Welcome to visit Communications in Theoretical Physics,
Particle Physics and Quantum Field Theory

Chiral corrections to the masses of the doubly heavy baryons

  • Hao-Ze Tong(同浩泽) 1 ,
  • Hao-Song Li(李浩松) , 1, 2, 3, 4
Expand
  • 1School of Physics, Northwest University, Xian 710127, China
  • 2Institute of Modern Physics, Northwest University, Xian 710127, China
  • 3 Shaanxi Key Laboratory for theoretical Physics Frontiers, Xian 710127, China
  • 4 Peng Huanwu Center for Fundamental Theory, Xian 710127, China

Received date: 2022-04-14

  Revised date: 2022-05-21

  Accepted date: 2022-06-15

  Online published: 2022-08-01

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

We study the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$ in heavy baryon chiral perturbation theory. We determine the unknown low energy constants in the quark model and lattice QCD. We show the numerical results for the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$.

Cite this article

Hao-Ze Tong(同浩泽) , Hao-Song Li(李浩松) . Chiral corrections to the masses of the doubly heavy baryons[J]. Communications in Theoretical Physics, 2022 , 74(8) : 085201 . DOI: 10.1088/1572-9494/ac78d7

1. Introduction

As a key prediction of QCD, the doubly heavy baryons are composed of two heavy quarks and one light quark. The SELEX collaboration found the ${{\rm{\Xi }}}_{{cc}}^{+}$ baryon with the mass ${m}_{{{\rm{\Xi }}}_{{cc}}^{+}}=3518\pm 3\,\mathrm{MeV}$ [1, 2]. However, this result was not confirmed in other collaborations [35]. The LHCb collaboration found the ${{\rm{\Xi }}}_{{cc}}^{++}$ baryon with the mass ${m}_{{{\rm{\Xi }}}_{{cc}}^{++}}\,=3621.55\,\pm \,0.23\,\pm \,0.30\,\mathrm{MeV}$ [6, 7]. However, people did not find experimental evidence on the other doubly heavy baryons.
Nowadays, people widely studied the masses of the doubly heavy baryons. In the quark model, the authors studied the masses of the doubly heavy baryons in different potential models [810], the masses of the doubly heavy baryons were studied in a chromomagnetic interaction model [11], and the authors used a constituent quark model to study the masses of the doubly heavy baryons [12, 13]. In lattice QCD, the authors studied the masses of the doubly charmed baryons [1417], and the masses of the doubly bottom baryons and the charmed-bottom baryons were studied [14, 1821]. The lattice QCD simulations predicted the masses of the doubly heavy baryons at the unphysical point, so the authors performed the chiral extrapolations [14, 20]. Recently, the lattice QCD simulations predicted the masses of the doubly heavy baryons near the physical point [16, 17]. Other methods were involved, such as Bethe–Salpeter equation [22, 23], contact interaction models [24, 25], and QCD sum rules [2628].
Chiral perturbation theory (ChPT) is an effective field theory of QCD [29, 30]. ChPT is used in the meson sector [31, 32], people make the expansion in terms of the momentum, but the power counting scheme is broken in the baryon sector due to the nonzero baryon mass in the chiral limit [33, 34]. People proposed many schemes to solve this issue, such as heavy baryon chiral perturbation theory (HBChPT) [35], infrared chiral perturbation theory (IRChPT) [36, 37], and extended on mass shell chiral perturbation theory (EOMSChPT) [38]. In HBChPT, people make the expansion in terms of the inverse baryon mass, and the power counting scheme is restored. Later, quenched chiral perturbation theory (QChPT) and partially quenched chiral perturbation theory (PQChPT) were proposed [3941].
For the doubly heavy baryons, the heavy quarks are static, and the light quark governs the chiral dynamics. Nowadays, people widely studied the chiral corrections to the masses of the doubly heavy baryons. The authors used the Lagrangians with the heavy quark-diquark symmetry to study the masses of the doubly heavy baryons [42] and extended this result to QChPT and PQChPT [43]. The authors studied the masses of the doubly charmed baryons up to ${ \mathcal O }\left({p}^{4}\right)$ in HBChPT [44]. The masses of the doubly charmed baryons were studied up to ${ \mathcal O }\left({p}^{3}\right)$ in EOMSChPT [45], and this result was extended up to ${ \mathcal O }\left({p}^{4}\right)$ [46]. In [4446], the authors showed the numerical results up to ${ \mathcal O }\left({p}^{3}\right)$.
Besides the doubly charmed baryons, the chiral corrections to the masses of the doubly bottom baryons and the charmed-bottom baryons are an important topic. We study the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$ in HBChPT. We show the numerical results for the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$.
Our work is organized as follows. We introduce the Lagrangians of the doubly bottom baryons in section 2. We derive the mass formulas of the doubly bottom baryons in section 3. We show the numerical results for the masses of the doubly bottom baryons and the charmed-bottom baryons in section 4. A summary is given in section 5.

2. The Lagrangians of the doubly bottom baryons

In ChPT, the Lagrangians of the pseudoscalar mesons and the doubly bottom baryons were constructed [44, 47]. The ${ \mathcal O }\left({p}^{1}\right)$ Lagrangian reads
$\begin{eqnarray}{{ \mathcal L }}_{{MB}}^{\left(1\right)}=\bar{\psi }\left({\rm{i}}\rlap{/}{D}-{m}_{0}+\displaystyle \frac{{g}_{A}}{2}\rlap{/}{u}{\gamma }^{5}\right)\psi ,\end{eqnarray}$
where m0 is the mass of the doubly bottom baryons in the chiral limit, and gA is the axial vector charge of the doubly bottom baryons. The doubly bottom baryon field reads
$\begin{eqnarray}\psi =\left(\begin{array}{c}{{\rm{\Xi }}}_{{bb}}^{0}\\ {{\rm{\Xi }}}_{{bb}}^{-}\\ {{\rm{\Omega }}}_{{bb}}^{-}\end{array}\right).\end{eqnarray}$
For the building blocks,
$\begin{eqnarray}u=\exp \left(\displaystyle \frac{{\rm{i}}\phi }{2{F}_{P}}\right),\end{eqnarray}$
$\begin{eqnarray}{u}_{\mu }=\displaystyle \frac{{\rm{i}}}{2}\left({u}^{\dagger }{\partial }_{\mu }u-u{\partial }_{\mu }{u}^{\dagger }\right),\end{eqnarray}$
$\begin{eqnarray}{D}_{\mu }={\partial }_{\mu }+\displaystyle \frac{1}{2}\left({u}^{\dagger }{\partial }_{\mu }u+u{\partial }_{\mu }{u}^{\dagger }\right),\end{eqnarray}$
where FP are the decay constants of the pseudoscalar mesons. We take the experimental values of FP [48], Fπ = 92 MeV, FK = 113 MeV, Fη = 116 MeV. The pseudoscalar meson field reads
$\begin{eqnarray}\phi =\left(\begin{array}{ccc}{\pi }^{0}+\displaystyle \frac{\sqrt{3}}{3}\eta & \sqrt{2}{\pi }^{+} & \sqrt{2}{K}^{+}\\ \sqrt{2}{\pi }^{-} & -{\pi }^{0}+\displaystyle \frac{\sqrt{3}}{3}\eta & \sqrt{2}{K}^{0}\\ \sqrt{2}{K}^{-} & \sqrt{2}{\bar{K}}^{0} & -\displaystyle \frac{2\sqrt{3}}{3}\eta \end{array}\right).\end{eqnarray}$
The ${ \mathcal O }\left({p}^{2}\right)$ and ${ \mathcal O }\left({p}^{3}\right)$ Lagrangians read
$\begin{eqnarray}\begin{array}{l}{{ \mathcal L }}_{{MB}}^{\left(2\right)}=\bar{\psi }\left[{c}_{1}\left\langle {\chi }_{+}\right\rangle +{c}_{2}{u}^{2}+{c}_{3}\left\langle {u}^{2}\right\rangle \right.\\ \quad +\left({c}_{4}\left\{{u}^{\mu },{u}^{\nu }\right\}\left\{{D}_{\mu },{D}_{\nu }\right\}+{\rm{H}}.{\rm{c}}.\right)\\ \quad +\left({c}_{5}\left\langle {u}^{\mu }{u}^{\nu }\right\rangle \left\{{D}_{\mu },{D}_{\nu }\right\}+{\rm{H}}.{\rm{c}}.\right)\\ \quad \left.+{\rm{i}}{c}_{6}\left[{u}^{\mu },{u}^{\nu }\right]{\sigma }_{\mu \nu }+{c}_{7}{\tilde{\chi }}_{+}\right]\psi ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal L }}_{{MB}}^{\left(3\right)} & = & \bar{\psi }\left({d}_{1}\rlap{/}{u}{\gamma }^{5}\left\langle {\chi }_{+}\right\rangle +{d}_{2}\left\{{u}^{\mu },{\tilde{\chi }}_{+}\right\}{\gamma }_{\mu }{\gamma }^{5}\right.\\ & & \left.+{d}_{3}\left\langle {u}^{\mu }{\tilde{\chi }}_{+}\right\rangle {\gamma }_{\mu }{\gamma }^{5}+\cdots \right)\psi ,\end{array}\end{eqnarray}$
where ci and dj are the coupling constants. For the building blocks,
$\begin{eqnarray}\chi =2{B}_{0}\mathrm{diag}\left({m}_{u},{m}_{d},{m}_{s}\right),\end{eqnarray}$
$\begin{eqnarray}{\chi }_{+}={u}^{\dagger }\chi {u}^{\dagger }+u{\chi }^{\dagger }u.\end{eqnarray}$
$\left\langle {\chi }_{+}\right\rangle $ is the trace of χ+, and ${\tilde{\chi }}_{+}={\chi }_{+}-\tfrac{1}{3}\left\langle {\chi }_{+}\right\rangle $ is traceless. In the isospin limit, mu = md, we use ${m}_{\pi }^{2}=2{B}_{0}{m}_{u/d}$, ${m}_{K}^{2}={B}_{0}\left({m}_{u/d}+{m}_{s}\right)$, ${m}_{\eta }^{2}=\tfrac{2}{3}{B}_{0}\left({m}_{u/d}+2{m}_{s}\right)$, so $\chi \,=\mathrm{diag}\left({m}_{\pi }^{2},{m}_{\pi }^{2},-2{m}_{K}^{2}+3{m}_{\eta }^{2}\right)$.
In HBChPT, the doubly bottom baryon field is separated into two parts,
$\begin{eqnarray}\psi =\exp \left(-{\rm{i}}{m}_{0}v\cdot x\right)\left(H+h\right),\end{eqnarray}$
where H and h are the light and heavy fields. The heavy baryon Lagrangians of the pseudoscalar mesons and the doubly bottom baryons were constructed [44, 47]. The ${ \mathcal O }\left({p}^{1}\right)$ heavy baryon Lagrangian reads
$\begin{eqnarray}{\hat{{ \mathcal L }}}_{{MB}}^{\left(1\right)}=\bar{H}\left({\rm{i}}v\cdot D+{g}_{A}S\cdot u\right)H,\end{eqnarray}$
where ${S}^{\mu }=\tfrac{{\rm{i}}}{2}{\gamma }^{5}{\sigma }^{\mu \nu }{v}_{\nu }$ is the spin operator. The ${ \mathcal O }\left({p}^{2}\right)$ and ${ \mathcal O }\left({p}^{3}\right)$ heavy baryon Lagrangians read
$\begin{eqnarray}\begin{array}{l}{\hat{{ \mathcal L }}}_{{MB}}^{\left(2\right)}=\bar{H}\left[{c}_{1}\left\langle {\chi }_{+}\right\rangle +{c}_{2}{u}^{2}+{c}_{3}\left\langle {u}^{2}\right\rangle -8{m}_{0}^{2}{c}_{4}{\left(v\cdot u\right)}^{2}\right.\\ \quad -\ 4{m}_{0}^{2}{c}_{5}\left\langle {\left(v\cdot u\right)}^{2}\right\rangle +2{c}_{6}\left[{S}_{\mu },{S}_{\nu }\right]\left[{u}^{\mu },{u}^{\nu }\right]+{c}_{7}{\tilde{\chi }}_{+}\\ \quad \left.+\ \displaystyle \frac{2}{{m}_{0}}{\left(S\cdot D\right)}^{2}-\displaystyle \frac{{\rm{i}}{g}_{A}}{2{m}_{0}}\left\{S\cdot D,v\cdot u\right\}-\displaystyle \frac{{g}_{A}^{2}}{8{m}_{0}}{\left(v\cdot u\right)}^{2}\right]H,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\hat{{ \mathcal L }}}_{{MB}}^{\left(3\right)} & = & \bar{H}\left(-2{d}_{1}S\cdot u\left\langle {\chi }_{+}\right\rangle -2{d}_{2}\left\{S\cdot u,{\tilde{\chi }}_{+}\right\}\right.\\ & & \left.-2{d}_{3}\left\langle S\cdot u{\tilde{\chi }}_{+}\right\rangle -\displaystyle \frac{{\rm{i}}}{{m}_{0}^{2}}S\cdot {Dv}\cdot {DS}\cdot D+\cdots \right)H.\end{array}\end{eqnarray}$

3. The mass formulas of the doubly bottom baryons

In HBChPT, with the variables of the self-energy, η = v · pmB and $\xi ={\left(p-{m}_{B}v\right)}^{2}$, the Feynman propagator of the doubly bottom baryons reads
$\begin{eqnarray}{\rm{i}}{G}=\displaystyle \frac{{\rm{i}}}{v\cdot p-{m}_{0}-{{\rm{\Sigma }}}_{B}\left(\eta ,\xi \right)}=\displaystyle \frac{{\rm{i}}{Z}_{N}}{\eta -{Z}_{N}{\tilde{{\rm{\Sigma }}}}_{B}\left(\eta ,\xi \right)},\end{eqnarray}$
where ${{\rm{\Sigma }}}_{B}\left(\eta ,\xi \right)={{\rm{\Sigma }}}_{B}\left(0,0\right)+\eta {{\rm{\Sigma }}}_{B}^{{\prime} }\left(0,0\right)+{\tilde{{\rm{\Sigma }}}}_{B}\left(\eta ,\xi \right)$ is the self-energy, and ${Z}_{N}=\tfrac{1}{1-{{\rm{\Sigma }}}_{B}^{{\prime} }\left(0,0\right)}$ is the wave function renormalization constant. Thus, the mass formulas of the doubly bottom baryons read
$\begin{eqnarray}{m}_{B}={m}_{0}+{{\rm{\Sigma }}}_{B}\left(0,0\right).\end{eqnarray}$
We show the Feynman diagrams contributing to the self energies of the doubly bottom baryons in figure 1. Equations (13) and (14) contribute to the tree vertices in figures 1(a) and 1(d), and equation (12) contributes to the loop vertices in figures 1(b) and (c). In HBChPT, the chiral order of the Feynman diagrams reads
$\begin{eqnarray}{D}_{\chi }=4{N}_{L}-2{I}_{M}-{I}_{B}+\sum _{n}{{nN}}_{n},\end{eqnarray}$
where NL is the number of loops, IM and IB are the number of internal pseudoscalar meson and doubly bottom baryon lines, and Nn is the number of vertices contributed by the ${ \mathcal O }\left({p}^{n}\right)$ heavy baryon Lagrangians. Thus, Dχ = 2 in figure 1(a), and Dχ = 3 in figure 1(b)–(d).
Figure 1. The Feynman diagrams contributing to the self-energies of the doubly bottom baryons. The dashed and solid lines are the pseudoscalar mesons and the doubly bottom baryons. The squares with the numbers n are the vertices contributed by the ${ \mathcal O }\left({p}^{n}\right)$ heavy baryon Lagrangians.
Figures 1(a) and (c) contribute to the ${ \mathcal O }\left({p}^{2}\right)$ tree and ${ \mathcal O }\left({p}^{3}\right)$ loop masses, and figures 1(b) and (d) contribute to the zero masses. After the derivations, equation (16) reads
$\begin{eqnarray}{m}_{B}={m}_{0}-{c}_{1}\left\langle {\chi }_{+}\right\rangle -{c}_{7}{\tilde{\chi }}_{+}-\displaystyle \frac{{g}_{A}^{2}}{128\pi }\sum _{P}\displaystyle \frac{{C}_{{PB}}{m}_{P}^{3}}{{F}_{P}^{2}},\end{eqnarray}$
where CPB are the Clebsch–Gordan coefficients of the pseudoscalar mesons and the doubly bottom baryons, and mP are the masses of the pseudoscalar mesons. We show the values of CPB in table 1. We take the experimental values of mP [48], mπ = 140 MeV, mK = 494 MeV, mη = 550 MeV. After the organizations, equation (18) reads
$\begin{eqnarray}\begin{array}{l}{m}_{{{\rm{\Xi }}}_{{bb}}}={m}_{0}-2{c}_{1}\left(2{m}_{\pi }^{2}-2{m}_{K}^{2}+3{m}_{\eta }^{2}\right)\\ \quad -\displaystyle \frac{2}{3}{c}_{7}\left({m}_{\pi }^{2}+2{m}_{K}^{2}-3{m}_{\eta }^{2}\right)\\ \quad -\displaystyle \frac{{g}_{A}^{2}}{384\pi }\left(\displaystyle \frac{9{m}_{\pi }^{3}}{{F}_{\pi }^{2}}+\displaystyle \frac{6{m}_{K}^{3}}{{F}_{K}^{2}}+\displaystyle \frac{{m}_{\eta }^{3}}{{F}_{\eta }^{2}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{m}_{{{\rm{\Omega }}}_{{bb}}}={m}_{0}-2{c}_{1}\left(2{m}_{\pi }^{2}-2{m}_{K}^{2}+3{m}_{\eta }^{2}\right)\\ \quad +\displaystyle \frac{4}{3}{c}_{7}\left({m}_{\pi }^{2}+2{m}_{K}^{2}-3{m}_{\eta }^{2}\right)\\ \quad -\displaystyle \frac{{g}_{A}^{2}}{96\pi }\left(\displaystyle \frac{3{m}_{K}^{3}}{{F}_{K}^{2}}+\displaystyle \frac{{m}_{\eta }^{3}}{{F}_{\eta }^{2}}\right).\end{array}\end{eqnarray}$
Table 1. The values of CPB.
CπB CKB CηB
Ξbb 3 2 $\tfrac{1}{3}$
Ωbb 0 4 $\tfrac{4}{3}$

4. Numerical results

There are the unknown low energy constants, m0, c1, c7, and gA in equations (19) and (20). Due to the limited experimental data, we determine the unknown low energy constants by some theoretical information.
For the doubly bottom baryons, gA was determined in the quark model [49], ${g}_{A}\left({bbq}\right)=-0.50\left(5\right)$. The 10% error of gA is from the quark model. We fit the lattice QCD data in [14] to determine m0, c1, and c7.
After the lattice QCD simulations, the authors performed the chiral extrapolations for the subtracted masses ${E}_{X}^{\left(\mathrm{sub}\right)}$, rather than the full masses EX of the doubly bottom baryons in [14],
$\begin{eqnarray}{E}_{X}^{\left(\mathrm{sub}\right)}={E}_{X}-\displaystyle \frac{{n}_{c}}{2}{\overline{E}}_{c\overline{c}}-\displaystyle \frac{{n}_{b}}{2}{\overline{E}}_{b\overline{b}},\end{eqnarray}$
where nc and nb are the number of c and b quarks in the doubly bottom baryons, and ${\overline{E}}_{c\overline{c}}$ and ${\overline{E}}_{b\overline{b}}$ are the spin average charmonium and bottomonium masses. The chiral extrapolated values of ${E}_{X}^{\left(\mathrm{sub}\right)}$ were added to the experimental values of $\tfrac{{n}_{c}}{2}{\overline{E}}_{c\overline{c}}+\tfrac{{n}_{b}}{2}{\overline{E}}_{b\overline{b}}$, ${\overline{E}}_{c\overline{c}}=3069\,\mathrm{MeV}$ and ${\overline{E}}_{b\overline{b}}=9445\,\mathrm{MeV}$ [48], and the full masses of the doubly bottom baryons were obtained.
In the chiral limit, the masses of the doubly bottom baryons are m0. We assume only m0 has the information of the heavy quark mass dependence. From the lattice QCD schemes in [14], $\tfrac{{n}_{c}}{2}{\overline{E}}_{c\overline{c}}+\tfrac{{n}_{b}}{2}{\overline{E}}_{b\overline{b}}$ only depend on the heavy quark masses. We absorb $\tfrac{{n}_{c}}{2}{\overline{E}}_{c\overline{c}}+\tfrac{{n}_{b}}{2}{\overline{E}}_{b\overline{b}}$ into m0.
With equations (19) and (20), we perform the chiral extrapolations for the lattice QCD data of ${E}_{X}^{\left(\mathrm{sub}\right)}$. We show the lattice QCD data in table 2. The lattice QCD data of ${E}_{X}^{\left(\mathrm{sub}\right)}$ are added to the experimental values of $\tfrac{{n}_{c}}{2}{\overline{E}}_{c\overline{c}}+\tfrac{{n}_{b}}{2}{\overline{E}}_{b\overline{b}}$. The π and ηs meson masses are used to tune the u/d and s quark masses [50, 51]. We use ${m}_{{\eta }_{s}}^{2}=2{B}_{0}{m}_{s}$, so the K and η meson masses read
$\begin{eqnarray}{m}_{K}=\sqrt{\displaystyle \frac{1}{2}\left({m}_{\pi }^{2}+{m}_{{\eta }_{s}}^{2}\right)},\end{eqnarray}$
$\begin{eqnarray}{m}_{\eta }=\sqrt{\displaystyle \frac{1}{3}\left({m}_{\pi }^{2}+2{m}_{{\eta }_{s}}^{2}\right)}.\end{eqnarray}$
We obtain the results of m0, c1, and c7, and predict the masses of the doubly bottom baryons, as shown in table 3.
Table 2. The lattice QCD data in [14]. All the physical quantities are in MeV.
mπ ${m}_{{\eta }_{s}}$ ${m}_{{{\rm{\Xi }}}_{{bb}}}$ ${m}_{{{\rm{\Omega }}}_{{bb}}}$ ${m}_{{{\rm{\Xi }}}_{\{{cb}\}}}$ ${m}_{{{\rm{\Omega }}}_{\{{cb}\}}}$ ${m}_{{{\rm{\Xi }}}_{[{cb}]}}$ ${m}_{{{\rm{\Omega }}}_{[{cb}]}}$
I 245 761 $10227\left(13\right)$ $7016\left(14\right)$ $6969\left(13\right)$
II 270 761 $10219\left(14\right)$ $7026\left(14\right)$ $6980\left(13\right)$
III 336 761 $10224\left(13\right)$ $10297\left(13\right)$ $7027\left(13\right)$ $7104\left(13\right)$ $6982\left(13\right)$ $7065\left(13\right)$
Table 3. The results of m0, c1, and c7 with the errors from the lattice QCD data, and the masses of the doubly bottom baryons and the charmed-bottom baryons with the errors from m0, c1, c7, and gA.
${m}_{0}\left(\mathrm{MeV}\right)$ ${c}_{1}\left({\mathrm{GeV}}^{-1}\right)$ ${c}_{7}\left({\mathrm{GeV}}^{-1}\right)$ ${m}_{{{\rm{\Xi }}}_{{QQ}}}\left(\mathrm{MeV}\right)$ ${m}_{{{\rm{\Omega }}}_{{QQ}}}\left(\mathrm{MeV}\right)$ ${\chi }_{{\rm{d}}.{\rm{o}}.{\rm{f}}.}^{2}$
Ξbbbb $10264\left(53\right)$ $-0.015\left(36\right)$ $-0.104\left(20\right)$ $10235\left(63\right)$ $10299\left(64\right)$ 0.182
Ξ{cb}{cb} $7000\left(51\right)$ $-0.059\left(34\right)$ $-0.108\left(20\right)$ $7010\left(60\right)$ $7078\left(61\right)$ 0.161
Ξ[cb][cb] $6854\left(48\right)$ $-0.326\left(32\right)$ $-0.323\left(20\right)$ $6930\left(63\right)$ $7017\left(84\right)$ 0.148
The mass formulas of the doubly bottom baryons and the charmed-bottom baryons are the same due to the heavy quark symmetry. For the charmed-bottom baryons, the heavy quarks are regarded as the spin symmetric and spin antisymmetric diquarks and form different triplets with the light quark. gA was determined in the quark model [49], ${g}_{A}\left(\{{cb}\}q\right)\,=-0.50\left(5\right)$ and ${g}_{A}\left([{cb}]q\right)=1.51\left(15\right)$. With the same lattice QCD schemes as the doubly bottom baryons, we obtain the results of m0, c1, and c7, and predict the masses of the charmed-bottom baryons, as shown in table 3.
We show the ${ \mathcal O }\left({p}^{2}\right)$ tree and ${ \mathcal O }\left({p}^{3}\right)$ loop masses of the doubly bottom baryons and the charmed-bottom baryons in table 4. The mass differences of the nonstrange and the strange baryons are determined in equations (19) and (20). There are two reasons. First, the u/d and s quark mass difference is involved. Second, the interactions of the pseudoscalar mesons and the doubly bottom baryons and the charmed-bottom baryons are involved. We show the mass curves of the doubly bottom baryons and the charmed-bottom baryons as functions of ${m}_{\pi }^{2}$, and the mass points from our results and the lattice QCD data in figure 2. We show our results and other theoretical results for the masses of the doubly bottom baryons and the charmed-bottom baryons in table 5.
Figure 2. The mass curves of the doubly bottom baryons and the charmed-bottom baryons as functions of ${m}_{\pi }^{2}$, and the mass points from our results and the lattice QCD data.
Table 4. The ${ \mathcal O }\left({p}^{2}\right)$ tree and ${ \mathcal O }\left({p}^{3}\right)$ loop masses of the doubly bottom baryons and the charmed-bottom baryons. All the physical quantities are in MeV.
m0 ${ \mathcal O }\left({p}^{2}\right)$ tree ${ \mathcal O }\left({p}^{3}\right)$ loop mB
Ξbb 10 264 −14 −15 10 235
Ωbb 10 264 69 −34 10 299
Ξ{cb} 7000 25 −15 7010
Ω{cb} 7000 112 −34 7078
Ξ[cb] 6854 213 −137 6930
Ω[cb] 6854 471 −308 7017
Table 5. Our results and other theoretical results for the masses of the doubly bottom baryons and the charmed-bottom baryons. All the physical quantities are in MeV.
Cases ${m}_{{{\rm{\Xi }}}_{{bb}}}$ ${m}_{{{\rm{\Omega }}}_{{bb}}}$ ${m}_{{{\rm{\Xi }}}_{\{{cb}\}}}$ ${m}_{{{\rm{\Omega }}}_{\{{cb}\}}}$ ${m}_{{{\rm{\Xi }}}_{[{cb}]}}$ ${m}_{{{\rm{\Omega }}}_{[{cb}]}}$
HBChPT Our results $10235\left(63\right)$ $10299\left(64\right)$ $7010\left(60\right)$ $7078\left(61\right)$ $6930\left(63\right)$ $7017\left(84\right)$
Quark models [8, 9] $10162\left(12\right)$ $10208\left(18\right)$ $6933\left(12\right)$ $6984\left(19\right)$ $6914\left(13\right)$ $6968\left(19\right)$
[10] 10210 10319
[11] $10168.9\left(9.2\right)$ $10259.0\left(15.5\right)$ $6947.9\left(6.9\right)$ $7047.0\left(9.3\right)$ $6922.3\left(6.9\right)$ $7010.7\left(9.3\right)$
[12, 13] 9716 10870 6628 7329 6628 7329
Lattice QCD [14] $10143\left(30\right)\left(23\right)$ $10273\left(27\right)\left(20\right)$ $6959\left(36\right)\left(28\right)$ $7032\left(28\right)\left(20\right)$ $6943\left(33\right)\left(28\right)$ $6998\left(27\right)\left(20\right)$
[18] $10127\left(13\right)\left({}_{26}^{12}\right)$ $10225\left(9\right)\left({}_{13}^{12}\right)$
[19] $10267\left(44\right)\left(61\right)$ $10356\left(34\right)\left(68\right)$ $6937\left(105\right)\left(46\right)$ $7077\left(109\right)\left(47\right)$ $6887\left(103\right)\left(46\right)$ $7039\left(108\right)\left(47\right)$
[20] $6966\left(23\right)\left(14\right)$ $7045\left(16\right)\left(13\right)$ $6945\left(22\right)\left(14\right)$ $6994\left(15\right)\left(13\right)$
[21] $10091\left(17\right)$ $10190\left(17\right)$ $6843\left(19\right)$ $6946\left(17\right)$ $6787\left(12\right)$ $6893\left(16\right)$
QCD sum rules [27] $10220\left({}_{70}^{70}\right)$ $10330\left({}_{80}^{70}\right)$
[28] $6930\left(70\right)$ $7040\left(80\right)$ $6890\left(80\right)$ $7010\left(80\right)$

5. Summary

We study the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$ in HBChPT. There are unknown low energy constants, m0, c1, c7, and gA. gA was determined in the quark model. For the doubly bottom baryons and the charmed-bottom baryons, with the same lattice QCD schemes, we fit the lattice QCD data to determine m0, c1, and c7. We show the numerical results for the masses of the doubly bottom baryons and the charmed-bottom baryons up to ${ \mathcal O }\left({p}^{3}\right)$.
The properties of the doubly heavy baryons are worth exploring, which can help people to understand the mechanism of the baryon spectrum. With the discovery of the ${{\rm{\Xi }}}_{{cc}}^{++}$ baryon, we hope for experimental evidence on the other doubly heavy baryons. Our numerical results may be useful for future experiments.

Our work is supported by the National Natural Science Foundation of China under Grants No. 11905 171 and No. 12047502. Our work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2022JQ-025.

1
Mattson M 2002 First observation of the doubly charmed baryon ${{\rm{\Xi }}}_{{cc}}^{+}$ Phys. Rev. Lett. 89 112001

DOI

2
Ocherashvili A 2005 Confirmation of the double charm baryon ${{\rm{\Xi }}}_{{cc}}^{+}\left(3520\right)$ via its decay to pD+K Phys. Lett. B 628 18

DOI

3
Aubert B 2006 Search for doubly charmed baryons ${{\rm{\Xi }}}_{{cc}}^{+}$ and ${{\rm{\Xi }}}_{{cc}}^{++}$ in BABAR Phys. Rev. D 74 011103

DOI

4
Chistov R 2006 Observation of new states decaying into ${{\rm{\Lambda }}}_{c}^{+}{K}^{-}{\pi }^{+}$ and ${{\rm{\Lambda }}}_{c}^{+}{K}_{S}^{0}{\pi }^{-}$ Phys. Rev. Lett. 97 162001

DOI

5
Aaij R 2013 Search for the doubly charmed baryon ${{\rm{\Xi }}}_{{cc}}^{+}$ J. High Energy Phys. 12 090

DOI

6
Aaij R 2017 Observation of the doubly charmed baryon ${{\rm{\Xi }}}_{{cc}}^{++}$ Phys. Rev. Lett. 119 112001

DOI

7
Aaij R 2020 Precision measurement of the ${{\rm{\Xi }}}_{{cc}}^{++}$ mass J. High Energy Phys. 02 049 JHEP02(2020)049

DOI

8
Karliner M Rosner J L 2014 Baryons with two heavy quarks: masses, production, decays, and detection Phys. Rev. D 90 094007

DOI

9
Karliner M Rosner J L 2018 Strange baryons with two heavy quarks Phys. Rev. D 97 094006

DOI

10
Shi S Z Zhao J X Zhuang P F 2020 Heavy flavor dissociation in framework of multi-body Dirac equations Chin. Phys. C 44 084101

DOI

11
Weng X Z Chen X L Deng W Z 2018 Masses of doubly heavy quark baryons in an extended chromomagnetic model Phys. Rev. D 97 054008

DOI

12
Mohajery N Salehi N Hassanabadi H 2018 A new model for calculating the ground and excited states masses spectra of doubly heavy Ξ baryons Adv. High Energy Phys. 2018 1326438

DOI

13
Salehi N Mohajery N 2018 An efficient method for obtaining the ground and excited states mass spectrum of doubly heavy Ω baryons Eur. Phys. J. Plus 133 416

DOI

14
Brown Z S Detmold W Meinel S Orginos K 2014 Charmed bottom baryon spectroscopy from lattice QCD Phys. Rev. D 90 094507

DOI

15
Perez-Rubio P Collins S Bali G S 2015 Charmed baryon spectroscopy and light flavor symmetry from lattice QCD Phys. Rev. D 92 034504

DOI

16
Alexandrou C Kallidonis C 2017 Low lying baryon masses using Nf = 2 twisted mass clover improved fermions directly at the physical pion mass Phys. Rev. D 96 034511

DOI

17
Bahtiyar H Can K U Erkol G Gubler P Oka M Takahashi T T 2020 Charmed baryon spectrum from lattice QCD near the physical point Phys. Rev. D 102 054513

DOI

18
Lewis R Woloshyn R 2009 Bottom baryons from a dynamical lattice QCD simulation Phys. Rev. D 79 014502

DOI

19
Burch T Heavy hadrons on Nf = 2 and 2 + 1 improved clover Wilson lattices arXiv: 1502.00675

20
Mathur N Padmanath M Mondal S 2018 Precise predictions of charmed-bottom hadrons from lattice QCD Phys. Rev. Lett. 121 202002

DOI

21
Mohanta P Basak S 2020 Heavy baryon spectrum on the lattice with NRQCD bottom and HISQ lighter quarks Phys. Rev. D 101 094503

DOI

22
Yu Q X Guo X H 2019 Masses of doubly heavy baryons in the Bethe–Salpeter equation approach Nucl. Phys. B 947 114727

DOI

23
Li Q Chang C H Qin S X Wang G L 2020 Mass spectra and wave functions of the doubly heavy baryons with JP = 1+ heavy diquark cores Chin. Phys. C 44 013102

DOI

24
Gutierrez-Guerrero L X Bashir A Bedolla M A Santopinto E 2019 Masses of light and heavy mesons and baryons: a unified picture, Masses of light and heavy mesons and baryons: a unified picture Phys. Rev. D 100 114032

DOI

25
Yin P L Cui Z F Roberts C D Segovia J 2021 Masses of positive and negative parity hadron ground states, including those with heavy quarks Eur. Phys. J. C 81 327

DOI

26
Chen H X Mao Q Chen W Liu X Zhu S L 2017 Establishing low lying doubly charmed baryons Phys. Rev. D 96 031501

DOI

27
Wang Z G 2018 Analysis of the doubly heavy baryon states and pentaquark states with QCD sum rules Eur. Phys. J. C 78 826

DOI

28
Wang Z G Xin Q 2022 Analysis of the bottom-charm baryon states with QCD sum rules Int. J. Mod. Phys. A 37 2250074

DOI

29
Weinberg S 1979 Phenomenological lagrangians Physica A 96 327

DOI

30
Ecker G 1995 Chiral perturbation theory Prog. Part. Nucl. Phys. 35 1

DOI

31
Gasser J Leutwyler H 1984 Chiral perturbation theory to one loop Ann. Phys. 158 142

DOI

32
Gasser J Leutwyler H 1985 Chiral Perturbation theory: expansions in the mass of the strange quark Nucl. Phys. B 250 465

DOI

33
Gasser J Sainio M E Svarc A 1988 Nucleons with chiral loops Nucl. Phys. B 307 779

DOI

34
Weinberg S 1991 Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces Nucl. Phys. B 363 3

DOI

35
Jenkins E E Manohar A V 1991 Baryon chiral perturbation theory using a heavy fermion Lagrangian Phys. Lett. B 255 558

DOI

36
Becher T Leutwyler H 1999 Baryon chiral perturbation theory in manifestly Lorentz invariant form Eur. Phys. J. C 9 643

DOI

37
Kubis B Meissner U G 2001 Low energy analysis of the nucleon electromagnetic form factors Nucl. Phys. A 679 698

DOI

38
Fuchs T Gegelia J Japaridze G Scherer S 2003 Renormalization of relativistic baryon chiral perturbation theory and power counting Phys. Rev. D 68 056005

DOI

39
Bernard C Golterman M 1994 Partially quenched gauge theories and an application to staggered fermions Phys. Rev. D 49 486

DOI

40
Sharpe S R Shoresh N 2000 Physical results from unphysical simulations Phys. Rev. D 62 094503

DOI

41
Bernard C Golterman M 2013 On the foundations of partially quenched chiral perturbation theory Phys. Rev. D 88 014004

DOI

42
Hu J Mehen T 2006 Chiral Lagrangian with heavy quark-diquark symmetry Phys. Rev. D 73 054003

DOI

43
Mehen T Tiburzi B C 2006 Doubly heavy baryons and quark-diquark symmetry in quenched and partially quenched chiral perturbation theory Phys. Rev. D 74 054505

DOI

44
Sun Z F Liu Z W Liu X Zhu S L 2015 Masses and axial currents of the doubly charmed baryons Phys. Rev. D 91 094030

DOI

45
Sun Z F Vicente Vacas M J 2016 Masses of doubly charmed baryons in the extended on mass shell renormalization scheme Phys. Rev. D 93 094002

DOI

46
Yao D L 2018 Masses and sigma terms of doubly charmed baryons up to ${ \mathcal O }\left({p}^{4}\right)$ in manifestly Lorentz invariant baryon chiral perturbation theory Phys. Rev. D 97 034012

DOI

47
Qiu P C Yao D L 2021 Chiral effective Lagrangian for doubly charmed baryons up to ${ \mathcal O }\left({p}^{4}\right)$ Phys. Rev. D 103 034006

DOI

48
Zyla P A 2020 Review of particle physics Prog. Theor. Exp. Phys. 2020 083C01

DOI

49
Li H S Meng L Liu Z W Zhu S L 2017 Magnetic moments of the doubly charmed and bottom baryons Phys. Rev. D 96 076011

DOI

50
Davies C Follana E Kendall I Lepage G P Mcneile C 2010 Precise determination of the lattice spacing in full lattice QCD Phys. Rev. D 81 034506

DOI

51
Dowdall R 2012 The upsilon spectrum and the determination of the lattice spacing from lattice QCD including charm quarks in the sea Phys. Rev. D 85 054509

DOI

Outlines

/