Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

On dynamical behavior for optical solitons sustained by the perturbed Chen–Lee–Liu model

  • Sibel Tarla 1 ,
  • Karmina K Ali 1, 2 ,
  • Resat Yilmazer 1 ,
  • M S Osman , 3
Expand
  • 1Department of Mathematics, Faculty of Science, Firat University, Elazig, Turkey
  • 2Department of Mathematics, Faculty of Science, University of Zakho, Zakho, Iraq
  • 3Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Received date: 2022-01-09

  Revised date: 2022-04-13

  Accepted date: 2022-06-03

  Online published: 2022-07-01

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

This study investigates the perturbed Chen–Lee–Liu model that represents the propagation of an optical pulse in plasma and optical fiber. The generalized exponential rational function method is used for this purpose. As a result, we obtain some non-trivial solutions such as the optical singular, periodic, hyperbolic, exponential, trigonometric soliton solutions. We aim to express the pulse propagation of the generated solutions, by taking specific values for the free parameters existed in the obtained solutions. The obtained results show that the generalized exponential rational function technique is applicable, simple and effective to get the solutions of nonlinear engineering and physical problems. Moreover, the acquired solutions display rich dynamical evolutions that are important in practical applications.

Cite this article

Sibel Tarla , Karmina K Ali , Resat Yilmazer , M S Osman . On dynamical behavior for optical solitons sustained by the perturbed Chen–Lee–Liu model[J]. Communications in Theoretical Physics, 2022 , 74(7) : 075005 . DOI: 10.1088/1572-9494/ac75b2

1. Introduction

Researchers have taken great attention to study nonlinear phenomena. Nonlinear partial differential equations (NPDEs) appear in applied mathematics and engineering research areas with various applications. Several goals of applied mathematics are presented to identify and explain exact solutions for NPDEs [18]. Numerous NPDEs such as the Sawada–Kotera equation [911], the Gilson–Pickering model [12, 13], the Fokas–Lenells model [1416], the Hirota equation [17, 18], the Sasa–Satsuma equation [1921], and others [2231] have been discussed and analyzed in different branches of science
The perturbed CLL model is given by [32]:
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{\psi }_{t}+\alpha {\psi }_{xx}+{\rm{i}}\beta {\left|\psi \right|}^{2}{\psi }_{x}={\rm{i}}\left[\gamma {\psi }_{x}+\mu {(| \psi {| }^{2m}\psi )}_{x}\right.\\ \left.+\delta {(| \psi {| }^{2m})}_{x}\psi \right],\end{array}\end{eqnarray}$
where $\gamma $ is the inter-modal dispersion coefficient, $\mu $ symbolizes the coefficient of self-steepening for short pulses, and $\delta $ is the coefficient of nonlinear dispersion. Additionally, $\alpha $ is the coefficient of the velocity dispersion and $\beta $ is the coefficient of nonlinearity. Here, equation (1) is studied when $m=1$
$\begin{eqnarray}{\rm{i}}{\psi }_{t}+\alpha {\psi }_{xx}+{\rm{i}}\beta {\left|\psi \right|}^{2}{\psi }_{x}={\rm{i}}\left[\gamma {\psi }_{x}+\mu {(| \psi {| }^{2}\psi )}_{x}+\delta {(| \psi {| }^{2})}_{x}\psi \right].\end{eqnarray}$
The main object of this article is to study and analyze equation (2) by finding a variety of solutions via the GERFM for the perturbed CLL model that represents the propagation of an optical pulse in plasma and optical fiber. Recently, the field of applications of this equation has become an important part of plasma physics. Previously this equation has been investigated by many researchers. Houwe et al [33] show the chirped and the corresponding chirp with their stability for the CLL model. Biswas has obtained soliton solutions by using semi-inverse variational principle [34]. Akinyemi and others studied the CLL model with the help of the Jacobi elliptic functions [35]. Kudryashov found general solutions by using different methods with the elliptic function approach [36]. Apart from this, the Sardar subequation technique was utilized to obtain solitary wave solutions for this equation [37], and numerous studies have been done for the CLL model [3840]. In this study, we examine this model via the generalized exponential rational function method (GERFM). This method is presented by Ghanbari and others to study different partial differential equations [41, 42]. Furthermore, Ghanbari and Aguilar used this approach to find some novel solutions of the Radhakrishnan–Kundu–Lakshmanan equation with $\beta $-conformable time derivative [43].
This study is organized as follows; introduction is given in section 1. In section 2, we focused on presenting the GERFM. In section 3, we established and studied a variety of exact solutions for the perturbed CLL model by applying the GERFM. The conclusion and the physical interpretations of this study are presented in section 4.

2. Outline of GERFM

In this section, the GERFM is explained in the following manner:
Step 1: Consider the general form of a nonlinear partial differential as:
$\begin{eqnarray}Q(\psi ,{\psi }_{x},{\psi }_{t},{\psi }_{xx},{\psi }_{tt},{\psi }_{tx},\cdots )=0,\end{eqnarray}$
where $Q$ is a polynomial function in $\psi (x,t)$ and its partial derivatives. Suppose that the wave transformation takes the form:
$\begin{eqnarray}\psi (x,t)=P(\eta ){\,{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )},\eta =x-ht,\end{eqnarray}$
where $P(\eta )$ is the amplitude, $k$ is the wave number, $w$ is the frequency, $\theta $ is the phase constant, and $x-ht$ is the traveling coordinate. Equation (3) becomes a nonlinear ordinary differential equation with the use of equation (4) and written as:
$\begin{eqnarray}\phi ({P}^{{\prime} },{P}^{{\prime\prime} },P^{\prime\prime \prime} ,\cdots )=0.\end{eqnarray}$
Step 2: The solitary wave solutions of equation (5) have the form:
$\begin{eqnarray}P(\eta )={A}_{0}+\displaystyle \sum _{K=1}^{n}{A}_{K}\varphi {\left(\eta \right)}^{K}+\displaystyle \sum _{K=1}^{n}{B}_{K}\varphi {\left(\eta \right)}^{-K},\end{eqnarray}$
where
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{{r}_{1}{{\rm{e}}}^{{s}_{1}\eta }+{r}_{2}{{\rm{e}}}^{{s}_{2}\eta }}{{r}_{3}{{\rm{e}}}^{{s}_{3}\eta }+{r}_{4}{{\rm{e}}}^{{s}_{4}\eta }},\end{eqnarray}$
here ${r}_{n},$ ${s}_{n}$ $\left(1\leqslant n\leqslant 4\right)$ are real $/\,$complex constants, ${A}_{0},$ ${A}_{K},$ ${B}_{K}$ are constants to be determined, and $n$ will be determined by the known balance principle.
Step 3: Substituting equation (6) into equation (5), we get a system of polynomials in $\varphi \left(\eta \right).$ By equating the same order terms, we obtain an algebraic system of equations. By using any suitable computer software, we solve this system and determine the values of ${A}_{0},$ ${A}_{K},$ ${B}_{K}.$ Thus, we can easily obtain non-trivial exact solutions of equation (5).
Step 4: Putting non-trivial solutions obtained from Step 3 into (6), we attain the exact soliton solutions of equation (2).

3. Applications

In this portion, we apply the GERFM to equation (2). Firstly, inserting equation (4) into equation (2) yields
$\begin{eqnarray}\begin{array}{c}-{\rm{i}}h{P}^{{\rm{{\prime} }}}-wP+\alpha {P}^{{\rm{{\prime} }}{\rm{{\prime} }}}-2k\alpha {\rm{i}}{P}^{{\rm{{\prime} }}}-\alpha {k}^{2}P+{\rm{i}}\beta {P}^{2}{P}^{{\rm{{\prime} }}}\\ +\beta k{P}^{3}-{\rm{i}}\gamma {P}^{{\rm{{\prime} }}}-\gamma kP-3{\rm{i}}\mu {P}^{2}{P}^{{\rm{{\prime} }}}-\mu k{P}^{3}-2{\rm{i}}\delta {P}^{2}{P}^{{\rm{{\prime} }}}=0.\end{array}\end{eqnarray}$
The real part of equation (8) is given by
$\begin{eqnarray}\left(-w-\alpha {k}^{2}-\gamma k\right)P+\alpha {P}^{{\rm{{\prime} }}{\rm{{\prime} }}}+k\left(\beta -\mu \right){P}^{3}=0,\end{eqnarray}$
and the imaginary part has the form
$\begin{eqnarray}\left(-h-2k\alpha -\gamma \right){P}^{{\prime} }+\left(\beta -3\mu -2\delta \right){P}^{2}{P}^{{\prime} }=0.\end{eqnarray}$
Set the coefficients of the components of the imaginary part equal zero, we get $h=-2k\alpha -\gamma ,$ and $\beta =3\mu +2\delta .$ Considering these constraints in equation (9), we get
$\begin{eqnarray}\left(-w-\alpha {k}^{2}-\gamma k\right)P+\alpha {P}^{{\rm{{\prime} }}{\rm{{\prime} }}}+2k\left(\delta +\mu \right){P}^{3}=0.\end{eqnarray}$
By using the balance principle, we get $n=1.$ Also, we use $r=\left[{r}_{1},{r}_{2},{r}_{3},{r}_{4}\right]$ and $s=\left[{s}_{1},{s}_{2},{s}_{3},{s}_{4}\right]$ notation. Considering equations (6) and (7), we may express the solution of equation (11) as follow:
$\begin{eqnarray}P(\eta )={A}_{0}+{A}_{1}\varphi (\eta )+{B}_{1}\displaystyle \frac{1}{\varphi (\eta )}.\end{eqnarray}$
Family 1: For $r=\left[-2,-1,1,1\right],$ $s=\left[0,1,0,1\right],$ we get
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{-2-{{\rm{e}}}^{\eta }}{1+{{\rm{e}}}^{\eta }}.\end{eqnarray}$
Case 1: When ${B}_{1}=0,$ $\gamma =\tfrac{-w}{k}+\tfrac{1}{2}{{A}_{1}}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right),$ ${A}_{0}=\tfrac{3{A}_{1}}{2},$ $\alpha =-{{A}_{1}}^{2}k\left(\delta +\mu \right).$
Taking into account equations (12) and (13) and by direct substitution in equation (4), we get
$\begin{eqnarray*}{\psi }_{1}(x,t)=\left(\displaystyle \frac{3{A}_{1}}{2}+{A}_{1}\left(\displaystyle \frac{-2-{{\rm{e}}}^{x-ht}}{1+{{\rm{e}}}^{x-ht}}\right)\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ the exact solution of equation (2) reads
$\begin{eqnarray}\begin{array}{l}{\psi }_{1}(x,t)\\ \,=\,{{\rm{e}}}^{{\rm{i}}\left(-kx+wt+\theta \right)}\left(\displaystyle \frac{3{A}_{1}}{2}+\displaystyle \frac{{A}_{1}\left(-2-{{\rm{e}}}^{x-t\left(\displaystyle \frac{w}{k}+2{{A}_{1}}^{2}{k}^{2}\left(\delta +\mu \right)-\displaystyle \frac{1}{2}{{A}_{1}}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right)\right)}\right)}{1+{{\rm{e}}}^{x-t\left(\displaystyle \frac{w}{k}+2{{A}_{1}}^{2}{k}^{2}\left(\delta +\mu \right)-\displaystyle \frac{1}{2}{{A}_{1}}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right)\right)}}\right).\end{array}\end{eqnarray}$
This is corresponding to optical exponential solutions.
Case 2: When ${A}_{1}=0,$ ${A}_{0}=\tfrac{3{B}_{1}}{4},$ $\alpha =-\tfrac{1}{4}{B}_{1}^{2}k\left(\delta +\mu \right),$ and $\gamma =-\tfrac{w}{k}+\tfrac{1}{8}{B}_{1}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right).$
Taking into account equation (12), equation (13) and the above values in equation (4), we get
$\begin{eqnarray*}{\psi }_{2}(x,t)=\left(\displaystyle \frac{3{B}_{1}}{4}+\displaystyle \frac{{B}_{1}\left(1+{{\rm{e}}}^{x-ht}\right)}{-2-{{\rm{e}}}^{x-ht}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma $ yields the exact solution of equation (2) as
$\begin{eqnarray}\begin{array}{l}{\psi }_{2}(x,t)\\ \,=\,\left(\displaystyle \frac{3{B}_{1}}{4}+\displaystyle \frac{{B}_{1}\left(1+{{\rm{e}}}^{x-t\left(\displaystyle \frac{w}{k}+\displaystyle \frac{1}{2}{B}_{1}^{2}{k}^{2}\left(\delta +\mu \right)-\displaystyle \frac{1}{8}{B}_{1}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right)\right)}\right)}{-2-{{\rm{e}}}^{x-t\left(\displaystyle \frac{w}{k}+\displaystyle \frac{1}{2}{B}_{1}^{2}{k}^{2}\left(\delta +\mu \right)-\displaystyle \frac{1}{8}{B}_{1}^{2}\left(1+2{k}^{2}\right)\left(\delta +\mu \right)\right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{array}\end{eqnarray}$
Equation (15) represents optical exponential solutions.
Family 2: For this group, we take $r=[-2-{\rm{i}},2-{\rm{i}},-1,1],$ $s=[{\rm{i}},-{\rm{i}},{\rm{i}},-{\rm{i}}],$ we get
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{\cos (\eta )+2\,\sin (\eta )}{\sin (\eta )}.\end{eqnarray}$
Case 1: When ${A}_{0}=\mp \tfrac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${A}_{1}=0,$ ${B}_{1}=\pm \tfrac{5\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ and $\gamma =-\tfrac{(w+(-2+{k}^{2})\alpha )}{k}.$
Taking into account equation (12), equation (16), and these values in equation (4), we get
$\begin{eqnarray*}{\psi }_{3}(x,t)=\left(\displaystyle \frac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}-\displaystyle \frac{5\sqrt{\alpha }\,\sin \left(x-ht\right)}{\sqrt{-k\left(\delta +\mu \right)}\left(\cos \left(x-ht\right)+2\,\sin \left(x-ht\right)\right)}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ we reach the exact solution of equation (2) as
$\begin{eqnarray}\begin{array}{l}{\psi }_{3}(x,t)={{\rm{e}}}^{{\rm{i}}\left(-kx+wt+\eta \right)}\left( \frac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}\right.\\ -\left. \frac{5\sqrt{\alpha }\,\sin \left(x-t\left(-2k\alpha + \frac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}\left(\cos \left(x-t\left(-2k\alpha + \frac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)+2\,\sin \left(x-t\left(-2k\alpha + \frac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)\right)}\right)\end{array}\end{eqnarray}$
This is corresponding to optical trigonometric solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$

Case 2: When ${A}_{0}=\mp \displaystyle \frac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${A}_{1}=\pm \displaystyle \frac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${B}_{1}=0,$ and $\gamma =-\displaystyle \frac{w+\left(-2+{k}^{2}\right)\alpha }{k}.$

Taking into account equation (12), equation (16), and these values in equation (4), we get
$\begin{eqnarray*}\begin{array}{l}{\psi }_{4}(x,t)\,=\,\left(-\displaystyle \frac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}\right.\\ \left.\,+\,\displaystyle \frac{\sqrt{\alpha }\csc \left(x-ht\right)\left(\cos \left(x-ht\right)+2\,\sin \left(x-ht\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{array}\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ we get the exact solution of equation (2) as follows
$\begin{eqnarray}\begin{array}{l}{\psi }_{4}(x,t)={{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}\left(-\tfrac{2\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}+\right.\\ \left. \frac{\sqrt{\alpha }\csc \left(x-t\left(-2k\alpha +\tfrac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)\left(\cos \left(x-t\left(-2k\alpha +\tfrac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)+2\,\sin \left(x-t\left(-2k\alpha +\tfrac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right).\end{array}\end{eqnarray}$
Equation (18) is corresponding to the optical trigonometric solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$
Family 3: In this group $r=[2,0,1,1],$ $s=[-1,0,1,-1],$ we get
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{\cosh (\eta )-\,\sinh (\eta )}{\cosh (\eta )}.\end{eqnarray}$
Case 1: When ${A}_{0}=\mp \displaystyle \frac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${A}_{1}=\pm \displaystyle \frac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${B}_{1}=0,$ and $\gamma =-\displaystyle \frac{(w+(-2+{k}^{2})\alpha )}{k}.$
Taking into account equation (12), equation (19), and these values in equation (4), we obtain
$\begin{eqnarray*}\begin{array}{l}{\psi }_{5}(x,t)=\left(-\tfrac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}+\right.\\ \left.\displaystyle \frac{\sqrt{\alpha }{\rm{sech}} (x-ht)\left(\cosh (x-ht)-\,\sinh (x-ht)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{array}\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ we get the exact solution of equation (2) as follows
$\begin{eqnarray}\begin{array}{l}{\psi }_{5}(x,t)={{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}\left(-\tfrac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}}+\right.\\ \left. \frac{\sqrt{\alpha }\,{\rm{sech}} \left(x-t\left(-2k\alpha +\tfrac{w+\left(2+{k}^{2}\right)\alpha }{k}\right)\right)\left(\cosh \left(x-t\left(-2k\alpha +\tfrac{w+\left(2+{k}^{2}\right)\alpha }{k}\right)\right)-\,\sinh \left(x-t\left(-2k\alpha +\tfrac{w+\left(2+{k}^{2}\right)\alpha }{k}\right)\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right).\end{array}\end{eqnarray}$
This is corresponding to the optical hyperbolic solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$
Family 4: For $r=[-1,1,1,1],$ $s=[1,-1,1,-1],$ we get
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{-\,\sinh (\eta )}{\cosh (\eta )}.\end{eqnarray}$
Case 1: When ${A}_{0}=0,$ ${A}_{1}=0,$ ${B}_{1}=\mp \displaystyle \frac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ and $\gamma =-\displaystyle \frac{(w+(-2+{k}^{2})\alpha )}{k},$ and $\gamma =-\displaystyle \frac{w+\left(2+{k}^{2}\right){\rm{\alpha }}}{k}.$
Taking into account equation (12), equation (21), and these values in equation (4), we have
$\begin{eqnarray*}{\psi }_{6}(x,t)=\left(\displaystyle \frac{\sqrt{\alpha }\,\coth (x-ht)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ the exact solution of equation (2) takes the form
$\begin{eqnarray}{\psi }_{6}(x,t)=\left(\displaystyle \frac{\sqrt{\alpha }\,\coth \left(x-t\left(-2k\alpha +\tfrac{w+\left(2+{k}^{2}\right)\alpha }{k}\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray}$
This is corresponding to the optical singular soliton solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$
In figure (4), the amplitude of the solution given is very high in the medium through which the wave is propagated, thus this singular periodic wave is a shock wave.
Family 5: Using $r=[{\rm{i}},-{\rm{i}},1,1],$ $s=[{\rm{i}},-{\rm{i}},{\rm{i}},-{\rm{i}}],$ we get
$\begin{eqnarray}\varphi (\eta )=\displaystyle \frac{-\,\sin (\eta )}{\cos (\eta )}.\end{eqnarray}$
Case 1: When ${A}_{0}=0,$ ${A}_{1}=\mp \tfrac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ ${B}_{1}=\pm \tfrac{\sqrt{\alpha }}{\sqrt{-k\left(\delta +\mu \right)}},$ and $\gamma =-\tfrac{w+\left(-8+{k}^{2}\right)\alpha }{k}.$
Taking into account equation (12), equation (23), and these values in equation (4), we obtain
${\psi }_{7}(x,t)=\left(\displaystyle \frac{\sqrt{\alpha }\,\cot \left(x\,-\,ht\right)}{\sqrt{-k\left(\delta +\mu \right)}}-\displaystyle \frac{\sqrt{\alpha }\,\tan (x-ht)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.$
Considering $h=-2k\alpha -\gamma ,$ the exact solution of equation (2) takes the form
$\begin{eqnarray}\begin{array}{c}{\psi }_{7}(x,t)=\left(\displaystyle \frac{\sqrt{\alpha }\,\cot \left(x-t\left(-2k\alpha +\tfrac{w+\left(-8+{k}^{2}\right)\alpha }{k}\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}-\right.\\ \left.\displaystyle \frac{\sqrt{\alpha }\,\tan \left(x-t\left(-2k\alpha +\tfrac{w+\left(-8+{k}^{2}\right)\alpha }{k}\right)\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{array}\end{eqnarray}$
This is corresponding to the optical periodic soliton solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$

Case 2: When ${A}_{0}=0,$ ${A}_{1}=0,$ ${B}_{1}=\mp \displaystyle \frac{\sqrt{\alpha }}{\sqrt{-k(\delta +\mu )}},$ and $\gamma =-\displaystyle \frac{w+\left(-2+{k}^{2}\right)\alpha }{k}.$

Taking into account equation (12), equation (23) and these values in equation (4), we get
$\begin{eqnarray*}{\psi }_{8}(x,t)=\left(-\displaystyle \frac{\sqrt{\alpha }\,\cot \left(x-ht\right)}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray*}$
Considering $h=-2k\alpha -\gamma ,$ the exact solution of equation (2) is given by
$\begin{eqnarray}{\psi }_{8}(x,t)=\left(-\displaystyle \frac{\sqrt{\alpha }\,\cot \left[x-t\left(-2k\alpha +\tfrac{w+\left(-2+{k}^{2}\right)\alpha }{k}\right)\right]}{\sqrt{-k\left(\delta +\mu \right)}}\right){{\rm{e}}}^{{\rm{i}}(-kx+wt+\theta )}.\end{eqnarray}$
Equation (25) is corresponding to the optical periodic soliton solutions under conditions $\alpha \gt 0,$ $k\left(\delta +\mu \right)\lt 0.$

4. Conclusion

Herein, we have divided our results into two main parts as follows:

4.1. Overview

The current work recovered a variety of optical soliton solutions with different wave structures for the perturbed CLL model is obtained via the GERFM. According to the suitable choice of the self-steepening short pulses $\mu $ and the nonlinear dispersion coefficient $\delta ,$ the obtained solutions are classified into optical singular, periodic, hyperbolic, exponential, and trigonometric soliton solutions. Furthermore, the physical meaning of these solutions is graphically investigated through 2D- and 3D- plots. To the best of our knowledge, these results were obtained for the first time for this model. This kind of study is helpful for a physician in planning and decision-making for the treatment of optical pulse in plasma and optical fibers.

4.2. The physical interpretation

In figures 15, as changing the values of $\mu $ and $\delta ,$ the rise steepening of the wave will change. For different values of the parameter $\alpha ,$ as an example, the velocity distribution of the wave will be changed as seen in figure 3. In figure 4, when the value of $w$ is increased, the wavelength is decreased. This feature is also observed in figures 15. In summary, the obtained solutions are classified into the following categories: equations (14) and (15) represent optical exponential solutions, equations (17) and (18) investigate optical trigonometric solutions, equation (20) represents an optical hyperbolic solutions, equation (22) shows an optical singular soliton solution, and finally equations (24) and (25) introduce optical periodic soliton solutions.
Figure 1. Optical exponential solutions of equation (14) for the values of ${A}_{1}=0.2,$ $w=2,$ $k=0.1,$ $\delta =0.1,$ $\mu =0.2,$ and $\theta =1.3.$
Figure 2. Optical trigonometric solutions of equation (17) for the values of $\alpha =2,$ $k=-1,$ $\theta =0.5,$ $\mu =0.6,$ $\delta =0.4,$ and $w=0.2.$
Figure 3. Optical hyperbolic solutions of equation (20) where $\alpha =1,$ $w=1,$ $k=-2,$ $\delta =2,$ $\mu =1,$ and $\theta =2.$
Figure 4 Optical singular soliton solutions of equation (22) using $\alpha =0.3,$ $w=1.5,$ $k=-2,$ $\delta =0.5,$ $\mu =0.02,$ and $\theta =0.2.$
Figure 5. Optical periodic soliton solutions of equation (24) for the values of $\alpha =1.7,$ $w=2,$ $k=2,$ $\delta =-1.5,$ $\mu =-0.1,$ and $\theta =0.02.$

Author Sibel Tarla is a $100\backslash 2000$ the council of Higher Education (CoHE) PhD scholar in computational science and engineering sub-division.

1
Nisar K S Ali K K Inc M Mehanna M S Rezazadeh H Akinyemi L 2022 New solutions for the generalized resonant nonlinear Schrödinger equation Results Phys. 33 105153

DOI

2
Jhangeer A Rezazadeh H Seadawy A 2021 A study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas–Lenells model Pramana 95 41

DOI

3
Ali K K Osman M S Baskonus H M Elazabb N S Ilhan E 2020 Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy Math. Methods Appl. Sci.

DOI

4
Inan B Osman M S Ak T Baleanu D 2020 Analytical and numerical solutions of mathematical biology models: the Newell-Whitehead-Segel and Allen-Cahn equations Math. Methods Appl. Sci. 43 2588 2600

DOI

5
Hussein A Selim M M 2014 New soliton solutions for some important nonlinear partial differential equations using a generalized Bernoulli method Int. J. Math. Anal. Appl. 1 1 8

6
Liu J G Zhu W H Osman M S Ma W X 2020 An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model Eur. Phys. J. Plus 135 412

DOI

7
Zhang R F Bilige S 2019 Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation Nonlinear Dyn. 95 3041 3048

DOI

8
Zhang R F Li M C Gan J Y Li Q Lan Z Z 2022 Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method Chaos, Solitons Fractals 154 111692

DOI

9
Ismael H F Bulut H 2021 Multi soliton solutions, M-lump waves and mixed soliton-lump solutions to the Sawada–Kotera equation in (2 + 1)-dimensions Chin. J. Phys. 71 54 61

DOI

10
Yin Z Y Tian S F 2021 Nonlinear wave transitions and their mechanisms of (2 + 1)-dimensional Sawada–Kotera equation Physica D 427 133002

DOI

11
Kumar D Park C Tamanna N Paul G C Osman M S 2020 Dynamics of two-mode Sawada–Kotera equation: mathematical and graphical analysis of its dual-wave solutions Results Phys. 19 103581

DOI

12
Baskonus H M 2019 Complex soliton solutions to the Gilson–Pickering model Axioms 8 18

DOI

13
Ali K K Yilmazer R Baskonus H M Bulut H 2021 New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics Indian J. Phys. 95 1003 1008

DOI

14
Barman H K Roy R Mahmud F Akbar M A Osman M S 2021 Harmonizing wave solutions to the Fokas–Lenells model through the generalized Kudryashov method Optik 229 166294

DOI

15
Kallel W Almusawa H Mirhosseini-Alizamini S M Eslami M Rezazadeh H Osman M S 2021 Optical soliton solutions for the coupled conformable Fokas–Lenells equation with spatio-temporal dispersion Results Phys. 26 104388

DOI

16
Ismael H F Bulut H Baskonus H M 2020 Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m + (G′/G))-expansion method Pramana 94 35

DOI

17
Liu J G Osman M S Zhu W H Zhou L Ai G P 2019 Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers Appl. Phys. B 125 1 9

DOI

18
Tang L 2021 Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger–Hirota equation Optik 245 167750

DOI

19
Wazwaz A M Mehanna M 2021 Higher-order Sasa–Satsuma equation: bright and dark optical solitons Optik 243 167421

DOI

20
Sun F 2021 Optical solutions of Sasa–Satsuma equation in optical fibers Optik 228 166127

DOI

21
Baleanu D Osman M S Zubair A Raza N Arqub O A Ma W X 2020 Soliton solutions of a nonlinear fractional Sasa–Satsuma equation in monomode optical fibers Appl. Math. Inf. Sci. 14 365 374

DOI

22
Khater M M Jhangeer A Rezazadeh H Akinyemi L Akbar M A Inc M 2021 Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod Mod. Phys. Lett. B 35 2150381

DOI

23
Akinyemi L Nisar K S Saleel C A Rezazadeh H Veeresha P Khater M M Inc M 2021 Novel approach to the analysis of fifth-order weakly nonlocal fractional schrödinger equation with Caputo derivative Results Phys. 31 104958

DOI

24
Osman M S Wazwaz A M 2018 An efficient algorithm to construct multi-soliton rational solutions of the (2 + 1)-dimensional KdV equation with variable coefficients Appl. Math. Comput. 321 282 289

DOI

25
Rezazadeh H 2018 Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity Optik 164 84 92

DOI

26
Osman M S 2019 One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation Nonlinear Dyn. 96 1491 1496

DOI

27
Zafar A Raheel M Ali K K Razzaq W 2020 On optical soliton solutions of new Hamiltonian amplitude equation via Jacobi elliptic functions Eur. Phys. J. Plus 135 1 17

DOI

28
Ali K K Wazwaz A M Osman M S 2020 Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method Optik 208 164132

DOI

29
Osman M S Inc M Liu J G Hosseini K Yusuf A 2020 Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation Phys. Scr. 95 035229

DOI

30
Zhang R F Li M C Yin H M 2021 Rogue wave solutions and the bright and dark solitons of the (3 + 1)-dimensional Jimbo-Miwa equation Nonlinear Dyn. 103 1071 1079

DOI

31
Zhang R F Li M C 2022 Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations Nonlinear Dyn. 108 521 531

DOI

32
Baskonus H M Osman M S Ramzan M Tahir M Ashraf S 2021 On pulse propagation of soliton wave solutions related to the perturbed Chen–Lee–Liu equation in an optical fiber Opt. Quantum Electron. 53 556

DOI

33
Houwe A Abbagari S Almohsen B Betchewe G Inc M Doka S Y 2021 Chirped solitary waves of the perturbed Chen–Lee–Liu equation and modulation instability in optical monomode fibres Opt. Quantum Electron. 53 286

DOI

34
Biswas A 2018 Chirp-free bright optical soliton perturbation with Chen–Lee–Liu equation by traveling wave hypothesis and semi-inverse variational principle Optik 172 772 776

DOI

35
Akinyemi L Ullah N Akbar Y Hashemi M S Akbulut A Rezazadeh H 2021 Explicit solutions to nonlinear Chen–Lee–Liu equation Mod. Phys. Lett. B 35 2150438

DOI

36
Kudryashov N A 2019 General solution of the traveling wave reduction for the perturbed Chen–Lee–Liu equation Optik 186 339 349

DOI

37
Esen H Ozdemir N Secer A Bayram M 2021 On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach Optik 245 167641

DOI

38
Ydrm Y Biswas A Asma M Ekici M Ntsime B P Zayed E M Moshokoa S P Alzahrani A K Belic M R 2020 Optical soliton perturbation with Chen–Lee–Liu equation Optik 220 165177

DOI

39
Biswas A Ekici M Sonmezoglu A Alshomrani A S Zhou Q Moshokoa S P Belic M 2018 Chirped optical solitons of Chen–Lee–Liu equation by extended trial equation scheme Optik 156 999 1006

DOI

40
Triki H Hamaizi Y Zhou Q Biswas A Ullah M Z Moshokoa S P Belic M 2018 Chirped dark and gray solitons for Chen–Lee–Liu equation in optical fibers and PCF Optik 155 329 333

DOI

41
Ghanbari B Osman M S Baleanu D 2019 Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative Mod. Phys. Lett. A 34 1950155

DOI

42
Ghanbari B Kuo C K 2019 New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method Eur. Phys. J. Plus 134 334

DOI

43
Ghanbari B Gómez-Aguilar J F 2019 The generalized exponential rational function method for Radhakrishnan–Kundu–Lakshmanan equation with β-conformable time derivative Rev. Mex. Fisica 65 503 518

DOI

Outlines

/