by virtue of theorem
For $\epsilon \gt 0$, the exponential function ${{\rm{e}}}_{\epsilon }(\bullet ,{t}_{1}):{\mathbb{R}}\longrightarrow {\mathbb{R}}$ can be defined as being the unique solution to the problem with the initial value
[38]If $g\in {L}^{1}({\mathbb{R}},{\mathbb{R}})$, the function $\chi :{\mathbb{R}}\longrightarrow {\mathbb{R}}$ defined by
Let a function $L\in {C}^{1}({\mathbb{R}},{\mathbb{R}})$ such that $\dot{L}(t)\gt 0$ for all $t\in \{s\in {\mathbb{R}}:L(s)\gt 0\}$. If $L({t}_{0})\geqslant L(T)$, then $L(t)\leqslant 0$, for all $t\in {\mathbb{R}}$.
Suppose that there exists $t\in {\mathbb{R}}$ such that $L(t)\gt 0$, then there exists ${t}_{1}\in {\mathbb{R}}$ such that $L({t}_{1})={\max }_{t\in {\mathbb{R}}}L(t)\gt 0$.
• | – If ${t}_{1}\lt T$, then there exists an interval $[{t}_{1},{t}_{2}]$ such that $L(t)\gt 0$ for all $t\in [{t}_{1},{t}_{2}]$. So, $0\lt {\int }_{{t}_{1}}^{{t}_{2}}\dot{L}(s){\rm{d}}{s}=L({t}_{2})-L({t}_{1})$, which contradicts the maximality of $L({t}_{1})$. |
• | – If ${t}_{1}=T$, then by hypothesis of lemma |
• | – By taking ${t}_{1}={t}_{0}$, by what precedes, we would find that $L({t}_{0})\leqslant 0$. |
Let $F:{\mathbb{R}}\times {\mathbb{R}}\longrightarrow {\mathbb{R}}$ be a continuous function. If the hypothesis $(H)$ is satisfied, then the operator ${T}_{{P}^{* }}$ is compact.
This result is established in two main steps.
Step 1. Let us first show the continuity of the operator ${T}_{{P}^{* }}$. Let ${\{{\chi }_{n}\}}_{n\in {\mathbb{N}}}$ be a sequence in $C({\mathbb{R}},{\mathbb{R}})$ converging towards an element $\chi \in C({\mathbb{R}},{\mathbb{R}})$.
Using equation (
So, for $\epsilon \gt 0$, there exists $\delta \gt 0$ such that for all $x,y\in {\mathbb{R}}$, we have $| x-y| \lt \delta \lt \tfrac{\epsilon M}{2K(1+C)(T-{t}_{0})}$, $| F(s,x)-F(s,y)| \lt \delta \lt \tfrac{\epsilon M}{2K(1+C)(T-{t}_{0})}$ for all $s\in {\mathbb{R}}$. Thus, it is possible to find an index $\overline{N}\gt N$ such that $| {\hat{\chi }}_{n}-\overline{\chi }| \lt \delta $ for $n\gt \overline{N}$ such that $\parallel {T}_{{P}^{* }}({\chi }_{n})(t)-{T}_{{P}^{* }}(\chi )(t)\parallel \lt 2\tfrac{K(1+C)}{M}{\int }_{[{t}_{0},T)\cap {\mathbb{R}}}^{}\tfrac{\epsilon M}{2K(1+C)(T-{t}_{0})}{\rm{d}}s\leqslant \epsilon $. Thus ${T}_{{P}^{* }}$ is continuous.
Step 2. Let us now show that the set ${T}_{{P}^{* }}\left(C({\mathbb{R}},{\mathbb{R}})\right)$ is relatively compact. Consider a sequence ${\{{y}_{n}\}}_{n\in {\mathbb{N}}}$ in ${T}_{{P}^{* }}\left(C({\mathbb{R}},{\mathbb{R}})\right)$. For all $n\in {\mathbb{N}}$, there exits ${\chi }_{n}\in C({\mathbb{R}},{\mathbb{R}})$ such that ${y}_{n}={T}_{{P}^{* }}({\chi }_{n})$. Using equation (
Thus the sequence ${\{{y}_{n}\}}_{n\in {\mathbb{N}}}$ is also equicontinuous and by virtue of the Arzel$\grave{a}$–Ascoli Theorem, ${\{{y}_{n}\}}_{n\in {\mathbb{N}}}$ has a convergent subsequence.
Steps 1 and 2 show that ${T}_{{P}^{* }}$ is compact.□
If the hypothesis $(H)$ is satisfied, then problem (
Step 1. We need to show that a.e. on the set $A=\{t\in {\mathbb{R}}:| \chi (t)-v(t)| \gt M(t)\}$, we have
Step 2. We will now show that almost everywhere on A, we have $\dot{\overbrace{\left(| \chi (t)-v(t)| -M(t)\right)}}\gt 0$.
*If $M(t)\gt 0$, then by the hypothesis of solution-tube, and by (
*If $M(t)=0$, by the hypothesis of the solution-tube and by (
Step 3. By setting $L(t)=| \chi (t)-v(t)| -M(t)$, we have for all $t\in \{t\in {\mathbb{R}}:L(t)\gt 0\}$, $\dot{L}(t)\gt 0$. Moreover, by the hypothesis of the solution-tube, notice that
[38] Let $F:{\mathbb{R}}\times {\mathbb{R}}\longrightarrow {\mathbb{R}}$ be a continuous function. If there exists non-negative constants α and K such that
[38] Let $F:\{0,1,...,N,N+1\}\times {\mathbb{R}}\longrightarrow {\mathbb{R}}$ be a continuous function. If there exists non-negative constants α and K such that
Let $k\gt 0$ and $\lambda \in (\tfrac{k}{3}{\rho }_{0},\infty )$ or $k\lt 0$ and $\lambda \in (-k{\rho }_{0},\infty )$. The Eddington-inspired-Born-Infeld evolution system (
Since χ exists, equations (
Let $k\gt 0$ and $\lambda \in \left(\tfrac{k}{3}{\rho }_{0},\infty \right)$ or $k\lt 0$ and $\lambda \in (-k{\rho }_{0},\infty )$. Assume that ${a}_{0}\gt 0$, ${b}_{0}\gt 0$ and ${c}_{0}\gt 0$. Then, there exists a solution $(g,q,\rho )$ given by
3. Asymptotic behaviour
i | (i)Assuming that $U(t){U}_{0}+V(t){V}_{0}+W(t){W}_{0}\lt \tfrac{{U}_{0}^{2}+{V}_{0}^{2}+{W}_{0}^{2}}{2}$, we can easily show that $\dot{\chi }(t)\lt 0$. Then ${Q}_{q}(t)\geqslant 0$ and ${Q}_{g}(t)\geqslant 0$. So, in this case, there is standard deceleration of the bi-universe in the direction of the auxiliary metric q and in the direction of the physical metric g. |
ii | (ii)Assuming that $U(t){U}_{0}+V(t){V}_{0}+W(t){W}_{0}\geqslant \tfrac{{U}_{0}^{2}+{V}_{0}^{2}+{W}_{0}^{2}}{2}$, we can easily show that $\dot{\chi }(t)\geqslant 0$. Then ${Q}_{q}(t)\lt 0$ and ${Q}_{g}(t)\lt 0$. So the bi-universe inflate in the direction of the auxiliary metric q and in the direction of the physical metric g. |
iii | (iii)By choosing $\chi (t)=-\tfrac{3}{t-{t}_{0}}$ with ${\chi }_{0}=0$, we readily get ${Q}_{q}(t)={Q}_{g}(t)=-1$, for all $t\in {\mathbb{R}}$. Hence, one obtains de Sitter phase in both directions at early and at late time bi-universe. |
iv | (iv)For $t={t}_{0}$, notice that when ${\chi }_{0}^{2}={U}_{0}^{2}+{V}_{0}^{2}+{W}_{0}^{2}={\left({U}_{0}+{V}_{0}+{W}_{0}\right)}^{2}$, we have ${V}_{0}{W}_{0}+{U}_{0}{V}_{0}+{U}_{0}{W}_{0}=0$ and ${{ \mathcal A }}_{q}(t)=2$. Therefore the auxiliary metric q describes the Kasner geometry (see [31]). |
v | (v)Assuming that ${A}_{0}={B}_{0}={C}_{0}$, we have $A(t)=B(t)=C(t)={A}_{0}{{\rm{e}}}^{\left({\int }_{{t}_{0}}^{t}{H}_{q}(s){\rm{d}}s\right)}$. Then the physical metric g and the auxiliary metric q are given by $\begin{eqnarray}\begin{array}{rcl}g & = & -{\rm{d}}{t}^{2}+{A}_{0}^{2}\left(\displaystyle \frac{\lambda -\tfrac{k}{3}\rho }{\lambda +k\rho }\right){{\rm{e}}}^{\left(2{\displaystyle \int }_{{t}_{0}}^{t}{H}_{q}(s){\rm{d}}s\right)}\\ & & \left.\times {\left[{\left({\rm{d}}{x}^{1}\right)}^{2}+{\left({\rm{d}}{x}^{2}\right)}^{2}+({\rm{d}}{x}^{3}\right)}^{2}\right],\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{rcl}q & = & -{\rm{d}}{t}^{2}+{A}_{0}^{2}{{\rm{e}}}^{\left(2{\displaystyle \int }_{{t}_{0}}^{t}{H}_{q}(s){\rm{d}}s\right)}\\ & & \times \left[{\left({\rm{d}}{x}^{1}\right)}^{2}+{\left({\rm{d}}{x}^{2}\right)}^{2}+{\left({\rm{d}}{x}^{3}\right)}^{2}\right].\end{array}\end{eqnarray}$ So in both directions of the bi-universe, the physical metric g and auxiliary metric q describe the FLRW metrics with cosmological expansion factors ${A}_{0}^{2}\left(\tfrac{\lambda -\tfrac{k}{3}\rho }{\lambda +k\rho }\right){{\rm{e}}}^{\left(2{\int }_{{t}_{0}}^{t}{H}_{q}(s){\rm{d}}s\right)}$ and ${A}_{0}^{2}{{\rm{e}}}^{\left(2{\int }_{{t}_{0}}^{t}{H}_{q}(s){\rm{d}}s\right)}$, respectively. |
vi | (vi)Assuming that at $t={t}_{0}$, we have ${A}_{0}={B}_{0}={C}_{0}=1$. Then the physical metric g and the auxiliary metric q are given by $\begin{eqnarray}\begin{array}{l}\tilde{g}=\left(\displaystyle \frac{\lambda +k{\rho }_{0}}{\lambda -\tfrac{k}{3}{\rho }_{0}}\right)g=-\left(\displaystyle \frac{\lambda +k{\rho }_{0}}{\lambda -\tfrac{k}{3}{\rho }_{0}}\right){\rm{d}}{t}^{2}\\ \quad +\,{\left({\rm{d}}{x}^{1}\right)}^{2}+{\left({\rm{d}}{x}^{2}\right)}^{2}+{\left({\rm{d}}{x}^{3}\right)}^{2},\end{array}\end{eqnarray}$ $\begin{eqnarray}q=-{\rm{d}}{t}^{2}+{\left({\rm{d}}{x}^{1}\right)}^{2}+{\left({\rm{d}}{x}^{2}\right)}^{2}+{\left({\rm{d}}{x}^{3}\right)}^{2},\end{eqnarray}$ which describe Minkowski spacetimes. |
vii | (vii)For $t={t}_{0}$, the volumes of scalar factors satisfy the initial conditions ${V}_{q}({t}_{0})={A}_{0}{B}_{0}{C}_{0}\geqslant 8\pi k{\rho }_{0}$ and ${V}_{g}({t}_{0})={\left(\tfrac{\lambda -\tfrac{k}{3}{\rho }_{0}}{\lambda +k{\rho }_{0}}\right)}^{\tfrac{3}{2}}{V}_{q}({t}_{0})\geqslant 8\pi k{\rho }_{0}$. Therefore, in EiBI bi-gravity the stiff causal bi-universe starts its evolution from a non-singular state (see [31]). |
viii | (viii)The asymptotic behaviours of Hg2, Hq2 and the time derivative $\tfrac{{\rm{d}}{H}_{g}}{{\rm{d}}t}$, $\tfrac{{\rm{d}}{H}_{q}}{{\rm{d}}t}$ of the Hubble rate in the EiBI regime are $\begin{eqnarray}\left\{\begin{array}{l}{H}_{g}^{2}(t)\mathop{\longrightarrow }\limits_{t\to {t}_{0}}0\\ \mathrm{and}\\ \displaystyle \frac{{\rm{d}}{H}_{g}}{{\rm{d}}t}(t)\mathop{\longrightarrow }\limits_{t\to {t}_{0}}0.\end{array}\right.\end{eqnarray}$ Similarly, we have $\begin{eqnarray}\left\{\begin{array}{l}{H}_{q}^{2}(t)\mathop{\longrightarrow }\limits_{t\to {t}_{0}}0\\ \mathrm{and}\\ \displaystyle \frac{{\rm{d}}{H}_{q}}{{\rm{d}}t}(t)\mathop{\longrightarrow }\limits_{t\to {t}_{0}}0.\end{array}\right.\end{eqnarray}$ So, the solutions obtained are unstable when cosmic time t tends to t0 (see figure 37 in [14]). |
ix | (ix)It is worth noting that when $\lambda =1$, both physical and auxiliary metrics g and q coincide, and the bi-universe described by them is asymptotically flat [14]. |
Let $\left(k\gt 0\quad \mathrm{and}\quad \lambda \in \left(\tfrac{k}{3}{\rho }_{0},\infty \right)\right)$ or $\left(k\lt 0\quad \mathrm{and}\quad \lambda \in \left(-k{\rho }_{0},\infty \right)\right)$, ${A}_{0}\gt 0$, ${B}_{0}\gt 0$ and ${C}_{0}\gt 0$. Assume that $\rho (t)\mathop{\longrightarrow }\limits_{t\to \infty }0$. Then the bi-universe $\left({{\mathbb{R}}}^{4},{g}_{\alpha \beta },{q}_{\alpha \beta },{T}^{\alpha \beta }\right)$ tends towards the vacuum at late time.
We just have to show that ${T}^{\alpha \beta }(t)\mathop{\longrightarrow }\limits_{t\to \infty }0$.
According to the hypothesis of theorem