1. Introduction
2. Basic definition of CBEE method and CBEE solvability of NLEEs
The expansion (
3. CBEE solvability and novel explicit solutions of the (2+1)-dimensional Burgers equation
If $U(\xi ,\tau )$ is a solution of the Burgers equation (
4. Symmetries and conservation laws
i | (i) Q = xy + y + t: $\begin{eqnarray}\begin{array}{rcl}{T}^{t} & = & \displaystyle \frac{1}{2}{u}_{x}{xy}+\displaystyle \frac{1}{2}\,{{yu}}_{x}+\displaystyle \frac{1}{2}\,{u}_{x}t-\displaystyle \frac{1}{2}\,{{yu}}_{},\\ {T}^{x} & = & {u}_{x}{u}_{}{xy}+{u}_{x}{{yu}}_{}+{u}_{x}{u}_{}t-\displaystyle \frac{1}{2}\,{{yu}}_{}^{2}\\ & & -{u}_{{xx}}{xy}-{u}_{{xx}}y-{u}_{{xx}}t+\displaystyle \frac{1}{2}\,{u}_{t}{xy}\\ & & +\displaystyle \frac{1}{2}\,{u}_{t}y+\displaystyle \frac{1}{2}\,{u}_{t}t+{{yu}}_{x}-\displaystyle \frac{1}{2}\,{u}_{},\\ {T}^{y} & = & -[-{u}_{y}{xy}-{u}_{y}y-{u}_{y}t+{u}_{}x+{u}_{}],\end{array}\end{eqnarray}$ |
ii | (ii) $Q=-\tfrac{1}{2}{y}^{2}+{xy}+{xt}$: $\begin{eqnarray}\begin{array}{rcl}{T}^{t} & = & -\displaystyle \frac{1}{4}\,{u}_{x}{y}^{2}+\displaystyle \frac{1}{2}\,{u}_{x}{xy}+\displaystyle \frac{1}{2}\,{u}_{x}{xt}-\displaystyle \frac{1}{2}\,{{yu}}_{}-\displaystyle \frac{1}{2}\,{u}_{}t,\\ {T}^{x} & = & -\displaystyle \frac{1}{2}\,{u}_{x}{u}_{}{y}^{2}+{u}_{x}{u}_{}{xy}+{u}_{x}{u}_{}{xt}-\displaystyle \frac{1}{2}\,{{yu}}_{}^{2}\\ & & -\displaystyle \frac{1}{2}\,{u}_{}^{2}t+\displaystyle \frac{1}{2}\,{u}_{{xx}}{y}^{2}-{u}_{{xx}}{xy}-{u}_{{xx}}{xt}\\ & & -\displaystyle \frac{1}{4}\,{u}_{t}{y}^{2}+\displaystyle \frac{1}{2}\,{u}_{t}{xy}+\displaystyle \frac{1}{2}\,{u}_{t}{xt}+{{yu}}_{x}+{u}_{x}t-\displaystyle \frac{1}{2}\,{u}_{}x,\\ {T}^{y} & = & -[\displaystyle \frac{1}{2}\,{u}_{y}{y}^{2}-{u}_{y}{xy}-{u}_{y}{xt}-{{yu}}_{}+{u}_{}x],\end{array}\end{eqnarray}$ |
iii | (iii) $Q=1-\tfrac{1}{2}{y}^{2}+{xt}+y$: $\begin{eqnarray}\begin{array}{rcl}{T}^{t} & = & \displaystyle \frac{1}{2}\,{u}_{x}-\displaystyle \frac{1}{4}\,{u}_{x}{y}^{2}+\displaystyle \frac{1}{2}\,{u}_{x}{xt}+\displaystyle \frac{1}{2}\,{{yu}}_{x}-\displaystyle \frac{1}{2}\,{u}_{}t,\\ {T}^{x} & = & -\displaystyle \frac{1}{2}\,{u}_{x}{u}_{}{y}^{2}+{u}_{x}{u}_{}{xt}+{u}_{x}{{yu}}_{}+{u}_{x}{u}_{}-\displaystyle \frac{1}{2}\,{u}_{}^{2}t-{u}_{{xx}}\\ & & +\displaystyle \frac{1}{2}\,{u}_{{xx}}{y}^{2}-{u}_{{\text{}}{xx}}{xt}-{u}_{{xx}}y+\displaystyle \frac{1}{2}\,{u}_{t}\\ & & -\displaystyle \frac{1}{4}\,{u}_{t}{y}^{2}+\displaystyle \frac{1}{2}\,{u}_{t}{xt}+\displaystyle \frac{1}{2}\,{u}_{t}y+{u}_{x}t-\displaystyle \frac{1}{2}\,{u}_{}x,\\ {T}^{y} & = & -[-{u}_{y}+\displaystyle \frac{1}{2}\,{u}_{y}{y}^{2}-{u}_{y}{xt}-{u}_{y}y-{{yu}}_{}+{u}_{}].\end{array}\end{eqnarray}$ |