1. Introduction
2. The UTM to the high-order nonlinear Schrödinger equation on a finite interval
Figure 2. The contour $\tilde{{\rm{\Sigma }}}$ in the complex λ-plane and the associated jump matrices for RH problem for $\tilde{m}$. |
3. The high-order nonlinear Schrödinger equation on the periodic problem with a single exponential initial data
3.1. The RH problem for m
• | m(x, t, λ) is analytic in ${\mathbb{C}}\setminus {\rm{\Sigma }}$, and continuous on ${\rm{\Sigma }}\setminus \{0,\pm \tfrac{\sqrt{2}}{4}\}$. |
• | m−(x, t, λ)=m+(x, t, λ)&ugr;(x, t, λ), λ ∈ Σ$\setminus \{0,\pm \tfrac{\sqrt{2}}{4}\}$. |
• | $m(x,t,\lambda )=I\,+\,O(\tfrac{1}{\lambda }),\quad \lambda \to \infty $. |
• | m(x, t, λ) = O(1) λ → 0. |
3.2. The RH problem for $\tilde{m}$
• | $\tilde{m}(x,t,\lambda )$ is analytic in ${\mathbb{C}}\setminus \tilde{{\rm{\Sigma }}}$, and continuous on $\tilde{{\rm{\Sigma }}}\setminus \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm }\}$. |
• | ${\tilde{m}}_{-}(x,t,\lambda )={\tilde{m}}_{+}(x,t,\lambda )\tilde{\upsilon }(x,t,\lambda ),\lambda \in \tilde{{\rm{\Sigma }}}\setminus \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm }\}$. |
• | $\tilde{m}(x,t,\lambda )=I\,+\,O(\tfrac{1}{\lambda }),\lambda \to \infty ,\lambda \in {\mathbb{C}}\setminus {\bigcup }_{n\in {\mathbb{Z}}}{{ \mathcal E }}_{n}$. |
• | $\tilde{m}(x,t,\lambda )=O(1),\lambda \to \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm }\}.$ |
• | $\tilde{m}(x,t,\lambda )$ is analytic in ${\mathbb{C}}\setminus \tilde{{\rm{\Sigma }}}$, and continuous on $\tilde{{\rm{\Sigma }}}\setminus \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm },{\lambda }_{1}^{\pm }\}$. |
• | ${\tilde{m}}_{-}(x,t,\lambda )={\tilde{m}}_{+}(x,t,\lambda )\tilde{\upsilon }(x,t,\lambda ),\,\lambda \in \tilde{{\rm{\Sigma }}}\setminus \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm },{\lambda }_{1}^{\pm }\}$. |
• | $\tilde{m}(x,t,\lambda )=I\,+\,O(\tfrac{1}{\lambda }),\lambda \to \infty ,\lambda \in {\mathbb{C}}\setminus {\bigcup }_{n\in {\mathbb{Z}}}{{ \mathcal E }}_{n}$. |
• | $\tilde{m}(x,t,\lambda )=O(1),\lambda \to \{0,\pm \tfrac{\sqrt{2}}{4},\tfrac{-\pi N}{L},{\lambda }^{\pm },{\lambda }_{1}^{\pm }\}.$ |
3.3. Solution of the RH problem for $\tilde{m}$
• | $\hat{m}(x,t,\lambda ):{\mathbb{C}}\setminus ({\lambda }^{-},{\lambda }^{+})\to {{\mathbb{C}}}^{2\times 2}$ is analytic. |
• | $\hat{m}$ satisfies the jump condition $\begin{eqnarray}\begin{array}{l}{\hat{m}}_{-}(x,t,\lambda )={\hat{m}}_{+}(x,t,\lambda )\left(\begin{array}{cc}0 & f\\ -\displaystyle \frac{1}{f} & 0\end{array}\right),\\ \quad \lambda \in ({\lambda }^{-},{\lambda }^{+}),\end{array}\end{eqnarray}$ where f(λ) ≡ f(x, t, λ) is defined by $\begin{eqnarray}\begin{array}{l}f(\lambda )=\displaystyle \frac{2{\rm{i}}{r}_{+}(\lambda )}{{q}_{0}}{{\rm{e}}}^{-2{\rm{i}}(\theta -\lambda L)}\\ \quad =-\displaystyle \frac{2{\rm{i}}\sqrt{| {\left(\lambda +\pi N/L\right)}^{2}+{q}_{0}^{2}| }{{\rm{e}}}^{-2{\rm{i}}(\theta -\lambda L)}}{{q}_{0}}.\end{array}\end{eqnarray}$ |
• | $\hat{m}=I+O(\tfrac{1}{\lambda }),\quad \lambda \to \infty $. |
• | $\check{m}(x,t,\lambda ):{\mathbb{C}}\setminus ({\lambda }^{-},{\lambda }^{+})\to {{\mathbb{C}}}^{2\times 2}$ is analytic. |
• | $\check{m}$ satisfies the jump condition ${\check{m}}_{-}(x,t,\lambda )\,={\check{m}}_{+}(x,t,\lambda )\left(\begin{array}{cc}0 & 1\\ -1 & 0\end{array}\right),\quad \lambda \in ({\lambda }^{-},{\lambda }^{+}).$ |
• | $\check{m}=I+O(\tfrac{1}{\lambda }),\quad \lambda \to \infty $, $\quad \check{m}=O({\left(\lambda -{\lambda }^{\pm }\right)}^{1/4}),\quad \lambda \to {\lambda }^{\pm }.$ |
We consider the case of constant initial data (N = 0, in equation (