Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Inverse scattering transforms of the inhomogeneous fifth-order nonlinear Schrödinger equation with zero/nonzero boundary conditions

  • Jin-Jin Mao , 1, ,
  • Shou-Fu Tian 2 ,
  • Tian-Zhou Xu 1 ,
  • Lin-Fei Shi 1
Expand
  • 1School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

Author to whom any correspondence should be addressed.

Received date: 2021-12-15

  Revised date: 2022-04-15

  Accepted date: 2022-04-15

  Online published: 2022-08-01

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The present work studies the inverse scattering transforms (IST) of the inhomogeneous fifth-order nonlinear Schrödinger (NLS) equation with zero boundary conditions (ZBCs) and nonzero boundary conditions (NZBCs). Firstly, the bound-state solitons of the inhomogeneous fifth-order NLS equation with ZBCs are derived by the residue theorem and the Laurent’s series for the first time. Then, by combining with the robust IST, the Riemann-Hilbert (RH) problem of the inhomogeneous fifth-order NLS equation with NZBCs is revealed. Furthermore, based on the resulting RH problem, some new rogue wave solutions of the inhomogeneous fifth-order NLS equation are found by the Darboux transformation. Finally, some corresponding graphs are given by selecting appropriate parameters to further analyze the unreported dynamic characteristics of the corresponding solutions.

Cite this article

Jin-Jin Mao , Shou-Fu Tian , Tian-Zhou Xu , Lin-Fei Shi . Inverse scattering transforms of the inhomogeneous fifth-order nonlinear Schrödinger equation with zero/nonzero boundary conditions[J]. Communications in Theoretical Physics, 2022 , 74(8) : 085007 . DOI: 10.1088/1572-9494/ac679b

1. Introduction

As one of the current research focuses, the nonlinear evolution equations (NLEEs) with zero/nonzero boundary conditions have been brought to the forefront of nonlinear systems in the past decades [14]. Many effective methods have emerged to get the solutions for NLEEs. In 1967, Gardner et al first proposed the inverse scattering transforms (IST) and applied it to the Korteweg–de Vries (KdV) equation [5]. The classical IST methods are generally studied on the basis of the Gel’fand-Levitan-Marchenkoo integral equation. In 1987, Zakharov et al appropriately predigested the IST method by issuing the Riemann–Hilbert (RH) formula [6]. Subsequently, more and more researchers used this method to obtain the soliton solutions of many NLEEs [713]. Thereby, the research on the RH formula made important progress in the field of integrable systems, which is remain popular all around the world [1430].
In recent years, the study of bound-state (BS) solitons and rogue wave (RW) solutions based on the RH method have drawn much attention, thereby more and more BS solitons and RW solutions of the NLEEs have been found. In 1972, Zakharov and Shabat derived the multiple-poles (MPs) soliton solutions of the nonlinear Schrödinger (NLS) equation [31]. Thereafter the increasing MPs solitons of different nonlinear integrable equations have been solved, for example, the modified KdV equation [32], the sine-Gordon (sG) equation [33], the Sasa-Satsuma (SS) equation [34], the Wadati-Konno-Ichikawa (WKI) equation [35], and the complex modified KdV equation [36]. In addition, they discussed the asymptotic for MPs solitons [37, 38]. Most importantly, using the original IST method to solve the BS solitons, which requires not only a lot of calculations but also some complex constraints [32, 33]. However, the RH problem with MPs can be directly expressed by employing the residue theorem and Laurent’s series [35, 36], which not only simplifies the calculation but also obtains the BS solitons. Thereafter, Bilman and Miller found that the robust IST can be applied to solve the higher-order RW solutions of the focusing NLS equation [39]. Simultaneously, this method is used to solve breather wave solutions, rational W-type soliton solutions, and so on. Afterward, the robust IST is used to solve more nonlinear integrable equations of RW, such as the fifth-order NLS equation [40], the sixth-order NLS equation [41], the Hirota equation [42], the quartic NLS equation [43], and the generalized NLS equation [44].
In this paper, we mainly study the inhomogeneous fifth-order NLS equation [45]
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}-{\rm{i}}\epsilon {q}_{{xxxxx}}-10{\rm{i}}\epsilon | q{| }^{2}{q}_{{xxx}}\\ \quad -20{\rm{i}}\epsilon {q}_{x}{q}^{* }{q}_{{xx}}-30{\rm{i}}\epsilon | q{| }^{4}{q}_{x}\\ \quad -10{\rm{i}}\epsilon {(| {q}_{x}{| }^{2}q)}_{x}+{q}_{{xx}}+2q| q{| }^{2}-{\rm{i}}{q}_{x}=0,\end{array}\end{eqnarray}$
where q = q(x, t) represents the complex functions of x and t, ε is the perturbation parameter, and superscript ‘*’ means the complex conjugate. In 2015, Chen first constructed the generalized Darboux transformation (DT) of the inhomogeneous fifth-order NLS equation (1) and then obtained the RW solutions based on the generalized DT [45]. In 2019, Feng et al studied the determinant representation of the N-fold DT based on Lax pair. Moreover, the higher-order solitary wave, breather wave and RW solutions in equation (1) are obtained by using the N-fold DT [46]. In 2020, Yang et al discussed equation (1) with NZBCs in detail. For the inverse scattering problem, they discussed simple zeros and double zeros cases of scattering coefficients and further obtained their exact solutions [47]. However, the BS solitons with zero boundary conditions (ZBCs) and the RW with nonzero boundary conditions (NZBCs) of equation (1) have not been analyzed. Therefore, we will use the RH problem to obtain the BS solitons of the inhomogeneous fifth-order NLS equation (1) with ZBCs. Then the RH problem of equation (1) with NZBCs is discussed. Finally, based on the obtained RH problem and the DT method, the RW solution of equation (1) with NZBCs is obtained.
Equation (1) satisfies the following Lax pair
$\begin{eqnarray}{{\rm{\Psi }}}_{x}=U{\rm{\Psi }},\qquad {{\rm{\Psi }}}_{t}=V{\rm{\Psi }},\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}U & = & -{\rm{i}}\lambda {\sigma }_{3}+Q,\\ V & = & -16{\rm{i}}{\lambda }^{5}\epsilon {\sigma }_{3}+16{\lambda }^{4}\epsilon Q-8{\rm{i}}{\lambda }^{3}\epsilon ({Q}^{2}+{Q}_{x}){\sigma }_{3}\\ & & +4{\lambda }^{2}\epsilon (2{Q}^{3}+{Q}_{x}Q-{{QQ}}_{x}-{Q}_{{xx}})\\ & & -2{\rm{i}}{\lambda }^{2}{\sigma }_{3}-{\rm{i}}\lambda {\sigma }_{3}+2\lambda Q-2{\rm{i}}\lambda \epsilon (3{Q}^{4}+6{Q}^{2}{Q}_{x}\\ & & +{Q}_{x}^{2}-{{QQ}}_{{xx}}-{Q}_{{xx}}Q-{Q}_{{xxx}}){\sigma }_{3}\\ & & -{\rm{i}}({Q}^{2}+{Q}_{x}){\sigma }_{3}+Q+\epsilon (6{Q}^{5}-6{Q}^{3}{Q}_{x}\\ & & +6{Q}^{2}{Q}_{x}Q-6{Q}_{x}{{QQ}}_{x}-4{Q}_{x}^{2}Q\\ & & -2{{QQ}}_{{xx}}Q-8{Q}^{2}{Q}_{{xx}}-{Q}_{x}{Q}_{{xx}}\\ & & +{Q}_{{xx}}{Q}_{x}-{Q}_{{xxx}}Q+{{QQ}}_{{xxx}}+{Q}_{{xxxx}}),\end{array}\end{eqnarray}$
with
$\begin{eqnarray}{\sigma }_{3}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right),\qquad Q=\left(\begin{array}{cc}0 & q\\ -{q}^{* } & 0\end{array}\right).\end{eqnarray}$
The structure of this paper is as follows: In section 2, we construct the RH problem of equation (1) with ZBCs, and then derive the BS soliton with a higher-order pole. In section 3, we construct the RH problem of the inhomogeneous fifth-order NLS equation (1) with NZBCs by means of the robust IST. Then the modified DT method is applied to solve the RH problem and obtain the exact breather wave and RW solutions of equation (1) with NZBCs. In the last section, we give some conclusions.

2. The IST with ZBCs and BS solution

We will study the BS soliton q(x, t) of the inhomogeneous fifth-order NLS equation (1) with ZBCs through infinity under the following conditions
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{x\to \pm \infty }q(x,t)=0.\end{eqnarray}$
Next, we will express the IST and BS soliton of equation (1) with ZBCs through the research of the RH problem.

2.1. The structure of the RH problem with ZBCs

Let x → ± ∞ , we rewrite the Lax pair (2) into the following form
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{x} & = & {U}_{0}{\rm{\Psi }}=-{\rm{i}}\lambda {\sigma }_{3}{\rm{\Psi }},\\ {{\rm{\Psi }}}_{t} & = & {V}_{0}{\rm{\Psi }}=(16{\lambda }^{4}\epsilon +2\lambda +1){U}_{0}{\rm{\Psi }},\end{array}\end{eqnarray}$
which satisfies the basic matrix solutions ${{\rm{\Psi }}}_{\pm }^{{fd}}(x,t,\lambda )$ and given by
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{\pm }^{{fd}}(x,t,\lambda ) & = & {{\rm{e}}}^{-{\rm{i}}{\rm{\Xi }}(x,t,\lambda ){\sigma }_{3}},\\ {\rm{\Xi }}(x,t,\lambda ) & = & \lambda [x+(16{\lambda }^{4}\epsilon +2\lambda +1)t].\end{array}\end{eqnarray}$
We get the Jost solutions $\Psi$±(x, t, λ)
$\begin{eqnarray}{{\rm{\Psi }}}_{\pm }(x,t,\lambda )\to {{\rm{e}}}^{-{\rm{i}}{\rm{\Xi }}(x,t,\lambda ){\sigma }_{3}},\qquad {as}\qquad x\to \pm \infty .\end{eqnarray}$
Then, the modified Jost solutions μ±(x, t, λ) are expressed as
$\begin{eqnarray}{\mu }_{\pm }(x,t,\lambda )={{\rm{\Psi }}}_{\pm }(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}{\rm{\Xi }}(x,t,\lambda ){\sigma }_{3}},\end{eqnarray}$
which fruit in ${\mu }_{\pm }(x,t,\lambda )\to {\mathbb{I}}$ (x → ± ∞ ), and satisfy the Volterra integral equations
$\begin{eqnarray}\begin{array}{l}{\mu }_{-}(x,t,\lambda )=\\ \quad {\mathbb{I}}+{\displaystyle \int }_{-\infty }^{x}{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(\xi -x)}Q(y,t){\mu }_{-}(y,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(\xi -x)}{\rm{d}}\xi ,\\ {\mu }_{+}(x,t,\lambda )=\\ \quad {\mathbb{I}}-{\displaystyle \int }_{x}^{+\infty }{{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}(\xi -x)}Q(y,t){\mu }_{+}(y,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}(\xi -x)}{\rm{d}}\xi .\end{array}\end{eqnarray}$
Let ${{\mathbb{C}}}_{+}\,=\,\{\lambda \in {\mathbb{C}}| \mathrm{Im}\lambda \,\gt \,0\}$, ${{\mathbb{C}}}_{-}=\{\lambda \in {\mathbb{C}}| \mathrm{Im}\lambda \lt 0\}$. Obviously, μ−,1 and μ+,2 are analytical for ${{\mathbb{C}}}_{+}$ and continuously extend to ${{\mathbb{C}}}_{+}\,\bigcup \,{\mathbb{R}}$, μ+,1 and μ−,2 are analytical for ${{\mathbb{C}}}_{-}$ and continuously extended to ${{\mathbb{C}}}_{-}\,\bigcup \,{\mathbb{R}}$ (where μ±,j represents the j-th column of matrix μ±).
$\Psi$+(x, t, λ) and $\Psi$(x, t, λ) are both solutions representing the Lax pair (2). Therefore, $\Psi$+(x, t, λ) and $\Psi$(x, t, λ) can be connected by the scattering matrix $S{(\lambda )=({s}_{{ij}}(\lambda ))}_{2\times 2}$ in the following form
$\begin{eqnarray}{{\rm{\Psi }}}_{+}(x,t,\lambda )={{\rm{\Psi }}}_{-}(x,t,\lambda )S(\lambda ),\qquad \lambda \in {\mathbb{R}},\end{eqnarray}$
or
$\begin{eqnarray}\begin{array}{l}{\mu }_{+}(x,t,\lambda )={\mu }_{-}(x,t,\lambda ){{\rm{e}}}^{-{\rm{i}}{\rm{\Xi }}(x,t,\lambda ){\sigma }_{3}}S(\lambda )\\ \times \,{{\rm{e}}}^{{\rm{i}}{\rm{\Xi }}(x,t,\lambda ){\sigma }_{3}},\qquad \lambda \in {\mathbb{R}},\end{array}\end{eqnarray}$
where μ±(x, t, λ) and S(λ) have the following symmetries
$\begin{eqnarray}\begin{array}{rcl}{\mu }_{\pm }(x,t,\lambda ) & = & {\sigma }_{2}{\mu }_{\pm }^{* }(x,t,{\lambda }^{* }){\sigma }_{2},\\ S(\lambda ) & = & {\sigma }_{2}{S}^{* }({\lambda }^{* }){\sigma }_{2},\end{array}\end{eqnarray}$
with ${\sigma }_{2}=\left(\begin{array}{cc}0 & -{\rm{i}}\\ {\rm{i}} & 0\end{array}\right)$. Furthermore, we have
$\begin{eqnarray}\begin{array}{rcl}{s}_{11}(\lambda ) & = & {s}_{22}^{* }({\lambda }^{* }),\\ {s}_{12}(\lambda ) & = & -{s}_{21}^{* }({\lambda }^{* }),\end{array}\end{eqnarray}$
sjk(j, k = 1, 2) that can be shown as
$\begin{eqnarray}\begin{array}{rcl}{s}_{11}(\lambda ) & = & \mathrm{Wr}({{\rm{\Psi }}}_{+,1},{{\rm{\Psi }}}_{-,2}),\\ {s}_{12}(\lambda ) & = & \mathrm{Wr}({{\rm{\Psi }}}_{+,2},{{\rm{\Psi }}}_{-,2}),\\ {s}_{21}(\lambda ) & = & \mathrm{Wr}({{\rm{\Psi }}}_{-,1},{{\rm{\Psi }}}_{+,1}),\\ {s}_{22}(\lambda ) & = & \mathrm{Wr}({{\rm{\Psi }}}_{-,1},{{\rm{\Psi }}}_{+,2}),\end{array}\end{eqnarray}$
and s11 is analytical for ${{\mathbb{C}}}_{-}$, and s22 is analytical for ${{\mathbb{C}}}_{+}$. In addition, s11, s22 → 1 (λ → ± ∞ ) in ${{\mathbb{C}}}_{-},{{\mathbb{C}}}_{+}$, respectively.
Next, we will structure the RH problem. First, we need to consider the piecewise meromorphic matrices
$\begin{eqnarray}M(x,t,\lambda )=\left\{\begin{array}{l}\left[{\mu }_{-,1},\displaystyle \frac{{\mu }_{+,2}}{{s}_{22}}\right],\qquad \lambda \in {{\mathbb{C}}}_{+},\\ \left[\displaystyle \frac{{\mu }_{+,1}}{{s}_{11}},{\mu }_{-,2}\right],\qquad \lambda \in {{\mathbb{C}}}_{-}.\end{array}\right.\end{eqnarray}$
Then, we obtain the following RH problem.

$M(x,t,\lambda )$ solve the following RH problem

$\begin{eqnarray}\left\{\begin{array}{l}M(x,t,\lambda ){becomes}\,{analytical}\,{for}\,{\mathbb{C}}\setminus {\mathbb{R}},\\ {M}_{+}(x,t,\lambda )={M}_{-}(x,t,\lambda )J(x,t,\lambda ),\qquad \lambda \in {\mathbb{R}},\\ M(x,t,\lambda )\to {\mathbb{I}},\qquad \lambda \to \infty ,\end{array}\right.\end{eqnarray}$
where the jump matrix $J(x,t,\lambda )$ is
$\begin{eqnarray}J(x,t,\lambda )=\left(\begin{array}{cc}1 & r(\lambda ){{\rm{e}}}^{-2{\rm{i}}{\rm{\Xi }}(x,t,\lambda )}\\ {r}^{* }({\lambda }^{* }){{\rm{e}}}^{2{\rm{i}}{\rm{\Xi }}(x,t,\lambda )} & 1+| r(\lambda ){| }^{2}\end{array}\right),\end{eqnarray}$
with $r(\lambda )=\tfrac{{s}_{12}}{{s}_{22}}$.

From equations (13) and (14), we get ${M}_{+}(\lambda )\,={\sigma }_{2}{M}_{-}^{* }({\lambda }^{* }){\sigma }_{2}$. Letting
$\begin{eqnarray}\begin{array}{l}M(x,t,\lambda )={\mathbb{I}}+\displaystyle \frac{1}{\lambda }{M}^{(1)}\left(x,t,\lambda \right)+O\left(\displaystyle \frac{1}{{\lambda }^{2}}\right),\\ \lambda \to \infty ,\end{array}\end{eqnarray}$
then q(x, t) of the inhomogeneous fifth-order NLS equation (1) with ZBCs is shown by the following formula
$\begin{eqnarray}q(x,t)=2{\rm{i}}{M}_{12}^{(1)}(x,t,\lambda )=\mathop{\mathrm{lim}}\limits_{\lambda \to \infty }2{\rm{i}}\lambda {M}_{12}(x,t,\lambda ).\end{eqnarray}$

2.2. BS soliton with a higher-order pole

Generally, we assume that λ satisfying s22(λ) = 0 in ${{\mathbb{C}}}_{+}$ and λ* satisfying s11(λ*) = 0 in ${{\mathbb{C}}}_{-}$ (where λ and λ* are exactly discrete spectral points). Without thinking of simple poles, we suppose that s22(λ) has N higher-order poles λn, n = 1, 2, 3, ⋯ ,N in ${{\mathbb{C}}}_{+}$, which means
$\begin{eqnarray}\begin{array}{rcl}{s}_{22}(\lambda ) & = & {\left(\lambda -{\lambda }_{1}\right)}^{{n}_{1}}{\left(\lambda -{\lambda }_{2}\right)}^{{n}_{2}}{\left(\lambda -{\lambda }_{3}\right)}^{{n}_{3}}\times \cdots \\ & & \times {\left(\lambda -{\lambda }_{N}\right)}^{{n}_{N}}{s}_{22}^{(0)}(\lambda ),\\ {s}_{11}({\lambda }^{* }) & = & {\left(\lambda -{\lambda }_{1}^{* }\right)}^{{n}_{1}}{\left(\lambda -{\lambda }_{2}^{* }\right)}^{{n}_{2}}{\left(\lambda -{\lambda }_{3}^{* }\right)}^{{n}_{3}}\\ & & \times \cdots \times {\left(\lambda -{\lambda }_{N}^{* }\right)}^{{n}_{N}}{s}_{11}^{(0)}({\lambda }^{* }),\end{array}\end{eqnarray}$
where ${s}_{22}^{(0)}(\lambda )={s}_{11}^{(0)}({\lambda }^{* })\ne 0$ ($\forall \lambda \in {{\mathbb{C}}}_{+}$). According to the symmetric relation (14) of the scattering matrix S(λ), we get the following results
$\begin{eqnarray}{s}_{22}({\lambda }_{n})={s}_{11}({\lambda }_{n}^{* })=0.\end{eqnarray}$
Therefore, the relevant λn and ${\lambda }_{n}^{* }$ is represented as
$\begin{eqnarray}{\rm{\Upsilon }}=\{{\lambda }_{n},{\lambda }_{n}^{* }\}{}_{n=1}^{N},\end{eqnarray}$
and its distributions are given in figure 1. In the case of reflectionless potential (that is r(λ) = 0), we obtain the soliton solution of the inhomogeneous fifth-order NLS equation (1) with ZBCs. In this section, we will discuss the situation with an N-th order pole. This means that s22(λ) has an N-th order zero point on the upper half-plane (UHP) (that is ${s}_{22}(\lambda )\,={\left(\lambda -{\lambda }_{0}\right)}^{N}{s}_{22}^{(0)}(\lambda )$ $({\rm{Im}}\lambda \gt 0,N\gt 1,{s}_{22}^{(0)}({\lambda }_{0})\ne 0)$). Similarly, we obtain that M11(x, t, λ) has an N-th order pole at $\lambda ={\lambda }_{0}^{* }$, and M12(x, t, λ) has an N-th order pole at λ = λ0. Based on the normalization condition for M(x, t, λ), we write the RH problem as follows
$\begin{eqnarray}\begin{array}{rcl}{M}_{11}(x,t,\lambda ) & = & 1+\sum _{n=1}^{N}\displaystyle \frac{{F}_{n}(x,t)}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{n}},\\ {M}_{12}(x,t,\lambda ) & = & \sum _{n=1}^{N}\displaystyle \frac{{G}_{n}(x,t)}{{\left(\lambda -{\lambda }_{0}\right)}^{n}}.\end{array}\end{eqnarray}$
Simultaneously, defining
$\begin{eqnarray}\begin{array}{rcl}{{\rm{e}}}^{-2{\rm{i}}{\rm{\Xi }}(x,t,\lambda )} & = & \sum _{s=0}^{+\infty }{f}_{s}(x,t){\left(\lambda -{\lambda }_{0}\right)}^{s},\\ {{\rm{e}}}^{2{\rm{i}}{\rm{\Xi }}(x,t,\lambda )} & = & \sum _{s=0}^{+\infty }{f}_{s}^{* }(x,t){\left(\lambda -{\lambda }_{0}^{* }\right)}^{s},\\ {M}_{11}(x,t,\lambda ) & = & \sum _{s=0}^{+\infty }{\zeta }_{s}(x,t){\left(\lambda -{\lambda }_{0}\right)}^{s},\\ {M}_{12}(x,t,\lambda ) & = & \sum _{s=0}^{+\infty }{\xi }_{s}(x,t){\left(\lambda -{\lambda }_{0}^{* }\right)}^{s},\\ r(\lambda ) & = & {r}_{0}(\lambda )+\sum _{m=1}^{N}\displaystyle \frac{{r}_{m}}{{\left(\lambda -{\lambda }_{0}\right)}^{m}},\\ {r}^{* }({\lambda }^{* }) & = & {r}_{0}^{* }({\lambda }^{* })+\sum _{m=1}^{N}\displaystyle \frac{{r}_{m}^{* }}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{m}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{f}_{s}(x,t) & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {\lambda }^{s}}{{\rm{e}}}^{-2{\rm{i}}{\rm{\Xi }}(x,t,\lambda )},\\ {\zeta }_{s}(x,t) & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {\lambda }^{s}}{M}_{11}(x,t,\lambda ),\\ {\xi }_{s}(x,t) & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}^{* }}\displaystyle \frac{1}{s!}\displaystyle \frac{{\partial }^{s}}{\partial {\lambda }^{s}}{M}_{12}(x,t,\lambda ),\\ {r}_{m} & = & \mathop{\mathrm{lim}}\limits_{\lambda \to {\lambda }_{0}}\displaystyle \frac{1}{(N-m)!}\displaystyle \frac{{\partial }^{N-m}}{\partial {\lambda }^{N-m}}[{\left(\lambda -{\lambda }_{0}\right)}^{N}r(\lambda )],\\ s & = & 0,1,2,3,\cdots ,\qquad \qquad m=1,2,3,4,\cdots ,N,\end{array}\end{eqnarray}$
and r0(λ) means analytical for the UHP.
Figure 1. Depicts the contours and the discrete spectrum of the RH problem on complex λ-plane, ${{\mathbb{C}}}_{+}$ (yellow) and ${{\mathbb{C}}}_{-}$ (white).
On the basis of the theorem 1, (24) and (25), then we collect the correlation coefficients of ${\left(\lambda -{\lambda }_{0}\right)}^{-n}$ and ${\left(\lambda -{\lambda }_{0}^{* }\right)}^{-n}$ to get
$\begin{eqnarray}\begin{array}{rcl}{F}_{n}(x,t) & = & -\sum _{m=n}^{N}\sum _{s=0}^{m-n}{r}_{m}^{* }{f}_{m-n-s}^{* }(x,t){\xi }_{s}(x,t),\\ {G}_{n}(x,t) & = & \sum _{m=n}^{N}\sum _{s=0}^{m-n}{r}_{m}{f}_{m-n-s}(x,t){\zeta }_{s}(x,t),\end{array}\end{eqnarray}$
with n = 1, 2, 3, ⋯ ,N.
Similarly, putting (24) into (26), we have
$\begin{eqnarray}\begin{array}{rcl}{\xi }_{s}(x,t) & = & \sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\displaystyle \frac{{\left(-1\right)}^{s}{G}_{l}(x,t)}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{l+s}},\,\,s=0,1,2,\cdots ,\\ {\zeta }_{s}(x,t) & = & \left\{\begin{array}{l}1+\sum _{l=1}^{N}\displaystyle \frac{{F}_{l}(x,t)}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{l}},\,\,\,s=0,\\ \sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\displaystyle \frac{{\left(-1\right)}^{s}{F}_{l}(x,t)}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{l+s}},\,\,s=1,2,3,\cdots .\end{array}\right.\end{array}\,\end{eqnarray}$
Putting (28) into (27), we obtain
$\begin{eqnarray}\begin{array}{rcl}{F}_{n}(x,t) & = & -\sum _{m=n}^{N}\sum _{s=0}^{m-n}\sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\\ & & \times \displaystyle \frac{{\left(-1\right)}^{s}{r}_{m}^{* }{f}_{m-n-s}^{* }(x,t){G}_{l}}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{l+s}},\\ {G}_{n}(x,t) & = & \sum _{m=n}^{N}{r}_{m}{f}_{m-n}(x,t)\\ & & +\sum _{m=n}^{N}\sum _{s=0}^{m-n}\sum _{l=1}^{N}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\\ & & \times \displaystyle \frac{{\left(-1\right)}^{s}{r}_{m}{f}_{m-n-s}(x,t){F}_{l}}{{\left({\lambda }_{0}-{\lambda }_{0}^{* }\right)}^{l+s}},\\ n & = & 1,2,3,\cdots ,N.\end{array}\end{eqnarray}$
Subsequently, we can conclude the following theorem.

Based on the ZBCs at infinity provided in (5), the N-th order BS soliton of the inhomogeneous fifth-order NLS equation (1) is

$\begin{eqnarray}q(x,t)=2{\rm{i}}\left(\displaystyle \frac{\det ({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+| \eta \rangle \langle {{\rm{Y}}}_{0}| )}{\det ({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }})}-1\right),\end{eqnarray}$
where $\langle {Y}_{0}| \,=\,{[1,0,0,\cdots ,0]}_{1\times N}$ and
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Omega }} & = & {[{{\rm{\Omega }}}_{{nl}}]}_{N\times N}=\left[-\sum _{m=n}^{N}\sum _{s=0}^{m-n}\left(\begin{array}{c}l+s-1\\ s\end{array}\right)\right.\\ & & {\left.\times \displaystyle \frac{{\left(-1\right)}^{s}{r}_{m}^{* }{f}_{m-n-s}^{* }(x,t)}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{l+s}}\right]}_{N\times N},\\ | \eta \rangle & = & {\left[{\eta }_{1},{\eta }_{2},{\eta }_{3},\cdots ,{\eta }_{N}\right]}^{\top },\qquad \,\,\,{\eta }_{n}=\sum _{m=n}^{N}{r}_{m}{f}_{m-n}(x,t),\\ n,l & = & 1,2,3,\cdots ,N.\end{array}\end{eqnarray}$

First, we introduce

$\begin{eqnarray}\begin{array}{rcl}| F\rangle & = & {\left[{F}_{1},{F}_{2},{F}_{3},\cdots ,{F}_{N}\right]}^{\top },\\ | G\rangle & = & {\left[{G}_{1},{G}_{2},{G}_{3},\cdots ,{G}_{N}\right]}^{\top },\end{array}\end{eqnarray}$
where the superscript ”$\top $” means transposition. Subsequently, we can transform equations (29) into the following form
$\begin{eqnarray}| F\rangle ={\rm{\Omega }}| G\rangle ,\qquad \qquad | G\rangle =| \eta \rangle -{{\rm{\Omega }}}^{* }| F\rangle .\end{eqnarray}$
Then, we obtain
$\begin{eqnarray}\begin{array}{rcl}| F\rangle & = & {\rm{\Omega }}{\left({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}| \eta \rangle ,\\ | G\rangle & = & {\left({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}^{-1}| \eta \rangle .\end{array}\end{eqnarray}$
Putting (34) into (24), we have
$\begin{eqnarray}\begin{array}{l}{M}_{11}(x,t,\lambda )=1+\sum _{n=1}^{N}\displaystyle \frac{{F}_{n}(x,t)}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{n}}\\ \quad =\,\displaystyle \frac{\det \left({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+| \eta \rangle \langle {\rm{Y}}(\lambda )| {\rm{\Omega }}\right)}{\det ({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }})},\\ {M}_{12}(x,t,\lambda )=\sum _{n=1}^{N}\displaystyle \frac{{G}_{n}(x,t)}{{\left(\lambda -{\lambda }_{0}\right)}^{n}}\\ \quad =\displaystyle \frac{\det \left({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}+| \eta \rangle \langle {{\rm{Y}}}^{* }({\lambda }^{* })| \right)}{\det \left({\mathbb{I}}+{{\rm{\Omega }}}^{* }{\rm{\Omega }}\right)}-1,\end{array}\end{eqnarray}$
where $\langle Y(\lambda )| \,=\,\left[\tfrac{1}{(\lambda -{\lambda }_{0}^{* })},\tfrac{1}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{2}},\cdots ,\tfrac{1}{{\left(\lambda -{\lambda }_{0}^{* }\right)}^{N}}\right]$. According to expression (20), the theorem 2 is finally proved.

When N = 2, λ = λ0 is the second-order zero point of s22, then r(λ) is rewritten as follows
$\begin{eqnarray}r(\lambda )={r}_{0}(\lambda )+\displaystyle \frac{{r}_{1}}{\lambda -{\lambda }_{0}}+\displaystyle \frac{{r}_{2}}{{\left(\lambda -{\lambda }_{0}\right)}^{2}},\end{eqnarray}$
and Ω11, Ω12, Ω21 and Ω22 are expressed as
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Omega }}}_{11} & = & -\displaystyle \frac{{r}_{1}^{* }{f}_{0}^{* }}{{\lambda }_{0}^{* }-{\lambda }_{0}}-\displaystyle \frac{{r}_{2}^{* }{f}_{1}^{* }}{{\lambda }_{0}^{* }-{\lambda }_{0}}+\displaystyle \frac{{r}_{2}^{* }{f}_{0}^{* }}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{2}},\\ {{\rm{\Omega }}}_{12} & = & -\displaystyle \frac{{r}_{1}^{* }{f}_{0}^{* }}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{2}}-\displaystyle \frac{{r}_{2}^{* }{f}_{1}^{* }}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{2}}+\displaystyle \frac{2{r}_{2}^{* }{f}_{0}^{* }}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{3}},\\ {{\rm{\Omega }}}_{21} & = & -\displaystyle \frac{{r}_{2}^{* }{f}_{0}^{* }}{{\lambda }_{0}^{* }-{\lambda }_{0}},\qquad \qquad {{\rm{\Omega }}}_{22}=-\displaystyle \frac{{r}_{2}^{* }{f}_{0}^{* }}{{\left({\lambda }_{0}^{* }-{\lambda }_{0}\right)}^{2}},\end{array}\end{eqnarray}$
$| \eta \rangle ={\left[{\eta }_{1},{\eta }_{2}\right]}^{\top }$ defined as
$\begin{eqnarray}{\eta }_{1}={r}_{1}{f}_{0}+{r}_{2}{f}_{1},\qquad \qquad {\eta }_{2}={r}_{2}{f}_{0},\end{eqnarray}$
and ⟨Y0∣ = [1, 0]. Furthermore, on the basis of the theorem 2, let r1 = r2 = 1, λ0 = a + bi, we obtain that the second-order BS soliton solution of the inhomogeneous fifth-order NLS equation (1) is
$\begin{eqnarray}q(x,t)=-\displaystyle \frac{32{\rm{i}}{b}^{3}\left({\varpi }_{1}{{\rm{e}}}^{-2{\rm{i}}\left(a+b{\rm{i}}\right){\varpi }_{2}}+{\varpi }_{3}{{\rm{e}}}^{{\varpi }_{4}}\right)}{\left({\varpi }_{5}+{{\rm{e}}}^{4b{\varpi }_{6}}\right){{\rm{e}}}^{4b{\varpi }_{6}}+258{b}^{8}},\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\varpi }_{1} & = & \left(2560\,{\rm{i}}{a}^{4}{b}^{5}\epsilon -15360\,{\rm{i}}{a}^{2}{b}^{7}\epsilon +2560\,{\rm{i}}{b}^{9}\epsilon \right.\\ & & -10240\,{a}^{3}{b}^{6}\epsilon +10240\,{{ab}}^{8}\epsilon +128\,{\rm{i}}{{ab}}^{5}\\ & & \left.+32\,{\rm{i}}{b}^{5}-128\,{b}^{6}\right)t+32\,{\rm{i}}{b}^{5}x-16\,{b}^{5},\\ {\varpi }_{2} & = & 16\,{b}^{4}t\epsilon -64\,{\rm{i}}{{ab}}^{3}t\epsilon -96\,{a}^{2}{b}^{2}t\epsilon +64\,{\rm{i}}{a}^{3}{bt}\epsilon \\ & & +16\,{a}^{4}t\epsilon +2\,{\rm{i}}{bt}+2\,{at}+t+x,\\ {\varpi }_{3} & = & \left(-160\,{\rm{i}}{a}^{4}b\epsilon +960\,{\rm{i}}{a}^{2}{b}^{3}\epsilon -160\,{\rm{i}}{b}^{5}\epsilon \right.\\ & & \left.-640\,{a}^{3}{b}^{2}\epsilon +640\,{{ab}}^{4}\epsilon -8\,{\rm{i}}{ab}-2\,{\rm{i}}b-8\,{b}^{2}\right)t\\ & & -2\,{\rm{i}}{bx}+2\,{\rm{i}}-b,\\ {\varpi }_{4} & = & \left(-32\,{\rm{i}}{a}^{5}\epsilon +320\,{\rm{i}}{a}^{3}{b}^{2}\epsilon -160\,{\rm{i}}{{ab}}^{4}\epsilon +480\,{a}^{4}b\epsilon \right.\\ & & -960\,{a}^{2}{b}^{3}\epsilon +96\,{b}^{5}\epsilon -4\,{\rm{i}}{a}^{2}+4\,{\rm{i}}{b}^{2}\\ & & \left.-2\,{\rm{i}}a+24\,{ab}+6\,b\right)t-2\,{\rm{i}}{ax}+6\,{bx},\\ {\varpi }_{5} & = & \left(1\,638\,400\,{a}^{8}{b}^{6}{\epsilon }^{2}+6553600\,{a}^{6}{b}^{8}{\epsilon }^{2}\right.\\ & & +9830400\,{a}^{4}{b}^{10}{\epsilon }^{2}+6553600\,{a}^{2}{b}^{12}{\epsilon }^{2}\\ & & +1638400\,{b}^{14}{\epsilon }^{2}+163840\,{a}^{5}{b}^{6}\epsilon -327680\,{a}^{3}{b}^{8}\epsilon \\ & & -491520\,{{ab}}^{10}\epsilon +40960\,{a}^{4}{b}^{6}\epsilon \\ & & -245760\,{a}^{2}{b}^{8}\epsilon +40960\,{b}^{10}\epsilon \\ & & \left.+4096\,{a}^{2}{b}^{6}+4096\,{b}^{8}+2048\,{{ab}}^{6}+256\,{b}^{6}\right){t}^{2}\\ & & +\left(40\,960\,{a}^{4}{b}^{6}\epsilon -245760\,{a}^{2}{b}^{8}\epsilon \right.\\ & & \left.+40960\,{b}^{10}\epsilon +2048\,{{ab}}^{6}+512\,{b}^{6}\right){xt}\\ & & +(81920\,{a}^{3}{b}^{7}\epsilon -81920\,{{ab}}^{9}\epsilon -20480\,{a}^{4}{b}^{5}\epsilon \\ & & +122\,880\,{a}^{2}{b}^{7}\epsilon -20480\,{b}^{9}\epsilon +1024\,{b}^{7}\\ & & \left.-1024\,{{ab}}^{5}-256\,{b}^{5}\right)t+256\,{b}^{6}{x}^{2}\\ & & +64\,{b}^{6}-256\,{b}^{5}x+96\,{b}^{4},\\ {\varpi }_{6} & = & \left(80\,{a}^{4}\epsilon -160\,{a}^{2}{b}^{2}\epsilon +16\,{b}^{4}\epsilon +4\,a+1\right)t+x.\end{array}\end{eqnarray}$
The BS soliton solution (39) means the interaction between two soliton solutions, in which the high peak is caused by the interaction of two solitons with related eigenvalues. The relevant evolution process for the solutions (39) at different coefficient ε are counseled in Figure 2. We can find that the change of parameter ε affects the phase for the two solitons in Figure 2.
Figure 2. The density plots of the second-order the BS soliton solution (39) for equation (1) with the parameters $a=\tfrac{1}{3}$, $b=\tfrac{2}{3}$ and (a) $\epsilon =\tfrac{1}{2};$ (b) $\epsilon =\tfrac{1}{3};$ (c) $\epsilon =\tfrac{1}{4};$ (d) $\epsilon =\tfrac{1}{6}$.

3. The IST with NZBCs and RW

We will study the RW solution q(x, t) of the inhomogeneous fifth-order NLS equation (1) with NZBCs through infinity under the following conditions
$\begin{eqnarray}\mathop{\mathrm{lim}}\limits_{x\to \pm \infty }q(x,t)=B{{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)},\end{eqnarray}$
where ω and B > 0 expressions real constants, ν = (30B4ω − 20B2ω3 + ω5)ε + 2B2ω2 + ω.

3.1. The structure of the RH problem with NZBCs

According to the robust IST, we obtain the RH problem of the inhomogeneous fifth-order NLS equation (1) with NZBCs. For t (x → ± ∞ ), q(x, t) → Bei(ωx+νt). Based on the standard transformation ${\rm{\Psi }}(x,t)={{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)\tfrac{{\sigma }_{3}}{2}}\psi (x,t)$, the Lax pair (2) will be converted to
$\begin{eqnarray}{\psi }_{x}=X\psi ,\qquad {\psi }_{t}=T\psi ,\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}X & = & -{\rm{i}}\left(\lambda +\displaystyle \frac{\omega }{2}\right){\sigma }_{3}+{Q}_{1},\\ {Q}_{1} & = & \left(\begin{array}{cc}0 & q{{\rm{e}}}^{-{\rm{i}}(\omega x+\nu t)}\\ -{q}^{* }{{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)} & 0\end{array}\right),\\ T & = & {{\rm{e}}}^{-{\rm{i}}\left(\omega x+\nu t\right)\displaystyle \frac{{\sigma }_{3}}{2}}\left(V-\displaystyle \frac{{\rm{i}}\nu }{2}{\sigma }_{3}\right){{\rm{e}}}^{{\rm{i}}\left(\omega x+\nu t\right)\displaystyle \frac{{\sigma }_{3}}{2}}.\end{array}\end{eqnarray}$
By the NZBCs (41), we can rewrite the above Lax pair (42) into the following form
$\begin{eqnarray}{\psi }_{\pm x}={X}_{\pm }{\psi }_{\pm },\qquad {\psi }_{\pm t}={T}_{\pm }{\psi }_{\pm },\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{X}_{\pm } & = & -{\rm{i}}\left(\lambda +\displaystyle \frac{\omega }{2}\right){\sigma }_{3}+{Q}_{0},\\ {Q}_{0} & = & \left(\begin{array}{cc}0 & B\\ -B & 0\end{array}\right),\\ {T}_{\pm } & = & \delta (\lambda ){X}_{\pm }=\left[16\,{\lambda }^{4}\epsilon -8\,{\lambda }^{3}\omega \,\epsilon +\left(-8\,{B}^{2}\epsilon +4\,{\omega }^{2}\epsilon \right){\lambda }^{2}\right.\\ & & +\left(12\,{B}^{2}\omega \,\epsilon -2\,{\omega }^{3}\epsilon +2\right)\lambda \\ & & \left.+6\,{B}^{4}\epsilon -12\,{B}^{2}{\omega }^{2}\epsilon +{\omega }^{4}\epsilon -\omega +1\right]{X}_{\pm }.\end{array}\end{eqnarray}$
According to the Lax pair (44), we can get the following solution
$\begin{eqnarray}\begin{array}{rcl}{\psi }_{\pm }(\lambda ,x,t) & = & Y(\lambda ){{\rm{e}}}^{-{\rm{i}}\theta (\lambda ,x,t){\sigma }_{3}},\\ Y(\lambda ) & = & n(\lambda )\left(\begin{array}{cc}1 & \displaystyle \frac{{\rm{i}}\left(\lambda +\tfrac{\omega }{2}-\rho \right)}{B}\\ \displaystyle \frac{{\rm{i}}\left(\lambda +\tfrac{\omega }{2}-\rho \right)}{B} & 1\end{array}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}n{\left(\lambda \right)}^{2} & = & \displaystyle \frac{\lambda +\tfrac{\omega }{2}+\rho }{2\rho },\\ \theta (\lambda ,x,t) & = & \rho (\lambda )[x+\delta (\lambda )t],\end{array}\end{eqnarray}$
and $\rho {\left(\lambda \right)}^{2}={\left(\lambda +\tfrac{\omega }{2}\right)}^{2}+{B}^{2}$, which is a two-sheeted Riemann surface for λ with branch points being $\lambda =-\tfrac{\omega }{2}\pm {\rm{i}}B$, ρ(λ) = λ + O(λ−1), and $\det (Y(\lambda ))=1$ for $\lambda \ne -\tfrac{\omega }{2}\pm {\rm{i}}B$. The branch cut of ρ(λ) expressed by η = ηη+ with ${\eta }_{-}=\left[-{\rm{i}}B-\tfrac{\omega }{2},-\tfrac{\omega }{2}\right]$ and ${\eta }_{+}=\left[{\rm{i}}B-\tfrac{\omega }{2},-\tfrac{\omega }{2}\right]$, and η means oriented upward (see figure 3).
Figure 3. The contour ${{\rm{\Sigma }}}_{0}={\mathbb{R}}\cup \eta $ of the basic RH problem.
We assume that Φ±(λ, x, t) are also the solution of the Lax pair (44) and Φ±(λ, x, t) → ψ±(λ, x, t) (x → ± ∞ ). Then, taking transformation
$\begin{eqnarray}{\mu }_{\pm }(\lambda ,x,t)={{\rm{\Phi }}}_{\pm }(\lambda ,x,t){{\rm{e}}}^{{\rm{i}}\theta (\lambda ,x,t){\sigma }_{3}},\end{eqnarray}$
with
$\begin{eqnarray}{\mu }_{\pm }(\lambda ,x,t)\to Y(\lambda ),\qquad x\to \pm \infty .\end{eqnarray}$
Then we can immediately calculate that μ± satisfy
$\begin{eqnarray}\begin{array}{l}{\left({Y}^{-1}{\mu }_{\pm }\right)}_{x}-{\rm{i}}\rho \left[{Y}^{-1}{\mu }_{\pm },{\sigma }_{3}\right]={Y}^{-1}({Q}_{1}-{Q}_{0}){\mu }_{\pm },\\ {\left({Y}^{-1}{\mu }_{\pm }\right)}_{t}-{\rm{i}}\rho \delta \left[{Y}^{-1}{\mu }_{\pm },{\sigma }_{3}\right]={Y}^{-1}(T-{T}_{\pm }){\mu }_{\pm },\end{array}\end{eqnarray}$
and satisfy the following Volterra integral equations
$\begin{eqnarray}\begin{array}{rcl}{\mu }_{-}(x,t,\lambda ) & = & Y+{\displaystyle \int }_{-\infty }^{x}Y{{\rm{e}}}^{{\rm{i}}\rho {\sigma }_{3}(\xi -x)}\\ & & \times \left[{Y}^{-1}({Q}_{1}-{Q}_{0}){\mu }_{-}(\xi ,t,\lambda )\right]{{\rm{e}}}^{-{\rm{i}}\rho {\sigma }_{3}(\xi -x)}{\rm{d}}\xi ,\\ {\mu }_{+}(x,t,\lambda ) & = & Y-{\displaystyle \int }_{x}^{+\infty }Y{{\rm{e}}}^{{\rm{i}}\rho {\sigma }_{3}(\xi -x)}\\ & & \times \left[{Y}^{-1}({Q}_{1}-{Q}_{0}){\mu }_{+}(\xi ,t,\lambda )\right]{{\rm{e}}}^{-{\rm{i}}\rho {\sigma }_{3}(\xi -x)}{\rm{d}}\xi .\end{array}\end{eqnarray}$
Firstly, we will use the robust IST to structure the RH problem [39]. Let us assume $q(x,t)-B{{\rm{e}}}^{(\omega x+\nu t)}\in {L}^{1}({\mathbb{R}})$ and μ± = [μ±1, μ±2]. Since μ−1 include e−2iρ(ξx), it is verified that μ−1 means analytical on ${{\mathbb{C}}}_{+}\setminus {\eta }_{+}$ (where ${{\mathbb{C}}}_{+}=\{\lambda :\mathrm{Im}\lambda \gt 0\}$). Using a similar method, we can find that μ−2 means analytical on ${{\mathbb{C}}}_{-}\setminus {\eta }_{-}$ (where ${{\mathbb{C}}}_{-}=\{\lambda :\mathrm{Im}\lambda \lt 0\}$). In summary, μ−1 and μ+2 are analytically continuous to ${{\mathbb{C}}}_{+}\setminus {\eta }_{+}$, while μ+1 and μ−2 are analytically continuous to ${{\mathbb{C}}}_{-}\setminus {\eta }_{-}$.
Since Φ±(λ, x, t) satisfy (42) for $\lambda \in {{\rm{\Sigma }}}_{0}\setminus \left\{-\tfrac{\omega }{2}\pm {\rm{i}}B\right\}$, we can give the scattering relation by S(λ)
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{+}(\lambda ,x,t)={{\rm{\Phi }}}_{-}(\lambda ,x,t)S(\lambda ),\\ \lambda \in {{\rm{\Sigma }}}_{0}\setminus \left\{-\displaystyle \frac{\omega }{2}\pm {\rm{i}}B\right\},\end{array}\end{eqnarray}$
the scattering matrix is shown as
$\begin{eqnarray}S(\lambda )=\left(\begin{array}{cc}{S}_{11}(\lambda ) & {S}_{12}(\lambda )\\ {S}_{21}(\lambda ) & {S}_{22}(\lambda )\end{array}\right),\qquad \det (S(\lambda ))=1,\end{eqnarray}$
where ${S}_{11}(\lambda )={S}_{22}^{* }({\lambda }^{* })$, ${S}_{12}(\lambda )=-{S}_{21}^{* }({\lambda }^{* })$. Furthermore, the Beals-Coifman (BC) simultaneous solution of the Lax pair (42) is obtained
$\begin{eqnarray}{\phi }^{{BC}}(x,t,\lambda )=\left\{\begin{array}{l}\left[{{\rm{\Phi }}}_{-,1}(\lambda ,x,t),\displaystyle \frac{{{\rm{\Phi }}}_{+,2}\left(\lambda ,x,t\right)}{{S}_{22}\left(\lambda \right)}\right],\,\,\lambda \in {{\mathbb{C}}}_{+}\setminus {\eta }_{+},\\ \left[\displaystyle \frac{{{\rm{\Phi }}}_{+,1}\left(\lambda ,x,t\right)}{{S}_{11}\left(\lambda \right)},{{\rm{\Phi }}}_{-,2}\left(\lambda ,x,t\right)\right],\,\,\lambda \in {{\mathbb{C}}}_{-}\setminus {\eta }_{-}.\end{array}\right.\end{eqnarray}$
Set ${M}^{{BC}}(x,t,\lambda )={\phi }^{{BC}}(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\theta {\sigma }_{3}}$, the jumping curve of MBC(x, t, λ) is ${\mathbb{R}}\cup \eta $. According to the similar calculation shown in [48, 49], we derive another similar solution of (42) for the smaller λ (here we assume that ϵ). In order that this solution has no singularities, we define
$\begin{eqnarray}\phi (x,t,\lambda )=\left\{\begin{array}{l}{\phi }^{{BC}}(x,t,\lambda ),\qquad \lambda \in {D}_{+}\cup {D}_{-},\\ {\phi }^{{\rm{in}}}(x,t,\lambda ),\qquad \,\,\lambda \in {D}_{0},\end{array}\right.\end{eqnarray}$
where φBC(x, t, λ) means the BC simultaneous solution. φin(x, t, λ) represents a complete function, which is redefined as φ(x, t, λ)φ(L, 0, λ)−1. D0 represents an open disk with a boundary of Σ+ ∪ Σ and a radius of ϵ. It is worth noting that we choose the appropriate ϵ to further make S11(λ), S22(λ) is not equal to zero outside the disk. Concurrently, the branch cut η is included in this disk. In addition, ${D}_{\pm }=\{\lambda \in {\mathbb{C}}:| \lambda | \geqslant \varepsilon ,\mathrm{Im}\lambda \gtrless 0\}$ and Σ = ( − ∞ , − ϵ] ∪ [ϵ, + ∞ ) ∪ Σ+ ∪ Σ are displayed in figure 4. Let $M(x,t,\lambda )=\phi (x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\theta {\sigma }_{3}}$, the RH problem of the inhomogeneous fifth-order NLS equation (1) with NZBCs is obtained as follows.

$M(x,t,\lambda )$ solves the RH problem

$\begin{eqnarray}\left\{\begin{array}{l}M(x,t,\lambda ){becomes}\,{analytical}\,{for}\,{\mathbb{C}}\setminus \{{\rm{\Sigma }}\cup \eta \},\\ {M}_{+}(x,t,\lambda )=\left\{\begin{array}{l}{M}_{-}(x,t,\lambda ){{\rm{e}}}^{-{\rm{i}}\theta {\sigma }_{3}}J(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\theta {\sigma }_{3}},\qquad \,\lambda \in {\rm{\Sigma }},\\ {M}_{-}(x,t,\lambda ){{\rm{e}}}^{2{\rm{i}}{\rho }_{+}(\lambda )[x+\delta (\lambda )t]{\sigma }_{3}},\qquad \qquad \lambda \in \eta ,\end{array}\right.\\ M(x,t,\lambda )\to {\mathbb{I}},\qquad \lambda \to \infty ,\end{array}\right.\end{eqnarray}$
where the jump matrix $J(x,t,\lambda )$ is
$\begin{eqnarray}J(x,t,\lambda )=\left\{\begin{array}{l}\left[{{\rm{\Phi }}}_{-,1}(L,0,\lambda ),\displaystyle \frac{{{\rm{\Phi }}}_{+,2}\left(L,0,\lambda \right)}{{S}_{22}(\lambda )}\right],\,\,\lambda \in {{\rm{\Sigma }}}_{+},\\ \left[\displaystyle \frac{{{\rm{\Phi }}}_{+,1}\left(L,0,\lambda \right)}{{S}_{11}(\lambda )},{{\rm{\Phi }}}_{-,2}(L,0,\lambda )\right],\,\,\lambda \in {{\rm{\Sigma }}}_{-},\\ \left[\begin{array}{cc}1 & R(\lambda )\\ {R}^{* }({\lambda }^{* }) & 1+| R(\lambda ){| }^{2}\end{array}\right],\qquad \,\,\lambda \in (-\infty ,-\varepsilon ]\cup [\varepsilon ,+\infty ),\end{array}\right.\end{eqnarray}$
and L expresses a fixed real number, $R(\lambda )=\tfrac{{S}_{12}(\lambda )}{{S}_{22}(\lambda )}$ and the corresponding contour is displayed in figure 4. Then, we can deduce that the solution of the inhomogeneous fifth-order NLS equation (1) is
$\begin{eqnarray}q(x,t)=\mathop{\mathrm{lim}}\limits_{\lambda \to \infty }2{\rm{i}}\lambda {M}_{12}(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}.\end{eqnarray}$

Figure 4. Definitions of the regions D±, D0 and Σ±, η.

3.2. RW of the inhomogeneous fifth-order NLS equation

We will use the modified DT for theorem 1 to obtain the higher-order RW of the inhomogeneous fifth-order NLS equation (1). We make the following specification transformation
$\begin{eqnarray}\widetilde{\phi }(x,t,\lambda )=\left\{\begin{array}{l}{\boldsymbol{T}}(x,t,\lambda )\phi (x,t,\lambda ),\,\,\,\,\lambda \in {D}_{+}\cup {D}_{-},\\ {\boldsymbol{T}}(x,t,\lambda )\phi (x,t,\lambda ){\boldsymbol{T}}{\left(L,0,\lambda \right)}^{-1},\qquad \lambda \in {D}_{0},\end{array}\right.\end{eqnarray}$
where φ(x, t, λ) satisfies the above Lax pair (42) and $\phi (L,0,\lambda )={\mathbb{I}}$ (λD0). The T is expressed as
$\begin{eqnarray}{\boldsymbol{T}}(x,t,\lambda )={\mathbb{I}}+\displaystyle \frac{{\boldsymbol{H}}(x,t)}{\lambda -\varsigma }+\displaystyle \frac{{\boldsymbol{Y}}(x,t)}{\lambda -{\varsigma }^{* }},\end{eqnarray}$
for λD0 where H(x, t) and Y(x, t) can be written as
$\begin{eqnarray}\begin{array}{rcl}{\boldsymbol{H}}(x,t) & = & \displaystyle \frac{4{\beta }^{2}\left(1-{\vartheta }^{* }(x,t)\right){\boldsymbol{s}}(x,t){{\boldsymbol{s}}}^{\top }(x,t){\sigma }_{2}+2{\rm{i}}\beta { \mathcal N }(x,t){\sigma }_{2}{{\boldsymbol{s}}}^{* }(x,t){{\boldsymbol{s}}}^{\top }(x,t){\sigma }_{2}}{4{\beta }^{2}| 1-\vartheta (x,t){| }^{2}+{{ \mathcal N }}^{2}(x,t)},\\ {\boldsymbol{Y}}(x,t) & = & \displaystyle \frac{4{\beta }^{2}\left(\vartheta (x,t)-1\right){\sigma }_{2}{{\boldsymbol{s}}}^{* }(x,t){{\boldsymbol{s}}}^{\dagger }(x,t)-2{\rm{i}}\beta { \mathcal N }(x,t){\boldsymbol{s}}(x,t){{\boldsymbol{s}}}^{\dagger }(x,t)}{4{\beta }^{2}| 1-\vartheta (x,t){| }^{2}+{{ \mathcal N }}^{2}(x,t)},\end{array}\end{eqnarray}$
where $\beta =\mathrm{Im}(\varsigma )$, s(x, t) = φ(x, t)c, ${ \mathcal N }(x,t)={{\boldsymbol{s}}}^{\dagger }(x,t){\boldsymbol{s}}(x,t)$, $\vartheta (x,t)={{\boldsymbol{s}}}^{\top }(x,t){\sigma }_{2}{{\boldsymbol{s}}}^{{\prime} }(x,t)$, ${\boldsymbol{c}}={({c}_{1},{c}_{2})}^{\top }$, and c1 and c2 represent arbitrary constants. Then the homologous jump condition of $\widetilde{M}(x,t,\lambda )=\widetilde{\phi }(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}\rho {\sigma }_{3}}$ changes at λ ∈ Σ+ ∪ Σ, and J(λ) is rewritten as
$\begin{eqnarray}\widetilde{J}(x,t,\lambda )=\left\{\begin{array}{l}{\boldsymbol{T}}(L,0,\lambda )J(x,t,\lambda ),\qquad \,\,\,\lambda \in {{\rm{\Sigma }}}_{+},\\ J(x,t,\lambda ){\boldsymbol{T}}{\left(L,0,\lambda \right)}^{-1},\qquad \lambda \in {{\rm{\Sigma }}}_{-}.\end{array}\right.\end{eqnarray}$
Then, we get $\widetilde{q}(x,t)$ from the new RH problem $\widetilde{M}(x,t,\lambda )$, namely
$\begin{eqnarray}\begin{array}{rcl}\widetilde{q}(x,t) & = & \mathop{\mathrm{lim}}\limits_{\lambda \to \infty }2{\rm{i}}\lambda {\widetilde{M}}_{12}(x,t,\lambda ){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}\\ & = & q(x,t)+2{\rm{i}}({{\boldsymbol{H}}}_{12}-{{\boldsymbol{H}}}_{21}^{* }){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}.\end{array}\end{eqnarray}$
Furthermore, when we change c into the form ϵ−1c, where ${{\boldsymbol{c}}}_{\infty }\in {{\mathbb{C}}}^{2}\setminus \{0\}$ represents a fixed vector, and set ϵ → 0, the matrix T(x, t, λ) is also represented as a limit process, that is
$\begin{eqnarray}{{\boldsymbol{T}}}_{\infty }(x,t,\lambda )={\mathbb{I}}+\displaystyle \frac{{{\boldsymbol{H}}}_{\infty }(x,t)}{\lambda -\varsigma }+\displaystyle \frac{{{\boldsymbol{Y}}}_{\infty }(x,t)}{\lambda -{\varsigma }^{* }},\end{eqnarray}$
where ${{\boldsymbol{H}}}_{\infty }(x,t)={\mathrm{lim}}_{\varepsilon \to 0}{\boldsymbol{H}}(x,t)$ and ${{\boldsymbol{Y}}}_{\infty }(x,t)={\mathrm{lim}}_{\varepsilon \to 0}{\boldsymbol{Y}}(x,t)$.
Given the vector s(x, t), we can solve the inhomogeneous fifth-order NLS equation (1) by the DT method. We regard φbg(x, t, λ) = ψ±(x, t, λ), representing the basic solutions, then we have the following results
$\begin{eqnarray}\begin{array}{l}{\phi }_{{bg}}^{{\rm{in}}}(x,t,\lambda )=\left(x+\delta \left(\lambda \right)t\right)\displaystyle \frac{\sin \left(\theta \left(\lambda ,x,t\right)\right)}{\theta (\lambda ,x,t)}{X}_{\pm }\\ \quad +\,\cos (\theta (\lambda ,x,t)){\mathbb{I}}.\end{array}\end{eqnarray}$
Furthermore, we get
$\begin{eqnarray}\begin{array}{l}{\boldsymbol{s}}(x,t,\varsigma )={\phi }_{{bg}}^{{\rm{in}}}(x,t,\varsigma ){\boldsymbol{c}}={\rm{i}}\iota (x,t,\varsigma )\\ \quad \times \left[-\left(\varsigma +\displaystyle \frac{\omega }{2}\right){\sigma }_{3}{\boldsymbol{c}}+B{\sigma }_{2}{\boldsymbol{c}}\right]+\chi (x,t,\varsigma ){\boldsymbol{c}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}\iota (x,t,\varsigma ) & = & \left(x+\delta \left(\varsigma \right)t\right)\displaystyle \frac{\sin \left(\theta \left(\varsigma ,x,t\right)\right)}{\theta \left(\varsigma ,x,t\right)},\\ \chi (x,t,\varsigma ) & = & \cos (\theta (\varsigma ,x,t)),\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal N }(x,t) & = & {{\boldsymbol{s}}}^{\dagger }(x,t){\boldsymbol{s}}(x,t)=\left[| \iota {| }^{2}\left(\varsigma +\displaystyle \frac{\omega }{2}\right)\left({\varsigma }^{* }+\displaystyle \frac{\omega }{2}\right)\right.\\ & & \left.+| \chi {| }^{2}+| \iota {| }^{2}{B}^{2}\right]{{\boldsymbol{c}}}^{\dagger }{\boldsymbol{c}}\\ & & +\left[{\rm{i}}{\iota }^{* }\chi \left({\varsigma }^{* }+\displaystyle \frac{\omega }{2}\right)-{\rm{i}}\iota {\chi }^{* }\left(\varsigma +\displaystyle \frac{\omega }{2}\right)\right]{{\boldsymbol{c}}}^{\dagger }{\sigma }_{3}{\boldsymbol{c}}\\ & & +\left({\rm{i}}\iota B{\chi }^{* }-{\rm{i}}{\iota }^{* }B\chi \right){{\boldsymbol{c}}}^{\dagger }{\sigma }_{2}{\boldsymbol{c}}\\ & & +{\rm{i}}| \iota {| }^{2}({\varsigma }^{* }-\varsigma )B{{\boldsymbol{c}}}^{\dagger }{\sigma }_{1}{\boldsymbol{c}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\vartheta (x,t) & = & {{\boldsymbol{s}}}^{\top }(x,t){\sigma }_{2}{{\boldsymbol{s}}}^{{\prime} }(x,t)=\left[{\iota }^{{\prime} }\chi \left(\varsigma +\displaystyle \frac{\omega }{2}\right)\right.\\ & & \left.-\iota {\chi }^{{\prime} }\left(\varsigma +\displaystyle \frac{\omega }{2}\right)+\iota \chi \right]{{\boldsymbol{c}}}^{\top }{\sigma }_{1}{\boldsymbol{c}}+\left[\iota {\iota }^{{\prime} }{\left(\varsigma +\displaystyle \frac{\omega }{2}\right)}^{2}\right.\\ & & \left.+{\iota }^{2}\left(\varsigma +\displaystyle \frac{\omega }{2}\right)+\iota {\iota }^{{\prime} }{B}^{2}+\chi {\chi }^{{\prime} }\right]{{\boldsymbol{c}}}^{\top }{\sigma }_{2}{\boldsymbol{c}}\\ & & +\left({\rm{i}}{\iota }^{{\prime} }\chi B-{\rm{i}}\iota {\chi }^{{\prime} }B\right){{\boldsymbol{c}}}^{\top }{\boldsymbol{c}}-{\iota }^{2}B{{\boldsymbol{c}}}^{\top }{\sigma }_{3}{\boldsymbol{c}}.\end{array}\end{eqnarray}$
Therefore, the solutions of equation (1) are
$\begin{eqnarray}\begin{array}{rcl}\widetilde{q}(x,t) & = & \left[B+2{\rm{i}}\left({{\boldsymbol{H}}}_{12}-{{\boldsymbol{H}}}_{21}^{* }\right)\right]{{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}\\ & = & \left(B+\displaystyle \frac{8{\beta }^{2}\left[\left(1-{\vartheta }^{* }\right){s}_{1}^{2}-\left(1-\vartheta \right){s}_{2}^{{* }^{2}}\right]+8\beta { \mathcal N }{s}_{1}{s}_{2}^{* }}{4{\beta }^{2}| 1-\vartheta {| }^{2}+{{ \mathcal N }}^{2}}\right)\\ & & \times {{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)},\end{array}\end{eqnarray}$
where ${\boldsymbol{s}}={({s}_{1},{s}_{2})}^{\top }$, ${ \mathcal N }$ and ϑ are provided in expressions (66), (68) and (69). Furthermore, letting c = cϵ−1 with ϵ → 0, the solution (70) can be rewritten as follows
$\begin{eqnarray}\begin{array}{l}{\widetilde{q}}_{\infty }(x,t)=\left[B-\displaystyle \frac{8{\beta }^{2}\left({\vartheta }_{\infty }^{* }{s}_{\infty 1}^{2}-{\vartheta }_{\infty }{s}_{\infty 2}^{{* }^{2}}\right)-8\beta {{ \mathcal N }}_{\infty }{s}_{\infty 1}{s}_{\infty 2}^{* }}{4{\beta }^{2}| {\vartheta }_{\infty }{| }^{2}+{{ \mathcal N }}_{\infty }^{2}}\right]\\ \,\times \,{{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)},\end{array}\end{eqnarray}$
where s, ${{ \mathcal N }}_{\infty }$ and ϑ are provided in expressions (66), (68) and (69) with c replaced by c, respectively.
According to the spectral analysis theorem, the properties of the corresponding solutions will change with the change of ς. When $\varsigma =-\tfrac{\omega }{2}+{\rm{i}}{\ell }B$ with ∣∣ > 1, it will be expressed as the temporal-spatial periodic breather wave, which can be verified by figure 5. When ∣∣ < 1, it becomes a spatial periodic breather wave and can be verified from figure 6.
Figure 5. The temporal-spatial periodic breather wave solutions (70) for equation (1) with the parameters B = 1, $\omega =\tfrac{1}{10}$, ε = 0.0005, c1 = i, c2 = i + 1, ${\ell }=\tfrac{4}{3}$. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = −10, t = 0, t = 10.
Figure 6. The spatial periodic breather wave solutions (70) for equation (1) with the parameters B = 1, $\omega =\tfrac{1}{10}$, ε = 0.005, c1 = i, c2 = i + 1, ${\ell }=\tfrac{2}{3}$. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = −1, t = 0, t = 1.
We obtain the RW of equation (1) by making $\varsigma =-\tfrac{\omega }{2}\pm {\rm{i}}B$. For convenience, we only calculate the case of $\varsigma =-\tfrac{\omega }{2}+{\rm{i}}B$ ($\varsigma =-\tfrac{\omega }{2}-{\rm{i}}B$ can perform similar calculations). Furthermore, we obtain
$\begin{eqnarray}{\boldsymbol{s}}(x,t)=\left(\begin{array}{c}{c}_{1}+B({c}_{1}+{c}_{2})(x+\delta (\varsigma )t)\\ {c}_{2}-B({c}_{1}+{c}_{2})(x+\delta (\varsigma )t)\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}{{\boldsymbol{s}}}^{{\prime} }(x,t)=\left(\begin{array}{c}-\displaystyle \frac{1}{3}{\rm{i}}B\left[B{\left(x+\delta t\right)}^{3}+3{\rm{i}}{\left(x+\delta t\right)}^{{\prime} }\right]({c}_{1}+{c}_{2})-{\rm{i}}{c}_{1}(x+\delta t)\left[B(x+\delta t)+1\right]\\ \displaystyle \frac{1}{3}{\rm{i}}B\left[B{\left(x+\delta t\right)}^{3}+3{\rm{i}}{\left(x+\delta t\right)}^{{\prime} }\right]({c}_{1}+{c}_{2})-{\rm{i}}{c}_{2}(x+\delta t)\left[B(x+\delta t)-1\right]\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal N } & = & | {c}_{1}{| }^{2}+| {c}_{2}{| }^{2}+2\mathrm{Re}\{B{\left({c}_{1}-{c}_{2}\right)}^{* }({c}_{1}+{c}_{2})(x+\delta t)\}\\ & & +2{B}^{2}| {c}_{1}+{c}_{2}{| }^{2}| x+\delta t{| }^{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\vartheta & = & -\displaystyle \frac{1}{3}B\left[2B{\left(x+\delta t\right)}^{3}-3{\rm{i}}{\left(x+\delta t\right)}^{{\prime} }\right]{\left({c}_{1}+{c}_{2}\right)}^{2}\\ & & +2{c}_{1}{c}_{2}(x+\delta t)-B{\left(x+\delta t\right)}^{2}({c}_{1}^{2}-{c}_{2}^{2}).\end{array}\end{eqnarray}$
Then we can find that the first-order RW can be deduced at c1 + c2 = 0.
a

(a) For c1 = − c2 = 1, we obtain the first-order RW solution as (see figure 7)

$\begin{eqnarray}\widetilde{q}(x,t)=\left(B+\displaystyle \frac{4{B}^{2}[{\left(x+\delta t\right)}^{* }-(x+\delta t)]-4B}{{B}^{2}\left[1+2(x+\delta t)+2{\left(x+\delta t\right)}^{* }+4| x+\delta t{| }^{2}\right]+1}\right){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}.\end{eqnarray}$

b

(b) For ${{\boldsymbol{c}}}_{\infty }={\left(c,-c\right)}^{\top }$, we obtain the first-order RW solution with its (see figure 8)

$\begin{eqnarray}\widetilde{q}(x,t)=\left(\displaystyle \frac{B\left[4{B}^{2}| x+\delta t{| }^{2}+4B{\left(x+\delta t\right)}^{* }-4B(x+\delta t)-3\right]}{4{B}^{2}| x+\delta t{| }^{2}+1}\right){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)}.\,\end{eqnarray}$

c

(c) For c1 + c2 ≠ 0, e.g. ${c}_{1}=c+\tfrac{\varpi }{2}$, ${c}_{2}=-c+\tfrac{\varpi }{2}$ with $c\in {\mathbb{C}}\setminus \{0\}$ and ϖ ≪ 1. Let $x=\tfrac{\overline{x}}{| \varpi | },t=\tfrac{\overline{t}}{| \varpi | }$, if $(\overline{x},\overline{t})\in {{\mathbb{R}}}^{2}$ is fixed, and then we obtain

$\begin{eqnarray}{\boldsymbol{s}}(x,t)=\left(\begin{array}{c}c+{{\rm{e}}}^{\mathrm{iarg}(\varpi )}B(\overline{x}+\delta \overline{t})\\ -c-{{\rm{e}}}^{\mathrm{iarg}(\varpi )}B(\overline{x}+\delta \overline{t})\end{array}\right)+O(\varpi ),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{ \mathcal N }=2| c{| }^{2}+4\mathrm{Re}\{{{Bc}}^{* }{{\rm{e}}}^{\mathrm{iarg}(\varpi )}(\overline{x}+\delta \overline{t})\}\\ \quad +2{B}^{2}({\overline{x}}^{2}+| \delta {| }^{2}{\overline{t}}^{2})+O(\varpi ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\vartheta & = & \displaystyle \frac{1}{| \varpi | }\left[-\displaystyle \frac{2}{3}{B}^{2}{{\rm{e}}}^{2\mathrm{iarg}(\varpi )}{\left(\overline{x}+\delta \overline{t}\right)}^{3}\right.\\ & & \left.-2{cB}{{\rm{e}}}^{\mathrm{iarg}(\varpi )}{\left(\overline{x}+\delta \overline{t}\right)}^{2}-2{c}^{2}(\overline{x}+\delta \overline{t})\right]+O(1).\end{array}\end{eqnarray}$
Further, we can get $\widetilde{q}(x,t)\approx 1$, unless the leading term in ϑ proportional to $\tfrac{1}{| \varpi | }$ is cancelled, these terms will form a cubic equation of ${\mathfrak{n}}=\overline{x}+\delta \overline{t}$, and its three roots are ${\mathfrak{n}}=0$ and $\tfrac{1}{2}c{\left(B\varpi \right)}^{-1}(-3\pm {\rm{i}}\sqrt{3})$, respectively (see figure 9).

d

(d) For ${{\boldsymbol{c}}}_{\infty }={\left(\mathrm{1,1}\right)}^{\top }$, we can obtain the second-order RW (see figure 10)

$\begin{eqnarray}\widetilde{q}(x,t)=\left(B-12B\displaystyle \frac{{\mathfrak{P}}}{{\mathfrak{Q}}}\right){{\rm{e}}}^{{\rm{i}}(\omega x+\nu t)},\end{eqnarray}$

Figure 7. The first-order RW solutions (76) for equation (1) with the parameters B = 1, $\omega =\tfrac{1}{2}$, ε = 0.005, c1 = 1, c2 = −1. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = 0.
Figure 8. The first-order RW solutions (77) for equation (1) with the parameters B = 1, $\omega =\tfrac{3}{5}$, ε = 0.05, c1 = 1, c2 = −1. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = 0.
Figure 9. The first-order RW solutions (76) for equation (1) with the parameters B = 1, $\omega =\tfrac{1}{2}$, $\epsilon =\tfrac{1}{1000}$, ${c}_{1}=\cos (\tfrac{1}{2})$, c2 = −1. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = −4, t = 0, t = 4.
Figure 10. The second-order RW solutions (81) for equation (1) with the parameters B = 1, $\omega =\tfrac{1}{20}$, ε = 0.0005, c1 = 1, c2 = 1. (a) Three dimensional plot; (b) the density plot; (c) the wave propagation along the x-axis with t = −2, t = 0, t = 2.
where
$\begin{eqnarray}\begin{array}{rcl}{\mathfrak{P}} & = & 16{B}^{5}{\left(x+\delta t\right)}^{3}{\left(x+\delta t\right)}^{* 2}-16{B}^{5}{\left(x+\delta t\right)}^{2}{\left(x+\delta t\right)}^{* 3}\\ & & +24{\rm{i}}{B}^{3}{\left(x+\delta t\right)}^{{\prime} }{\left(x+\delta t\right)}^{* }\\ & & -6{\rm{i}}{B}^{2}{\left(x+\delta t\right)}^{* ^{\prime} }-16{B}^{4}{\left(x+\delta t\right)}^{3}{\left(x+\delta t\right)}^{* }\\ & & +48{B}^{4}{\left(x+\delta t\right)}^{2}{\left(x+\delta t\right)}^{* 2}-6{\rm{i}}{B}^{2}{\left(x+\delta t\right)}^{{\prime} }\\ & & -16{B}^{4}(x+\delta t){\left(x+\delta t\right)}^{* 3}-24{\rm{i}}{B}^{3}(x+\delta t){\left(x+\delta t\right)}^{* ^{\prime} }\\ & & -12{B}^{3}{\left(x+\delta t\right)}^{2}{\left(x+\delta t\right)}^{* }\\ & & +12{B}^{3}(x+\delta t){\left(x+\delta t\right)}^{* 2}+4{B}^{3}{\left(x+\delta t\right)}^{3}\\ & & -4{B}^{3}{\left(x+\delta t\right)}^{* 3}-24{\rm{i}}{B}^{4}{\left(x+\delta t\right)}^{2}{\left(x+\delta t\right)}^{* ^{\prime} }\\ & & -24{\rm{i}}{B}^{4}{\left(x+\delta t\right)}^{* 2}{\left(x+\delta t\right)}^{{\prime} }+24{B}^{2}(x+\delta t){\left(x+\delta t\right)}^{* }\\ & & -9B(x+\delta t)\\ & & +9B{\left(x+\delta t\right)}^{* }-3,\\ {\mathfrak{Q}} & = & 64{B}^{6}{\left(x+\delta t\right)}^{3}{\left(x+\delta t\right)}^{* 3}+96{\rm{i}}{B}^{5}{\left(x+\delta t\right)}^{3}{\left(x+\delta t\right)}^{* ^{\prime} }\\ & & -96{\rm{i}}{B}^{5}{\left(x+\delta t\right)}^{* 3}{\left(x+\delta t\right)}^{{\prime} }\\ & & -48{B}^{4}{\left(x+\delta t\right)}^{3}{\left(x+\delta t\right)}^{* }+144{B}^{4}{\left(x+\delta t\right)}^{2}{\left(x+\delta t\right)}^{* 2}\\ & & -48{B}^{4}(x+\delta t){\left(x+\delta t\right)}^{* 3}\\ & & +144{B}^{4}{\left(x+\delta t\right)}^{{\prime} }{\left(x+\delta t\right)}^{* ^{\prime} }-72{\rm{i}}{B}^{3}(x+\delta t){\left(x+\delta t\right)}^{* ^{\prime} }\\ & & +72{\rm{i}}{B}^{3}{\left(x+\delta t\right)}^{* }{\left(x+\delta t\right)}^{{\prime} }\\ & & +108{B}^{2}(x+\delta t){\left(x+\delta t\right)}^{* }+9.\end{array}\end{eqnarray}$

4. Conclusions

The present work studied the BS soliton and RW solutions of the inhomogeneous fifth-order NLS equation (1) with ZBCs and NZBCs by the RH method. In this context, the RH problem of equation (1) is constructed, and an N-th order BS solitons of equation (1) with ZBCs are obtained by the residue theorem and Laurent’s series. Also, some dynamic behaviors of the second-order BS soliton solutions are analyzed for equation (1) in the form of images. It is manifested that parameters can change the shape and size of the two soliton waves (figure 2). In the meantime, the RH problem of equation (1) with NZBCs is constructed by robust IST. Then the RW solutions of equation (1) are obtained via the modified DT. The graphs of the temporal-spatial periodic breather waves and the spatial periodic breather waves are drawn, which revealed that parameter ς had a certain influence on the breather wave solutions (figure 5 and figure 6). Finally, the first-order and the second-order RW are obtained by modulating parameters in equation (1).
Although the exact solutions of equation (1) with NZBCs are derived in [47], the RW solutions of equation are studied by DT in [46]. However, in this paper, we mainly study the BS solitons with ZBCs and the RW solutions with NZBCs of equation (1), the obtained solutions are of more extensive significance and richer content. In addition, the proposed method in this paper can be further extended to identify some other nonlinear systems, and the method can be optimized to improve the results in the future.

This work was supported by the National Natural Science Foundation of China under Grant No. 11975306, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, and the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35.

1
Bluman G W Kumei S 1989 Symmetries and Differential Equations New York Springer

DOI

2
Matveev V B Salle M A 1991 Exact Solution and Conservation Laws for Fifth-Order Korteweg-de Vries Equation Berlin Springer

DOI

3
Hirota R 2004 The Direct Method in Soliton Theory Cambridge Cambridge University Press

DOI

4
Ablowitz M J Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Cambridge Cambridge University Press

DOI

5
Gardner C S Greene J M Kruskal M D Miura R M 1967 Method for solving the Korteweg-de Vries equation Phys. Rev. Lett. 19 1095

DOI

6
Zakharov V E Manakov S V Novikov S P Pitaevskii L P 1984 Theory of Solitons: The Inverse Scattering Method New York Consultants Bureau

7
Geng X G Wu J P 2016 Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation Wave Motion 60 62 72

DOI

8
Wu J P Geng X G 2017 Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation Commun. Nonlinear Sci. 53 83 93

DOI

9
Wang X B Han B 2020 Application of the Riemann–Hilbert method to the vector modified Korteweg-de Vries equation Nonlinear Dyn. 99 1363 1377

DOI

10
Ma W X 2019 Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions Acta. Math. Sci. 39 509 523

DOI

11
Wang X B Han B 2020 A Riemann–Hilbert approach to a generalized nonlinear Schrödinger equation on the quarter plane Math. Phys. Anal. Geom. 23 25

DOI

12
Zhang G Q Yan Z Y 2020 Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions Phys. D 402 132170

DOI

13
Zhao Y Fan E G 2019 Inverse scattering transformation for the Fokas–Lenells equation with nonzero boundary conditions arXiv:1912.12400

14
Yang Y L Fan E G 2021 Riemann–Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions Phys. D 417 132811

DOI

15
Ma W X 2018 Riemann–Hilbert problems and N-soliton solutions for a coupled mKdV system J. Geom. Phys. 132 45 54

DOI

16
Zhu J Y Chen Y 2021 A new form of general soliton solutions and multiple zeros solutions for a higher-order Kaup–Newell equation J. Math. Phys. 62 123501

DOI

17
Peng W Q Chen Y 2022 Double and triple pole solutions for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions J. Math. Phys. 63 033502

DOI

18
Guo B L Ling L M 2012 Riemann–Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation J. Math. Phys. 53 133 3966

DOI

19
Wang X B Han B 2021 Pure soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation Theor. Math. Phys. 206 40 67

DOI

20
Liu N Guo B L 2021 Painleve-type asymptotics of an extended modified KdV equation in transition regions J. Differ. Equations 280 203 235

DOI

21
Geng X G Wang K D Chen M M 2021 Long-time asymptotics for the spin-1 Gross–Pitaevskii equation Commun. Math. Phys. 382 585 611

DOI

22
He F L Ku M Kähler U Sommen F Bernstein S 2016 Riemann–Hilbert problems for null-solutions to iterated generalized Cauchy–Riemann equations in axially symmetric domains Comput. Math. Appl. 71 1990 2000

DOI

23
Xu J Fan E G 2015 Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons J. Differ. Equations 259 1098 1148

DOI

24
Wang D S Guo B L Wang X L 2019 Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions J. Differ. Equations 266 5209 5253

DOI

25
Jenkins R McLaughlin K D 2014 Semiclassical limit of focusing NLS for a family of square barrier initial data Comm. Pur. Appl. Math 67 246 320

DOI

26
Deift P Zhou X 1993 A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation Ann. Math. 137 295 368

DOI

27
Biondini G Mantzavinos D 2017 Long-time asymptotics for the focusing nonlinear Schrödinger equation with nonzero boundary conditions at infinity and asymptotic stage of modulational instability Comm. Pur. Appl. Math. 70 2300 2365

DOI

28
Tian S F 2017 Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method J. Differ. Equations 262 506 558

DOI

29
Li J H Chen Q Q Li B 2021 Resonance Y-type soliton solutions and some new types of hybrid solutions in the (2+1)-dimensional Sawada–Kotera equation Commun. Theor. Phys. 73 045006

DOI

30
Qi Z Q Zhang Z Li B 2021 Space-curved resonant line solitons in a generalized (2+ 1)-dimensional fifth-order KdV system Chinese Phys. Lett. 38 060501

DOI

31
Zakharov V E Shabat A 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Sov. Phys. JETP 34 62 69

32
Wadati M Ohkuma K 1981 Multiple pole solutions of the modified Korteweg-de Vries equation J. Phys. Soc. Jpn. 51 2029 2035

DOI

33
Tsuru H Wadati M 1984 The multiple pole solutions of the sine-Gordon equation J. Phys. Soc. Jpn. 9 2908 2921

DOI

34
Ling L M 2016 The algebraic representation for high order solution of Sasa–Satsuma equation Discrete Cont. Dyn-S. 9 6

DOI

35
Zhang Y S Rao J G Cheng Y He J S 2019 Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: N simple poles and one higher-order pole Phys. D 399 173 185

DOI

36
Zhang Y S Tao X X Xu S W 2020 The bound-state soliton solutions of the complex modified KdV equation Inverse Probl. 36 065003

DOI

37
Bilman D Buckingham R 2019 Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation J. Nonlinear Sci. 29 2185 2229

DOI

38
Zhang X E Ling L M 2021 Asymptotic analysis of high order solitons for the Hirota equation Phys. D 426 132982

DOI

39
Bilman D Miller P 2019 A robust inverse scattering transform for the focusing nonlinear Schrödinger equation Comm. Pur. Appl. Math. 72 1722 1805

DOI

40
Chen S Y Yan Z Y 2019 The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons Phys. Lett. A 383 125906

DOI

41
Peng W Q Chen Y 2021 Inverse scattering transforms for the sixth-order nonlinear Schrödinger equation with zero/nonzero boundary conditions: bound-state soliton and rogue wave arXiv:2103.14296

42
Chen S Y Yan Z Y 2019 The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves Appl. Math. Lett. 95 65 71

DOI

43
Liu N Guo B L 2020 Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach Nonlinear Dyn. 100 629 646

DOI

44
Zhang X E Chen Y 2019 Inverse scattering transformation for generalized nonlinear Schrödinger equation Appl. Math. Lett. 98 306 313

DOI

45
Chen Y N 2015 Rogue wave solutions for an inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism J. Progr. Res. Math. 4 328 338

46
Feng L L Tian S F Zhang T T 2019 Solitary wave, breather wave and rogue wave solutions of an inhomogeneous fifth-order nonlinear Schrödinger equation from Heisenberg ferromagnetism Rocky Mt. J. Math. 49 29 45

DOI

47
Yang J J Tian S F Li Z Q 2020 Riemann–Hilbert approach to the inhomogeneous fifth-order nonlinear Schrödinger equation with non-vanishing boundary conditions arXiv:2001.08597

48
Defit P Zhou X 1991 Direct and inverse scattering on the line with arbitrary singularities Comm. Pur. Appl. Math. 44 485 533

DOI

49
Zhou X 1989 Direct and inverse scattering transformations with arbitrary spectral singularities Comm. Pur. Appl. Math. 42 895 938

DOI

Outlines

/