1. Introduction
2. Model and conserved quantities
Figure 1. A spin-S Heisenberg star consists of a central spin of size S and a homogeneously coupled XXX ring. The system-bath (intrabath) coupling is of XXX-type with strength g (J). |
3. Eigenenergies
3.1. Energy levels of an isolated XXX ring
3.2. Eigenenergies of the spin-S Heisenberg star
1. | (1) For fixed l satisfying $S\leqslant l\leqslant \tfrac{N}{2}$, the addition of l and S gives the following 2S + 1 different values of j $\begin{eqnarray}j=l+s,\,\,s=-S,-S+1,\cdots ,S.\end{eqnarray}$ According to equation ( $\begin{eqnarray}{E}^{({\alpha }_{l})}(l,s)={{JE}}_{{\rm{b}}}^{({\alpha }_{l})}(l)+\displaystyle \frac{g}{2}[{s}^{2}+s(2l+1)-S(S+1)].\end{eqnarray}$ The energy level ${E}^{({\alpha }_{l})}(l,s)$ is (2j + 1)-fold degenerate since the 2j + 1 states $| {\psi }_{{E}^{({\alpha }_{l})}(l,s),j,m,l}\rangle \,(m=-j,-j+1,\cdots ,j)$ possess the same energy and are connected by the raising or lowering operator ${{ \mathcal J }}_{\pm }$. We are interested in the lowest eigenenergy for a fixed l, i.e. the sub-ground state energy in the l-subspace. By noting that s2 + s(2l + 1) is an increasing function of s for s > − (l + 1/2), the second term in equation ( $\begin{eqnarray}{E}^{(\mathrm{gs})}(l)\equiv {E}^{(1)}(l,-S)={{JE}}_{{\rm{b}}}^{(1)}(l)-{gS}(l+1),\end{eqnarray}$ which is [2(l − S) + 1]-fold degenerate with the corresponding eigenstates $\{| {\psi }_{{E}^{(\mathrm{gs})}(l),l-S,m,l}\rangle \}$, − (l − S) ≤ m ≤ l − S. Since ${{JE}}_{{\rm{b}}}^{(1)}(l)$ is an increasing function of l for J > 0 and − gS(l + 1) is a decreasing function of l for g > 0, there exists a competition between the two terms in E(gs)(l) and there must be some l = l> that minimizes E(gs)(l). |
2. | (2) For fixed l satisfying 0 ≤ l < S, j can take values $\begin{eqnarray}j=S+s,\,\,s=-l,-l+1,\cdots ,l.\end{eqnarray}$ The eigenenergy for fixed l and j is $\begin{eqnarray}\begin{array}{l}{E}^{({\alpha }_{l})}(l,s)={{JE}}_{{\rm{b}}}^{({\alpha }_{l})}(l)\\ \quad +\displaystyle \frac{g}{2}[{s}^{2}+s(2S+1)-l(l+1)].\\ \end{array}\,\end{eqnarray}$ Similarly, the sub-ground state in the l-subspace with 0 ≤ l < S is achieved for s = − l: $\begin{eqnarray}{E}^{(\mathrm{gs})}(l)\equiv {E}^{(1)}(l,-l)={{JE}}_{{\rm{b}}}^{(1)}(l)-{gl}(S+1),\end{eqnarray}$ which is [2(S − l) + 1]-fold degenerate. There exists a certain l = l< that minimizes E(gs)(l) for 0 ≤ l < S. |
i | (i) For fixed $J/\tilde{g}$, the ground-state energy E(G) decreases with increasing S. In the large $J/\tilde{g}$ limit, E(G) converges to the result of S = 0 (or of a pure XXX chain) for different values of S. |
ii | (ii) For fixed S, E(G) is a nonmonotonic function of $J/\tilde{g}$, indicating that there might exist level crossings at certain values of $J/\tilde{g}$. |
iii | (iii) In the small $J/\tilde{g}$ limit, E(G) increases linearly with increasing $J/\tilde{g}$ and the energy difference for adjacent S's is a constant. |
Figure 2. Main panel: the ground-state energy ${E}^{(G)}/\tilde{g}$ as a function of $J/\tilde{g}$ for a spin-S Heisenberg star with N = 16 bath spins. Results for S = 1, 2, ⋯ ,7 are shown. The dashed black line represents the result for a pure XXX chain or a Heisenberg star with S = 0. Inset: the evolution of total angular momentum of the bath, l(G), as $J/\tilde{g}$ increases. |
3.3. Analytical results in the small $J/\tilde{g}$ limit
4. Eigenstates
4.1. General eigenstates: the Bethe ansatz method
I | (I) For − S − N/2 ≤ m ≤ S − N/2 with m = Sm + n the total magnetization of the star, the configurations of (Sm, n) that conserve m are ( − S, m + S), ⋯ ,(m + N/2, − N/2). The dimension of the corresponding invariant subspace is therefore m + N/2 + S + 1 ≤ 2S + 1. |
II | (II) For S − N/2 + 1 ≤ m ≤ − S + N/2 − 1, the configurations of (Sm, n) that conserve the total magnetization are ( − S, m + S), ⋯ ,(S, m − S). The dimension of the corresponding invariant subspace is 2S + 1. |
III | (III) For − S + N/2 ≤ m ≤ S + N/2, the configurations of (Sm, n) that conserve the total magnetization are (m − N/2, N/2), ⋯ ,(S, m − S). The dimension of the corresponding invariant subspace is S − m + N/2 + 1 ≤ 2S + 1. |
4.2. Sub-ground states for $S\leqslant l\leqslant \tfrac{N}{2}$
4.3. Sub-ground states for 0 ≤ l < S
5. Real-time dynamics
5.1. Dynamics of antiferromagnetic order in the spin-S Heisenberg star
Figure 3. Dynamics of the staggered magnetization 〈ms(t)〉 in a spin-3/2 Heisenberg star with N = 12 bath spins. Two types of initial states for the central spin is used, i.e. ∣φ(S)〉1 = ∣S〉 and $| {\phi }^{({\rm{S}})}{\rangle }_{2}=\tfrac{1}{\sqrt{2S+1}}(| S\rangle +| S-1\rangle +\cdots +| -S\rangle )$. The bath is initially prepared in the Néel state ∣AF〉 = ∣ ↓ ↑ ⋯ ↓ ↑ 〉. |
Figure 4. Dynamics of the staggered magnetization 〈ms(t)〉 in a spin-S Heisenberg star with N = 12 bath spins. Results for S = 1/2, 1, and 3/2 are shown for fixed $J/\tilde{g}$. The initial state of the central spin is chosen as ∣φ(S)〉1 = ∣S〉 and the bath is initially prepared in the Néel state ∣AF〉 = ∣ ↓ ↑ ⋯ ↓ ↑ 〉. |
5.2. Central spin dynamics in a modified Heisenberg star
Figure 5. Dynamics of the central-spin polarization 〈Sz(t)〉/S for $J=J^{\prime} $ and an XXX bath prepared in the spin coherent state $| \hat{{\rm{\Omega }}}\rangle $. Parameters: N = 14, $\theta =\tfrac{\pi }{2}$, φ = 0, and ω = g. |
Figure 6. Polarization dynamics of a qubit homogeneously coupled to an XXZ bath with $J\ne J^{\prime} $. Parameters: N = 14, $\theta =\tfrac{\pi }{2}$, φ = 0, and ω = g. |
6. Conclusions
Acknowledgments
Appendix. Derivation of equation (29 )
1. | (1) For Sm = S, $\begin{eqnarray}\begin{array}{l}{A}_{S}[{{JE}}_{{\rm{b}}}^{(1)}+{gS}(m-S)-{E}^{(\mathrm{gs})}(l)]\\ \quad +\displaystyle \frac{g}{2}{A}_{S-1}\sqrt{2S(l+m-S+1)(l-m+S)}=0.\end{array}\end{eqnarray}$ |
2. | (2) For − S < Sm < S, $\begin{eqnarray}\begin{array}{l}{A}_{{S}_{m}}[{{JE}}_{{\rm{b}}}^{(1)}+{{gS}}_{m}(m-{S}_{m})-{E}^{(\mathrm{gs})}(l)]\\ +\displaystyle \frac{g}{2}{A}_{{S}_{m}-1}\sqrt{(S-{S}_{m}+1)(S+{S}_{m})(l+m-{S}_{m}+1)(l-m+{S}_{m})}\\ +\displaystyle \frac{g}{2}{A}_{{S}_{m}+1}\sqrt{(S+{S}_{m}+1)(S-{S}_{m})(l-m+{S}_{m}+1)(l+m-{S}_{m})}=0.\end{array}\end{eqnarray}$ |
3. | (3) For Sm = − S, $\begin{eqnarray}\begin{array}{l}{A}_{-S}[{{JE}}_{{\rm{b}}}^{(1)}-{gS}(m+S)-{E}^{(\mathrm{gs})}(l)]\\ \quad +\displaystyle \frac{g}{2}{A}_{-S+1}\sqrt{2S(l-m-S+1)(l+m+S)}=0.\end{array}\end{eqnarray}$ |
1. | (1) Sm = S: $\begin{eqnarray}\begin{array}{l}{A}_{S}\sqrt{2S(l+m-S+1)}\\ \quad +{A}_{S-1}\sqrt{l-m+S}=0.\end{array}\end{eqnarray}$ |
2. | (2) − S < Sm < S: $\begin{eqnarray}\begin{array}{l}2{A}_{{S}_{m}}[{S}_{m}(m-{S}_{m})+S(l+1)]\\ \quad +{A}_{{S}_{m}-1}\sqrt{(S-{S}_{m}+1)(S+{S}_{m})(l+m-{S}_{m}+1)(l-m+{S}_{m})}\\ \quad +{A}_{{S}_{m}+1}\sqrt{(S+{S}_{m}+1)(S-{S}_{m})(l-m+{S}_{m}+1)(l+m-{S}_{m})}=0.\end{array}\end{eqnarray}$ |
3. | (3) Sm = − S: $\begin{eqnarray}\begin{array}{l}{A}_{-S}\sqrt{2S(l-m-S+1)}\\ \quad +{A}_{-S+1}\sqrt{l+m+S}=0.\end{array}\end{eqnarray}$ |