Welcome to visit Communications in Theoretical Physics,
Particle Physics and Quantum Field Theory

PV-reduction of sunset topology with auxiliary vector

  • Bo Feng , 1, 2, 3, 4 ,
  • Tingfei Li , 2,
Expand
  • 1 Beijing Computational Science Research Center, Beijing 100084, China
  • 2Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou, 310027, China
  • 3Center of Mathematical Science, Zhejiang University, Hangzhou, 310027, China
  • 4 Peng Huanwu Center for Fundamental Theory, Hefei, Anhui, 230026, China

Author to whom any correspondence should be addressed.

Received date: 2022-04-19

  Revised date: 2022-06-13

  Accepted date: 2022-07-08

  Online published: 2022-08-29

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The Passarino–Veltman (PV) reduction method has proven to be very useful for the computation of general one-loop integrals. However, not much progress has been made when it is applied to higher loops. Recently, we have improved the PV-reduction method by introducing an auxiliary vector. In this paper, we apply our new method to the simplest two-loop integrals, i.e., the sunset topology. We show how to use differential operators to establish algebraic recursion relations for reduction coefficients. Our algorithm can be easily applied to the reduction of integrals with arbitrary high-rank tensor structures. We demonstrate the efficiency of our algorithm by computing the reduction with the total tensor rank up to four.

Cite this article

Bo Feng , Tingfei Li . PV-reduction of sunset topology with auxiliary vector[J]. Communications in Theoretical Physics, 2022 , 74(9) : 095201 . DOI: 10.1088/1572-9494/ac7f97

1. Introduction

Calculation of Feynman integrals at the multi-loop level is of great importance for both perturbation quantum field theory and particle experiments. The general strategy is to expand arbitrary integrals to finite simpler integrals (called Master Integrals) and then do the integration of master integrals only. Thus, tensor reduction of Feynman integrals is one of the critical steps for various realistic calculations in the Standard Model. There is a large body of research on one-loop reduction [125]. For reducing multi-loop integrals, various ideas and methods have been developed. There are some works on two-loop tensor reduction for some special integrals [2631], while an algorithm for the reduction of general Feynman integrals was proposed in [3237]. Among these methods, the Integration-By-Parts (IBP) method [36, 37] is widely used and has been implemented by some powerful programs such as FIRE, LiteRed, Kira, etc [3845]. Although its popularity, the number of IBP identities grows very fast with the increasing number of mass scalars and higher rank of tensor structure, it will become a bottleneck when dealing with complicated physical processes. Even at the one-loop level, reducing a general tensor massive pentagon with the IBP method is difficult. Thus it is always welcome to find a more efficient reduction method.
PV-reduction [3] for one-loop integrals has played a significant role in general one-loop computations in history. However, when trying to generalize the method to higher loops, it becomes hard, and there are not many works in the literature. In [26, 46], the tensor two-loop integrals with only two external legs are reduced to scalar integrals with the PV-reduction method. However, an extra massless propagator appears. Integrals with new topologies have been introduced as master integrals to address the problem. This results against the intuitive picture: Reduction is achieved by removing one or more propagators from the original topology. Thus the reduction and master integrals should be constrained to the original topology and its sub-topologies.
Recently, we have generalized the original PV-reduction method for one-loop integrals by introducing an auxiliary vector R in [47, 48]. Our improved PV-reduction method can be easily carried out and compute reduction coefficients analytically by employing algebraic recursion relations. With these analytical expressions, one can do many things. For example, by taking limits properly, we can solve the reduction with propagators having general higher powers [49]. When external momenta are not general, i.e., the Gram determinant becomes zero, master integrals in the basis will not be independent anymore. We can systematically study their degeneration [50].
Encouraged by the results in [47, 48], we want to see if such an improved PV-reduction method can be transplanted to higher loops. When moving to two loops, some complexities arise. The first is that we need to determine the master integrals. For one-loop, the master integrals are trivially known. For higher loops, the choice of master integrals becomes an art. With proper choice, one can reduce the computation greatly [51]. The second is that when intuitively generalizing our method to two loops, we will meet the irreducible scalar products, which cannot be reduced. In fact, these two complexities are related to each other. To avoid unnecessary complexity, we will focus on the simplest nontrivial two-loop integrals, i.e., the sunset topology in this paper. With this example, we will show how to generalize our new PV-reduction method to two loops.
This paper is structured as follows. In section 2, we briefly review our previous work on one-loop tensor reduction and discuss the main idea for the reduction of sunset integrals. In section 3, we derive recursion relations for sunset integrals using differential operators and the proper choice of the master integrals in our algorithm. In section 4, we demonstrate our algorithm successfully to sunset integrals with the total rank from one to four. In section 5, we give some discussions and the plan for further studying. Technical details are collected in the appendix.

2. Brief discussion of tensor reduction with auxiliary vector

In this section, we will give a brief discussion of the general idea of using the auxiliary vector R to do tensor reduction. We first review the method presented in [47, 48] and then move to the two-loop sunset integrals. For the tensor reduction of a general one-loop integral (to avoid confusion, we denote Pj as propagators for one-loop integrals while Dj for two-loop integrals)
$\begin{eqnarray}{I}_{n+1}^{{\mu }_{1}{\mu }_{2}\cdots {\mu }_{m}}\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{{\ell }}^{{\mu }_{1}}{{\ell }}^{{\mu }_{2}}...{{\ell }}^{{\mu }_{m}}}{{P}_{0}{\prod }_{j=1}^{n-1}{P}_{j}}=\int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{{\ell }}^{{\mu }_{1}}{{\ell }}^{{\mu }_{2}}...{{\ell }}^{{\mu }_{m}}}{({{\ell }}^{2}-{M}_{0}^{2}){\prod }_{j=1}^{n}({\left({\ell }-{K}_{j}\right)}^{2}-{M}_{j}^{2})},\end{eqnarray}$
one can recover its tensor structure by multiplying each index with an auxiliary vector ${R}_{i,{\mu }_{i}}$. Furthermore, we can combine these Ri to $R={\sum }_{i=1}^{m}{x}_{i}{R}_{i}$ to simplify the expression (2.1) to
$\begin{eqnarray}{I}_{n+1}^{(m)}\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{\left(2R\cdot {\ell }\right)}^{m}}{{P}_{0}{\prod }_{j=1}^{n}{P}_{j}}.\end{eqnarray}$
The good point of using (2.2) instead of (2.1) is that we have avoided the complicated Lorentz tensor structure in the reduction process, while they can easily be retained using the expansion of R and taking corresponding coefficients of xi's. Since we are using dimensional regularization, we like to keep the D as a general parameter. For D = d − 2ε, the master basis is the scalar integrals with nd + 1 propagators, i.e., the reduction results can be written as
$\begin{eqnarray}{I}_{n}^{(m)}={C}_{n\to n}^{(m)}{I}_{n}+{C}_{n\to n;\widehat{i}}^{(m)}{I}_{n;\widehat{i}}+{C}_{n\to n;\widehat{{ij}}}^{(m)}{I}_{n;\widehat{{ij}}}+\ldots \end{eqnarray}$
where we denote ${I}_{n;\widehat{{i}_{1},\ldots ,{i}_{a}}}$ as the integrals got by removing propagators ${P}_{{i}_{1}},{P}_{{i}_{2}},\ldots ,{P}_{{i}_{a}}$ from In. For simplicity, we denote
$\begin{eqnarray}{s}_{{ij}}\equiv {K}_{i}\cdot {K}_{j},\,\,\,{s}_{0i}\equiv R\cdot {K}_{i},\ \ {f}_{i}\equiv {M}_{0}^{2}-{M}_{i}^{2}+{s}_{{ii}}.\end{eqnarray}$
By the explicit permutation symmetry in (2.1), we only need to calculate ${C}_{n+1\to \{0,1,\ldots ,r\}}^{(m)}\equiv {C}_{n+1\to n+1;\widehat{r+1},\widehat{r+2},\ldots ,\widehat{n}}^{(m)}$ while other reduction coefficients can be got by proper replacements and momentum shifting. With the introduction of auxiliary vector R in (2.2), one can expand the reduction coefficients according to their tensor structure
$\begin{eqnarray}{C}_{n+1\to \{0,1,\ldots ,r\}}^{(m)}=\sum _{2{a}_{0}+{\sum }_{k=1}^{n}{a}_{k}=m}\left\{{c}_{{a}_{1},\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}(m){\left({M}_{0}^{2}\right)}^{{a}_{0}+r-n}{\prod }_{k=0}^{n}{s}_{0k}^{{a}_{k}}\right\}.\end{eqnarray}$
By acting two types of differential operators ${{ \mathcal D }}_{i}\equiv {K}_{i}\cdot \displaystyle \frac{\partial }{\partial R}$ and ${ \mathcal T }\equiv {\eta }^{\mu \nu }\displaystyle \frac{\partial }{\partial {R}^{\mu }}\displaystyle \frac{\partial }{\partial {R}^{\nu }}$ on (2.2), we get the recursion relations for the expansion coefficients ${c}_{{a}_{1},\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}$
$\begin{eqnarray}{{\boldsymbol{c}}}^{(\mathrm{0,1},\cdots ,r)}({a}_{1},\cdots ,{a}_{n};m)={{\boldsymbol{T}}}^{-1}{\widetilde{{\boldsymbol{G}}}}^{-1}{{\boldsymbol{O}}}^{(\mathrm{0,1},\cdots ,r)}({a}_{1},\cdots ,{a}_{n};m),\end{eqnarray}$
$\begin{eqnarray}{c}_{{\underbrace{0,\cdots ,0}}_{{\rm{n}}\ \mathrm{times}}}^{(0,1,\cdots ,r)}(2k)=\displaystyle \frac{2k-1}{D+2k-n-2}\left[(4-{{\boldsymbol{\alpha }}}^{{\rm{T}}}{\widetilde{{\boldsymbol{G}}}}^{-1}{\boldsymbol{\alpha }}){c}_{{\underbrace{0,\cdots ,0}}_{{\rm{n}}\ \mathrm{times}}}^{(0,1,\cdots ,r)}(2k-2)+{{\boldsymbol{\alpha }}}^{{\rm{T}}}{\widetilde{{\boldsymbol{G}}}}^{-1}{{\boldsymbol{c}}}_{{\underbrace{0,\cdots ,0}}_{{\rm{n}}-1\ \mathrm{times}}}^{(0,1,\cdots ,r)}(2k-2)\right],\end{eqnarray}$
where $\widetilde{{\boldsymbol{G}}}=\left\{\displaystyle \frac{{s}_{{ij}}}{{M}_{0}^{2}}\right\}$ is the n × n rescaled Gram matrix and T = diag(a1 + 1, a2 + 1, ⋯ ,an + 1) is a diagonal matrix. The vectors in the equations (2.6) and (2.7) are defined as
$\begin{eqnarray}\alpha \equiv \left(\displaystyle \frac{{f}_{1}}{{M}_{0}^{2}},\displaystyle \frac{{f}_{2}}{{M}_{0}^{2}},\cdots ,\displaystyle \frac{{f}_{n}}{{M}_{0}^{2}}\right),\ {\left[{{\boldsymbol{c}}}^{(\mathrm{0,1},\cdots ,r)}({a}_{1},\cdots ,{a}_{n};m)\right]}_{i}\equiv {c}_{{a}_{1},{a}_{2},\cdots ,{a}_{i}+1,\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}(m),\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}{\left[{{\boldsymbol{O}}}^{(\mathrm{0,1},\cdots ,r)}({a}_{1},\cdots ,{a}_{n};m)\right]}_{i}\equiv m{\alpha }_{i}{c}_{{a}_{1},\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}(m-1)-m{\delta }_{0{a}_{i}}{c}_{{a}_{1},\cdots ,{\widehat{a}}_{i},\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}(m-1;\widehat{i})\\ -(m+1-\displaystyle \sum _{l=1}^{n}{a}_{l}){c}_{{a}_{1},\cdots ,{a}_{i}-1,{a}_{i},\cdots ,{a}_{n}}^{(0,1,\cdots ,r)}(m),\\ {{\boldsymbol{c}}}_{\mathop{\underbrace{0,\cdots ,0}}\limits_{{\rm{n}}-1\ \mathrm{times}}}^{(0,1,\cdots ,r)}(m)\equiv \left(0,0,\cdots ,0,{c}_{\mathop{\underbrace{0,\cdots ,0}}\limits_{{\rm{n}}-1\ \mathrm{times}}}^{(0,1,\cdots ,r)}(m;\widehat{r+1}),\cdots ,{c}_{\mathop{\underbrace{0,\cdots ,0}}\limits_{{\rm{n}}-1\ \mathrm{times}}}^{(0,1,\cdots ,r)}(m;\widehat{n})\right).\end{array}\end{eqnarray}$
where ${\widehat{a}}_{i}$ indicates to drop the index ai. With the known boundary conditions, one can obtain all reduction coefficients by applying the recursions (2.6) and (2.7) iteratively.
One important point of the above reduction method is that we need to use both ${{ \mathcal D }}_{i}$ and ${ \mathcal T }$ operators to completely fix unknown coefficients in (2.5). One simple explanation is that in (2.5) coefficients there are (n + 1) indices (ai, i = 1,…,n and rank m), so naively (n + 1) relations are needed. A more accurate explanation is a little tricky. Let us take the bubble, i.e., n = 1 as an example. As shown in table 1, for rank m, there are ${N}_{c}=\left(\lfloor \tfrac{m}{2}\rfloor +1\right)$ unknown coefficients while the number of independent ${ \mathcal D }$-type equations is ${N}_{{ \mathcal D }}=\lfloor \tfrac{m+1}{2}\rfloor $. Thus, only using the ${ \mathcal D }$-type operators we can fix all coefficients with odd rank m = (2k + 1) by these known terms with lower rank m ≤ 2k. However, for m = 2k + 2, ${N}_{c}-{N}_{{ \mathcal D }}=1$, thus just using ${ \mathcal D }$-type relations is not enough and we need to adopt the ${ \mathcal T }$ operator to provide one extra independent relation. In fact, ${ \mathcal T }$ provides more than just one relation, but other relations are not independent to these coming from ${ \mathcal D }$ and can be taken as the consistent check of the reduction method.
Table 1. Number of expansion coefficients and independent equations for tensor bubble.
Rank m Nc ${N}_{{ \mathcal D }}$ ${N}_{{ \mathcal T }\cup { \mathcal D }}$ ${N}_{c}-{N}_{{ \mathcal T }\cup { \mathcal D }}$
1 1 1 1 0
2 2 1 2 0
3 2 2 2 0
4 3 2 3 0
5 3 3 3 0
6 4 3 4 0
In this paper, we want to generalize our reduction method from one-loop to two-loop integrals. Again, with a simplified tensor structure, we define the general tensor integrals of sunset topology as5(5For simplicity, we denote the scalar integral ${I}_{{a}_{1},{a}_{2},{a}_{3}}\equiv {I}_{{a}_{1},{a}_{2},{a}_{3}}^{(0,0)}$.)
$\begin{eqnarray}{I}_{{a}_{1},{a}_{2},{a}_{3}}^{({r}_{1},{r}_{2})}\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{{\ell }}_{1}}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{{\rm{d}}}^{D}{{\ell }}_{2}}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{\left(2{{\ell }}_{1}\cdot {R}_{1}\right)}^{{r}_{1}}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{{D}_{1}^{{a}_{1}}{D}_{2}^{{a}_{2}}{D}_{3}^{{a}_{3}}.}\end{eqnarray}$
where the propagators are
$\begin{eqnarray}{D}_{1}\equiv {{\ell }}_{1}^{2}-{M}_{1}^{2},\,\,\,{D}_{2}\equiv {{\ell }}_{2}^{2}-{M}_{2}^{2},\,\,\,\,{D}_{3}\equiv {\left({{\ell }}_{1}+{{\ell }}_{2}-K\right)}^{2}-{M}_{3}^{2}.\end{eqnarray}$
In this paper, we consider only the reduction with all ai = 1. For ai ≥ 2, one can use the same strategy presented in [49]. For simplicity, we denote
$\begin{eqnarray}\int {\rm{d}}{\ell }_{i}(\bullet )\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }_{i}}{{\rm{i}}{\pi }^{D/2}}(\bullet ),\,\,\,\,\int {\rm{d}}{\ell }_{1,2}(\bullet )\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }_{1}}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{{\rm{d}}}^{D}{\ell }_{2}}{{\rm{i}}{\pi }^{D/2}}(\bullet )={\int }_{1,2}(\bullet ).\end{eqnarray}$
Similar to what we do for one-loop case, we can expand reduction coefficients according to their tensor structure6
$\begin{eqnarray}{I}_{1,1,1}^{({r}_{1},{r}_{2})}={{\boldsymbol{C}}}^{({r}_{1},{r}_{2})}{\boldsymbol{J}}=\displaystyle \sum _{{i}_{1},{i}_{2},j}^{{\prime} }{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}\,{\boldsymbol{J}}\end{eqnarray}$
where we have written C, J to emphasize they are vector, while other kinematic variables are
$\begin{eqnarray}{s}_{01}={R}_{1}\cdot K,\,\,{s}_{0^{\prime} 1}={R}_{2}\cdot K,\,\,{s}_{11}={K}^{2},\,\,{s}_{00}={R}_{1}^{2},\,\,{s}_{0^{\prime} 0^{\prime} }={R}_{2}^{2},\,\,\,{s}_{00^{\prime} }={R}_{1}\cdot {R}_{2}.\end{eqnarray}$
In (2.13), the expansion coefficients ${\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}$ are actually vectors with components corresponding to different master integrals Ji. The summation over indices {i1, i2, j} ≥ 0 admits to the restriction $0\leqslant ({r}_{l}-{i}_{l}-j)/2\in {\mathbb{N}},l\,=\,1,2$. We make the indices free by setting all ${\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}=0$ for inappropriate indices throughout the paper, so we will drop the prime in other summations. Similar to the strategy for one-loop case, we solve expansion coefficients from lower rank levels to higher rank levels iteratively, where the rank level is defined as the total rank (r1 + r2).
When we do the tensor reduction, we will reach the sub-topologies where one of the propagators in (2.11) is removed. For these cases, the integrals are reduced to the product of two one-loop tadpoles. Their tensor reduction has been solved in appendix B. To simplify notation, we denote
$\begin{eqnarray}{I}_{1,1,1;\hat{i}}^{({r}_{1},{r}_{2})}\equiv \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }_{1}}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{{\rm{d}}}^{D}{\ell }_{2}}{{\rm{i}}{\pi }^{D/2}}\displaystyle \frac{{\left(2{\ell }_{1}\cdot {R}_{1}\right)}^{{r}_{1}}{\left(2{\ell }_{2}\cdot {R}_{2}\right)}^{{r}_{2}}{D}_{i}}{{D}_{1}{D}_{2}{D}_{3}}\end{eqnarray}$
and their reductions are written as
$\begin{eqnarray}{I}_{1,1,1;\widehat{i}}^{({r}_{1},{r}_{2})}={{\bf{C}}}_{\widehat{i}}^{({r}_{1},{r}_{2})}{\bf{J}}=\sum _{{i}_{1},{i}_{2},j}{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{i}}^{({r}_{1},{r}_{2})}\,{\bf{J}}.\end{eqnarray}$
In (2.13), there are five indices for the expansion coefficients, i.e., i1, i2, j, r1, r2. With the experience from one-loop integrals, every index needs a recursion relation, so in total five kinds of differential operators are needed to give sufficient recursion relations. From the form of (2.2), we can construct three ${ \mathcal T }$-type operators
$\begin{eqnarray}{{ \mathcal T }}_{00}\equiv {\eta }^{\mu \nu }\displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }}\displaystyle \frac{\partial }{\partial {R}_{1}^{\nu }},\,\,\,{{ \mathcal T }}_{0^{\prime} 0^{\prime} }\equiv {\eta }^{\mu \nu }\displaystyle \frac{\partial }{\partial {R}_{2}^{\mu }}\displaystyle \frac{\partial }{\partial {R}_{2}^{\nu }},\,\,\,{{ \mathcal T }}_{00^{\prime} }\equiv {\eta }^{\mu \nu }\displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }}\displaystyle \frac{\partial }{\partial {R}_{2}^{\nu }}.\end{eqnarray}$
By applying these operators on the tensor integrals (2.2), we produce combinations ${{\ell }}_{1}^{2},{{\ell }}_{2}^{2},{{\ell }}_{1}\cdot {{\ell }}_{2}$ in the numerator, respectively. Using the following algebraic decomposition
$\begin{eqnarray}\begin{array}{l}{{\ell }}_{1}^{2}={D}_{1}+{M}_{1}^{2},\,\,\,\,\,{{\ell }}_{2}^{2}={D}_{2}^{2}+{M}_{2}^{2},\\ 2{{\ell }}_{1}\cdot {{\ell }}_{2}={D}_{3}+{M}_{3}^{2}-{D}_{1}-{M}_{1}^{2}-{D}_{2}-{M}_{2}^{2}-{K}^{2}+2{{\ell }}_{1}\cdot K+2{{\ell }}_{2}\cdot K\end{array}\end{eqnarray}$
we can write the result as a sum of terms with one-lower or two-lower rank levels and terms for lower topologies, thus we can establish three recursion relations for these operators with expansion (2.13).
Having discussed the operators ${{ \mathcal T }}_{i}$, it is natural to think about following two ${ \mathcal D }$-type operators ${K}^{\mu }\cdot \tfrac{\partial }{\partial {R}_{1}^{\mu }}$ and ${K}^{\mu }\cdot \tfrac{\partial }{\partial {R}_{2}^{\mu }}$. However, when acting on (2.2), it gives the combinations 1 · K and 2 · K. These two factors do not have simple algebraic decompositions like (2.18). Thus it is not so easy to find corresponding recursion relations. One key input in our paper is that the recursion relation of ${ \mathcal D }$-type operators can be established if we consider the reduction of the sub-one-loop integrals first. As we will show, such a recursion relation is highly nontrivial and more discussions will be given later.

3. Recursion relations for tensor integrals of sunset topology

In this section, we first derive the recursion relations for expansion coefficients of three ${ \mathcal T }$-type operators. Then we establish another two recursion relations of ${ \mathcal D }$-type operators by reducing the left/right sub-one-loop first. As we will see, in the process, one needs to use a highly nontrivial relation of the reduction coefficients of tensor bubbles. Combining the recursion relations from ${ \mathcal T }$-type and ${ \mathcal D }$-type operators, we get five relations. When using them to solve expansion coefficients, we find that not all coefficients can be fixed. It indicates that some integrals with nontrivial numerators should be recognized as master integrals.
After introducing two auxiliary vectors R1, R2, we can define differential operators (where we use the shorthand ${\partial }_{A}=\tfrac{\partial }{\partial A}$)
$\begin{eqnarray}\displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }}=2{R}_{1\mu }{\partial }_{{s}_{00}}+{K}_{\mu }{\partial }_{{s}_{01}}+{R}_{2\mu }{\partial }_{{s}_{0^{\prime} 0}},\,\,\displaystyle \frac{\partial }{\partial {R}_{2}^{\mu }}=2{R}_{2\mu }{\partial }_{{s}_{0^{\prime} 0^{\prime} }}+{K}_{\mu }{\partial }_{{s}_{0^{\prime} 1}}+{R}_{1\mu }{\partial }_{{s}_{0^{\prime} 0}}.\end{eqnarray}$
Using the two expressions and external Lorentz vectors, we can get the following Lorentz invariant combinations, i.e., three ${ \mathcal T }$-type operators ${{ \mathcal T }}_{00},{{ \mathcal T }}_{00^{\prime} },{{ \mathcal T }}_{0^{\prime} 0^{\prime} }$ defined in (2.17) and six ${ \mathcal D }$-type operators
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal D }}_{10} & \equiv & K\cdot \displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }},\hspace{5pt}{{ \mathcal D }}_{10^{\prime} }\equiv K\cdot \displaystyle \frac{\partial }{\partial {R}_{2}^{\mu }},{{ \mathcal D }}_{0^{\prime} 0}\equiv {R}_{2}\cdot \displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }},\\ {{ \mathcal D }}_{00^{\prime} } & \equiv & {R}_{1}\cdot \displaystyle \frac{\partial }{\partial {R}_{2}^{\mu }},\hspace{5pt}{{ \mathcal D }}_{00}\equiv {R}_{1}\cdot \displaystyle \frac{\partial }{\partial {R}_{1}^{\mu }},{{ \mathcal D }}_{0^{\prime} 0^{\prime} }\equiv {R}_{2}\cdot \displaystyle \frac{\partial }{\partial {R}_{2}^{\mu }}.\end{array}\end{eqnarray}$
It is easy to use the definition (3.1) to find their action on reduction coefficients, for example,
$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{00^{\prime} }=2{s}_{0^{\prime} 0}{\partial }_{{s}_{0^{\prime} 0^{\prime} }}+{s}_{01}{\partial }_{{s}_{0^{\prime} 1}}+{s}_{00}{\partial }_{{s}_{00^{\prime} }},\\ {{ \mathcal T }}_{00^{\prime} }=2{{ \mathcal D }}_{00^{\prime} }{\partial }_{{s}_{00}}+{{ \mathcal D }}_{10^{\prime} }{\partial }_{{s}_{01}}+D{\partial }_{{s}_{00^{\prime} }}+{{ \mathcal D }}_{0^{\prime} 0^{\prime} }{\partial }_{{s}_{0^{\prime} 0}}.\end{array}\end{eqnarray}$
Employing them, we can write down recursion relations for expansion coefficients.

3.1. Recursion relations from ${ \mathcal T }$-type operators

Here, we derive the recursion relations for three ${ \mathcal T }$-type operators. Let us start with the action of ${{ \mathcal T }}_{00}$. It is easy to check
$\begin{eqnarray}{{ \mathcal T }}_{00}{I}_{1,1,1}^{({r}_{1}\geqslant 2,{r}_{2})}=4{r}_{1}({r}_{1}-1)\left[{I}_{1,1,1;\widehat{1}}^{({r}_{1}-2,{r}_{2})}+{M}_{1}^{2}{I}_{1,1,1}^{({r}_{1}-2,{r}_{2})}\right]\end{eqnarray}$
by using the algebraic relation (2.18). Plugging the expansion (2.13) into both sides, we find the LHS of the equation is
$\begin{eqnarray}\begin{array}{l}\sum _{{i}_{1},{i}_{2},j}\left[\left({r}_{1}-{i}_{1}-j\right)\left(D+{i}_{1}+j+{r}_{1}-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}+2({i}_{1}+1)(j+1){\vec{\alpha }}_{{i}_{1}+1,{i}_{2}-1,j+1}^{({r}_{1},{r}_{2})}\right.\\ \quad +\ \left.\left({i}_{1}+1\right)({i}_{1}+2){s}_{11}{\vec{\alpha }}_{{i}_{1}+2,{i}_{2},j}^{({r}_{1},{r}_{2})}+(j+1)(j+2){\vec{\alpha }}_{{i}_{1},{i}_{2},j+2}^{({r}_{1},{r}_{2})}\right]{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-2-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\boldsymbol{J}},\end{array}\end{eqnarray}$
and the RHS is
$\begin{eqnarray}4{r}_{1}({r}_{1}-1)\sum _{{i}_{1}.{i}_{2},j}\left({\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{1}}^{({r}_{1}-2,{r}_{2})}+{M}_{1}^{2}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1}-2,{r}_{2})}\right){s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-2-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\boldsymbol{J}}.\end{eqnarray}$
where the definition of ${\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{1}}^{({r}_{1}-2,{r}_{2})}$ has been given in (2.16). Comparing both sides, we obtain the recursion relation for operator ${{ \mathcal T }}_{00}$ with r1 ≥ 2
$\begin{eqnarray}\begin{array}{l}\left({i}_{1}+1\right)({i}_{1}+2){s}_{11}{\vec{\alpha }}_{{i}_{1}+2,{i}_{2},j}^{({r}_{1},{r}_{2})}+(j+1)(j+2){\vec{\alpha }}_{{i}_{1},{i}_{2},j+2}^{({r}_{1},{r}_{2})}+2({i}_{1}+1)(j+1){\vec{\alpha }}_{{i}_{1}+1,{i}_{2}-1,j+1}^{({r}_{1},{r}_{2})}\\ \quad +\ \left({r}_{1}-{i}_{1}-j\right)\left(D+{i}_{1}+j+{r}_{1}-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}=4{r}_{1}({r}_{1}-1)\left[{\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{1}}^{({r}_{1}-2,{r}_{2})}+{M}_{1}^{2}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1}-2,{r}_{2})}\right].\end{array}\end{eqnarray}$
Similarly, one can derive the recursion relations for operator ${{ \mathcal T }}_{0^{\prime} 0^{\prime} }$ with r2 ≥ 2
$\begin{eqnarray}\begin{array}{l}\left({i}_{2}+1\right)({i}_{2}+2){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+2,j}^{({r}_{1},{r}_{2})}+(j+1)(j+2){\vec{\alpha }}_{{i}_{1},{i}_{2},j+2}^{({r}_{1},{r}_{2})}+2({i}_{2}+1)(j+1){\vec{\alpha }}_{{i}_{1}-1,{i}_{2}+1,j+1}^{({r}_{1},{r}_{2})}\\ \quad +\ \left({r}_{2}-{i}_{2}-j\right)\left(D+{i}_{2}+j+{r}_{2}-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}=4{r}_{2}({r}_{2}-1)\left[{\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{2}}^{({r}_{1},{r}_{2}-2)}+{M}_{2}^{2}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2}-2)}\right].\end{array}\end{eqnarray}$
Finally, using the algebraic relation
$\begin{eqnarray}2{{\ell }}_{1}\cdot {{\ell }}_{2}={D}_{3}-{D}_{1}-{D}_{2}+2{{\ell }}_{1}\cdot K+2{{\ell }}_{2}\cdot K-{f}_{12}\end{eqnarray}$
with
$\begin{eqnarray}{f}_{12}\equiv {K}^{2}+{M}_{1}^{2}+{M}_{2}^{2}-{M}_{3}^{2},\end{eqnarray}$
we derive recursion relations of operator ${{ \mathcal T }}_{00^{\prime} }$ for r1 ≥ 1, r2 ≥ 1 as
$\begin{eqnarray}{{ \mathcal T }}_{00^{\prime} }{I}_{1,1,1}^{({r}_{1},{r}_{2})}=2{r}_{1}{r}_{2}\left[{I}_{1,1,1;\widehat{3}-\widehat{1}-\widehat{2}}^{({r}_{1}-1,{r}_{2}-1)}-{f}_{12}{I}_{1,1,1}^{({r}_{1}-1,{r}_{2}-1)}\right]+2{r}_{2}{{ \mathcal D }}_{10}{I}_{1,1,1}^{({r}_{1},{r}_{2}-1)}+2{r}_{1}{{ \mathcal D }}_{10^{\prime} }{I}_{1,1,1}^{({r}_{1}-1,{r}_{2})},\end{eqnarray}$
where we have used the shorthand
$\begin{eqnarray}\begin{array}{rcl}{I}_{1,1,1;\widehat{3}-\widehat{1}-\widehat{2}}^{({r}_{1},{r}_{2})} & \equiv & {I}_{1,1,1;\widehat{3}}^{({r}_{1},{r}_{2})}-{I}_{1,1,1;\widehat{1}}^{({r}_{1},{r}_{2})}-{I}_{1,1,1;\widehat{2}}^{({r}_{1},{r}_{2})}\\ & = & \sum _{{i}_{1},{i}_{2},j}{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{3}-\widehat{1}-\widehat{2}}^{({r}_{1},{r}_{2})}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
Employing the expansion (2.13), we find the LHS of (3.11) is
$\begin{eqnarray}\begin{array}{l}\sum _{{i}_{1},{i}_{2},j}\left[(j+1)\left(D+{r}_{1}+{r}_{2}-j-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j+1}^{({r}_{1},{r}_{2})}-({i}_{2}+1)\left({i}_{1}-1+j-{r}_{1}\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2}+1,j}^{({r}_{1},{r}_{2})}\right.\\ \quad +\ \left({i}_{1}+j-1-{r}_{1}\right)\left({i}_{2}+j-1-{r}_{2}\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j-1}^{({r}_{1},{r}_{2})}-({i}_{1}+1)\left({i}_{2}-1+j-{r}_{2}\right){\vec{\alpha }}_{{i}_{1}+1,{i}_{2}-1,j}^{({r}_{1},{r}_{2})}\\ \quad +\ \left.({i}_{1}+1)({i}_{2}+1){s}_{11}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2}+1,j}^{({r}_{1},{r}_{2})}\right]{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-1-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-1-{i}_{2}-j}{2}}{\boldsymbol{J}},\end{array}\end{eqnarray}$
and the RHS is
$\begin{eqnarray}\begin{array}{l}\sum _{{i}_{1},{i}_{2},j}\left[2{r}_{2}\left(({i}_{1}+1){s}_{11}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2},j}^{({r}_{1},{r}_{2}-1)}+(j+1){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j+1}^{({r}_{1},{r}_{2}-1)}-\left({i}_{1}-1+j-{r}_{1}\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j}^{({r}_{1},{r}_{2}-1)}\right)\right.\\ \quad +\ 2{r}_{1}\left(({i}_{2}+1){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+1,j}^{({r}_{1}-1,{r}_{2})}+(j+1){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j+1}^{({r}_{1}-1,{r}_{2})}-\left({i}_{2}-1+j-{r}_{2}\right){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j}^{({r}_{1}-1,{r}_{2})}\right)\\ \quad +\ \left.2{r}_{1}{r}_{2}\left({\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{3}-\widehat{1}-\widehat{2}}^{({r}_{1}-1,{r}_{2}-1)}-{f}_{12}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1}-1,{r}_{2}-1)}\right)\right]{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-1-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-1-{i}_{2}-j}{2}}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
Comparing both sides of equation (3.11), we have
$\begin{eqnarray}\begin{array}{l}(j+1)\left(D+{r}_{1}+{r}_{2}-j-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j+1}^{({r}_{1},{r}_{2})}-({i}_{2}+1)\left({i}_{1}-1+j-{r}_{1}\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2}+1,j}^{({r}_{1},{r}_{2})}\\ \quad +\ \left({i}_{1}+j-1-{r}_{1}\right)\left({i}_{2}+j-1-{r}_{2}\right){\vec{\alpha }}_{{i}_{1},{i}_{2},j-1}^{({r}_{1},{r}_{2})}-({i}_{1}+1)\left({i}_{2}-1+j-{r}_{2}\right){\vec{\alpha }}_{{i}_{1}+1,{i}_{2}-1,j}^{({r}_{1},{r}_{2})}\\ \quad +({i}_{1}+1)({i}_{2}+1){s}_{11}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2}+1,j}^{({r}_{1},{r}_{2})}\\ \quad =2{r}_{2}\left(({i}_{1}+1){s}_{11}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2},j}^{({r}_{1},{r}_{2}-1)}+(j+1){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j+1}^{({r}_{1},{r}_{2}-1)}-\left({i}_{1}-1+j-{r}_{1}\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j}^{({r}_{1},{r}_{2}-1)}\right)\\ \quad +2{r}_{1}\left(({i}_{2}+1){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+1,j}^{({r}_{1}-1,{r}_{2})}+(j+1){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j+1}^{({r}_{1}-1,{r}_{2})}-\left({i}_{2}-1+j-{r}_{2}\right){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j}^{({r}_{1}-1,{r}_{2})}\right)\\ \quad +2{r}_{1}{r}_{2}\left({\vec{\alpha }}_{{i}_{1},{i}_{2},j;\widehat{3}-\widehat{1}-\widehat{2}}^{({r}_{1}-1,{r}_{2}-1)}-{f}_{12}{\vec{\alpha }}_{{i}_{1},{i}_{2},j}^{({r}_{1}-1,{r}_{2}-1)}\right).\end{array}\end{eqnarray}$
By now, we have obtained three ${ \mathcal T }$-type relations (3.7), (3.8) and (3.15). As discussed in the introduction, these relations are not sufficient to solve all expansion coefficients iteratively. In table 2, we list the number of expansion coefficients (each vector $\vec{\alpha }$ is counted as one coefficient) and the independent equations given by three ${ \mathcal T }$-type recursions. Comparing two tables, we find the number of reminding unknown terms is universal: ${N}_{\alpha }-{N}_{{ \mathcal T }}=1$. So for each rank level r ≡ (r1 + r2) there reminds (r + 1) unknown expansion coefficients. We need to find more relations to determine them.
Table 2. Number of expansion coefficients (left) and independent ${ \mathcal T }$-type equations (right).
r1 0 1 2 3 4 5
Nα
r2
0 1 1 2 2 3 3
1 1 2 3 4 5 6
2 2 3 6 7 10 11
3 2 4 7 10 13 16
4 3 5 10 13 19 22
5 3 6 11 16 22 28
r1 0 1 2 3 4 5
$\ {N}_{{ \mathcal T }}\ $
r2
0 0 0 1 1 2 2
1 0 1 2 3 4 5
2 1 2 5 6 9 10
3 1 3 6 9 12 15
4 2 4 9 12 18 21
5 2 5 10 15 21 27

3.2. Recursions relation from ${ \mathcal D }$-type operators

Having used the ${ \mathcal T }$-type operators, from the experience of one-loop integrals, it is obvious that we need to consider the ${ \mathcal D }$-type operators. Naively acting ${{ \mathcal D }}_{10}$ and ${{ \mathcal D }}_{10^{\prime} }$ defined in (3.2) globally to (2.2), we get K · i in numerator, which are irreducible scalar products and cannot be reduced further algebraically. How to get out of the deadlock? Let us look back to the two-loop integrals. Instead of doing the loop integration together, one can think it as two times integration: first, we integrate the 1, then we carry out the integration of 2. Using this idea, we can first do the tensor reduction of sub-one-loop integrals. Let us see what we can get.
Let us start with the sub-one-loop integrals. From appendix A, the r-rank tensor reduction of one-loop bubbles
$\begin{eqnarray}{I}_{2}^{(r)}=\int {\rm{d}}{\ell }\displaystyle \frac{{\left(2{\ell }\cdot R\right)}^{r}}{{P}_{0}{P}_{1}}\end{eqnarray}$
can be written as a summation of (r − 1)-rank and (r − 2)-rank bubbles as well as the contribution of tadpoles, where ${P}_{0}\equiv {{\ell }}^{2}-{M}_{0}^{2},{P}_{1}\equiv {({\ell }-K)}^{2}-{M}_{1}^{2}$. The striking point is that the Gram determinant K2 only appears once in the denominator, i.e.,
$\begin{eqnarray}\begin{array}{l}{I}_{2}^{(r)}=\displaystyle \frac{1}{(D+r-3){s}_{11}}\left[(D+2(r-2)){f}_{1}{s}_{01}{I}_{2}^{(r-1)}\right.\\ -(r-1)\left.\left(4{M}_{0}^{2}{s}_{01}^{2}+({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}\right){I}_{2}^{(r-2)}+{{ \mathcal R }}_{{Tad}}^{(r)}\right]\end{array}\end{eqnarray}$
where we have defined
$\begin{eqnarray}{s}_{11}\equiv {K}^{2},\,\,{f}_{1}\equiv {s}_{11}+{M}_{0}^{2}-{M}_{1}^{2}.\end{eqnarray}$
For example
$\begin{eqnarray}\begin{array}{l}{I}_{2}^{(2)}=\displaystyle \frac{{{Df}}_{1}{s}_{01}}{(D-1){s}_{11}}{I}_{2}^{(1)}-\displaystyle \frac{4{M}_{0}^{2}{s}_{01}^{2}+{s}_{00}({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11})}{(D-1){s}_{11}}{I}_{2}\\ +\,\displaystyle \frac{{s}_{00}{f}_{1}}{(D-1){s}_{11}}{I}_{2;\widehat{1}}+\displaystyle \frac{2(D-2){s}_{01}^{2}+{s}_{00}({s}_{11}-{M}_{0}^{2}+{M}_{1}^{2})}{(D-1){s}_{11}}{I}_{2;\widehat{0}}\end{array}\end{eqnarray}$
where the pole of s11 only appears in the overall factor. Now we insert (3.17) to the two loop integration by regarding propagator D1, D3 as the propagators P0, P1, respectively, i.e., we reduce 1 first
$\begin{eqnarray}\begin{array}{l}\displaystyle \int {\rm{d}}{{\ell }}_{2}\displaystyle \int {\rm{d}}{{\ell }}_{1}{ \mathcal I }[{r}_{1},{r}_{2}]=\displaystyle \int {\rm{d}}{{\ell }}_{2}\displaystyle \int {\rm{d}}{{\ell }}_{1}\left[\displaystyle \frac{(D+2({r}_{1}-2)){\widetilde{f}}_{1}{\widetilde{s}}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]}{(D+{r}_{1}-3){\widetilde{s}}_{11}}\right.\\ \quad -\left.({r}_{1}-1)\displaystyle \frac{\left(4{M}_{1}^{2}{\widetilde{s}}_{01}^{2}+({\widetilde{f}}_{1}^{2}-4{M}_{1}^{2}{\widetilde{s}}_{11}){s}_{00}\right){ \mathcal I }[{r}_{1}-2,{r}_{2}]}{(D+{r}_{1}-3){\widetilde{s}}_{11}}+\displaystyle \frac{{{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{({r}_{1},{r}_{2})}}{(D+{r}_{1}-3){\widetilde{s}}_{11}}\right]\end{array}\end{eqnarray}$
where we have defined
$\begin{eqnarray}{ \mathcal I }[{r}_{1},{r}_{2}]\equiv \displaystyle \frac{{\left(2{R}_{1}\cdot {{\ell }}_{1}\right)}^{{r}_{1}}{\left(2{R}_{2}\cdot {{\ell }}_{1}\right)}^{{r}_{2}}}{{D}_{1}{D}_{2}{D}_{3}},\,\,\,{ \mathcal I }[{r}_{1},{r}_{2};\widehat{i}]\equiv \displaystyle \frac{{D}_{i}{\left(2{R}_{1}\cdot {{\ell }}_{1}\right)}^{{r}_{1}}{\left(2{R}_{2}\cdot {{\ell }}_{1}\right)}^{{r}_{2}}}{{D}_{1}{D}_{2}{D}_{3}},\end{eqnarray}$
and
$\begin{eqnarray}{\widetilde{s}}_{01}={R}_{1}\cdot (K-{{\ell }}_{2}),\,\,\,{\widetilde{s}}_{11}={\left(K-{{\ell }}_{2}\right)}^{2},\,\,\,{\widetilde{f}}_{1}={\widetilde{s}}_{11}+{M}_{1}^{2}-{M}_{3}^{2}.\end{eqnarray}$
The lower-topology term ${{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{({r}_{1},{r}_{2})}$ in (3.19) has the form $\displaystyle \frac{{ \mathcal N }({{\ell }}_{2})}{{D}_{i}}\times \displaystyle \frac{{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{{D}_{2}}$ with i = 1, 3, which is counted by ${ \mathcal I }[{r}_{1},{r}_{2};\widehat{i}]$. For example, with rank r = 1, the tadpole part is
$\begin{eqnarray}{{ \mathcal I }}_{{Tad}}^{(1)}=(2-D)R\cdot K\left[\int \displaystyle \frac{{\rm{d}}{\ell }}{{P}_{0}}-\int \displaystyle \frac{{\rm{d}}{\ell }}{{P}_{1}}\right],\end{eqnarray}$
thus in (3.19) we have
$\begin{eqnarray}{{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{(1,{r}_{2})}=(2-D)R\cdot (K-{{\ell }}_{2})\left[\displaystyle \frac{{\left(2{R}_{2}\cdot {{\ell }}_{2}\right)}^{{r}_{2}}}{{D}_{1}{D}_{2}}-\displaystyle \frac{{\left(2{R}_{2}\cdot {{\ell }}_{2}\right)}^{{r}_{2}}}{{D}_{2}{D}_{3}}\right].\end{eqnarray}$
The appearance ${\widetilde{s}}_{11}$ in the denominator in (3.19) causes some trouble since it depends on 2, while the original sunset integrals do not have such a denominator. In the paper [46], they keep this factor and regard the two-loop integrals with ${\widetilde{s}}_{11}$ in the denominator as a new master integral. However, according to the reduction idea, such a solution is somewhat surprising since we expect that the reduction is achieved by removing original propagators. Thus, we should reach the original topology and its sub-topologies at last.
Since we want to keep the original reduction picture, we will try to get rid of ${\widetilde{s}}_{11}$ in (3.19). The idea is simple: one can multiply both sides with $(D+{r}_{1}-3){\widetilde{s}}_{11}$ before integrating 2 and get
$\begin{eqnarray}\begin{array}{l}{\int }_{\mathrm{1,2}}(D+{r}_{1}-3){\widetilde{s}}_{11}{ \mathcal I }[{r}_{1},{r}_{2}]={\int }_{\mathrm{1,2}}\left[(D+2({r}_{1}-2)){\widetilde{f}}_{1}{\widetilde{s}}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\right.\\ \quad -\left.({r}_{1}-1)\left(4{M}_{1}^{2}{\widetilde{s}}_{01}^{2}+({\widetilde{f}}_{1}^{2}-4{M}_{1}^{2}{\widetilde{s}}_{11}){s}_{00}\right){ \mathcal I }[{r}_{1}-2,{r}_{2}]+{{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{({r}_{1},{r}_{2})}\right].\end{array}\end{eqnarray}$
Writing
$\begin{eqnarray}{\widetilde{s}}_{11}={\left(K-{{\ell }}_{2}\right)}^{2}\,=\,{K}^{2}+{{\ell }}_{2}^{2}-2K\cdot {{\ell }}_{2}={s}_{11}+{D}_{2}+{M}_{2}^{2}-2K\cdot {{\ell }}_{2},\end{eqnarray}$
the LHS of the equation becomes (where we have suppressed the integral sign ∫1,2 for simplicity)
$\begin{eqnarray}\begin{array}{l}(D+{r}_{1}-3)\left({s}_{11}+{D}_{2}+{M}_{2}^{2}-2K\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1},{r}_{2}]\\ \quad =(D+{r}_{1}-3)\left[({s}_{11}+{M}_{2}^{2}){ \mathcal I }[{r}_{1},{r}_{2}]+{ \mathcal I }[{r}_{1},{r}_{2};\widehat{2}]-\displaystyle \frac{{{ \mathcal D }}_{10^{\prime} }}{{r}_{2}+1}{ \mathcal I }[{r}_{1},{r}_{2}+1]\right]\end{array}\end{eqnarray}$
where in the last term we replace the new tensor structure 2K · 2 by the action of differential operator ${{ \mathcal D }}_{10^{\prime} }$ on the basic form ${ \mathcal I }[{r}_{1},{r}_{2}+1]$ (see (3.21)). One important point in (3.26) is that we have the ${ \mathcal D }$-type action on ${ \mathcal I }[{r}_{1},{r}_{2}+1]$, which is what we are looking for.
Now we consider the RHS of (3.25). There are three terms: ${\widetilde{f}}_{1}{\widetilde{s}}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}],{\widetilde{s}}_{01}^{2}{ \mathcal I }[{r}_{1}-2,{r}_{2}]$, $\left({\widetilde{f}}_{1}^{2}-4{M}_{1}^{2}{\widetilde{s}}_{11}\right){ \mathcal I }[{r}_{1}-2,{r}_{2}]$. For the first term, using the expression of ${\widetilde{f}}_{1}$ in (3.22) and the rewriting in (3.26), we can write it as
$\begin{eqnarray}\begin{array}{l}{\widetilde{f}}_{1}{\widetilde{s}}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\\ =\ \left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2};\widehat{2}]+{f}_{12}{s}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\\ -\ \left({s}_{01}(2K\cdot {{\ell }}_{2})+{f}_{12}({R}_{1}\cdot {{\ell }}_{2})\right){ \mathcal I }[{r}_{1}-1,{r}_{2}]+(2K\cdot {{\ell }}_{2})({R}_{1}\cdot {{\ell }}_{2}){ \mathcal I }[{r}_{1}-1,{r}_{2}]\\ =\ \left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2};\widehat{2}]+{f}_{12}{s}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\\ -\ \left(2{s}_{01}K\cdot {{\ell }}_{2}+{f}_{12}{R}_{1}\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2}]+\displaystyle \frac{{{ \mathcal D }}_{10^{\prime} }{{ \mathcal D }}_{00^{\prime} }}{2({r}_{2}+1)({r}_{2}+2)}{ \mathcal I }[{r}_{1}-1,{r}_{2}+2].\end{array}\end{eqnarray}$
From the last equation in (3.28) one can see that the rank level of all terms will be less than (r1 + r2 + 1), except the last term with rank level (r1 + r2 + 1). For example, the term ${f}_{12}{R}_{1}\cdot {{\ell }}_{2}{ \mathcal I }[{r}_{1}-1,{r}_{2}]=\tfrac{{f}_{12}}{2({r}_{2}+1)}{{ \mathcal D }}_{00^{\prime} }{ \mathcal I }[{r}_{1}-1,{r}_{2}+1]$ has rank r1 + r2. Similar analysis can be done for the other two terms in the RHS of (3.25), it is easy to see that they can be written as a combination of terms with rank level lower than (r1 + r2 + 1).
Collecting all terms together, the RHS of (3.25) is
$\begin{eqnarray}\begin{array}{l}-\ (D+2{r}_{1}-4)\left(2{s}_{01}K\cdot {{\ell }}_{2}+{f}_{12}{R}_{1}\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2}]+\displaystyle \frac{(D+2{r}_{1}-4){{ \mathcal D }}_{10^{\prime} }{{ \mathcal D }}_{00^{\prime} }}{2({r}_{2}+1)({r}_{2}+2)}{ \mathcal I }[{r}_{1}-1,{r}_{2}+2]\\ +(D+2{r}_{1}-4)\left[\left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2};\widehat{2}]+{f}_{12}{s}_{01}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\right]-({r}_{1}-1)\left[4{M}_{1}^{2}{\left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right)}^{2}\right.\\ +\left.\left[{\left({f}_{12}+{D}_{2}-2K\cdot {{\ell }}_{2}\right)}^{2}-4{M}_{1}^{2}{\left(K-{{\ell }}_{2}\right)}^{2}\right]{s}_{00}\right]{ \mathcal I }[{r}_{1}-2,{r}_{2}]+{{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{({r}_{1},{r}_{2})}.\end{array}\end{eqnarray}$
Rearranging (3.25), we arrive
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{(D+{r}_{1}-3){{ \mathcal D }}_{10^{\prime} }}{{r}_{2}+1}{ \mathcal I }[{r}_{1},{r}_{2}+1]+\displaystyle \frac{(D+2{r}_{1}-4){{ \mathcal D }}_{10^{\prime} }{{ \mathcal D }}_{00^{\prime} }}{2({r}_{2}+1)({r}_{2}+2)}{ \mathcal I }[{r}_{1}-1,{r}_{2}+2]\\ =\ (D+{r}_{1}-3)\left[({s}_{11}+{M}_{2}^{2}){ \mathcal I }[{r}_{1},{r}_{2}]+{ \mathcal I }[{r}_{1},{r}_{2};\widehat{2}]\right]+(D+2{r}_{1}-4)\left[\left(2{s}_{01}K\cdot {{\ell }}_{2}\right){ \mathcal I }[{r}_{1}-1,{r}_{2}]\right.\\ -\left.\left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right)\left({ \mathcal I }[{r}_{1}-1,{r}_{2};\widehat{2}]+{f}_{12}{ \mathcal I }[{r}_{1}-1,{r}_{2}]\right)\right]+({r}_{1}-1)\left[4{M}_{1}^{2}{\left({s}_{01}-{R}_{1}\cdot {{\ell }}_{2}\right)}^{2}\right.\\ +\ \left.\left[{\left({f}_{12}+{D}_{2}-2K\cdot {{\ell }}_{2}\right)}^{2}-4{M}_{1}^{2}{\left(K-{{\ell }}_{2}\right)}^{2}\right]{s}_{00}\right]{ \mathcal I }[{r}_{1}-2,{r}_{2}]-{{ \mathcal R }}_{{{\ell }}_{1},{Tad}}^{({r}_{1},{r}_{2})}.\end{array}\end{eqnarray}$
The recursion relation (3.30) is the wanted ${ \mathcal D }$-type recursion relation. The LHS of the equation can be written as a summation of expansion coefficients with rank (r1, r2 + 1), (r1 − 1, r2 + 2) of rank level (r1 + r2 + 1) while the RHS can be written as a sum of expansion coefficients with rank level less than (r1 + r2 + 1) and lower topologies. Thus, it is a recursion relation for rank level, instead of the explicit rank configuration (r1, r2). The reason is that under the ${ \mathcal D }$-type action, different rank configurations are mixed as at the LHS of (3.30).
By our recursion assumption, the RHS is considered to be known, and we can just write it as
$\begin{eqnarray}\begin{array}{l}{{ \mathcal B }}_{{{\ell }}_{1}}^{({r}_{1},{r}_{2})}{\boldsymbol{J}}=\sum _{{i}_{1},{i}_{2},j}{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\vec{\beta }}_{{{\ell }}_{1};{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}\,{\boldsymbol{J}}.\end{array}\end{eqnarray}$
The expression of (3.31) for explicit r1, r2 can be found in appendix C. Putting the expansion (2.13) into the LHS and after some algebra, finally we arrive at the algebraic recursion relation for unknown coefficients $\vec{\alpha }$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{(D+{r}_{1}-3)}{{r}_{2}+1}\left[(j+1){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j+1}^{\left({r}_{1},{r}_{2}+1\right)}+\ \left(-{i}_{2}-j+{r}_{2}+2\right){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j}^{\left({r}_{1},{r}_{2}+1\right)}+\ \left({i}_{2}+1\right){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+1,j}^{\left({r}_{1},{r}_{2}+1\right)}\right]\\ +\ \displaystyle \frac{(D+2{r}_{1}-4)}{2({r}_{2}+1)({r}_{2}+2)}\left[(j+1)(j+2)\left(D-j+{r}_{1}+{r}_{2}-2\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j+2}^{\left({r}_{1}-1,{r}_{2}+2\right)}\right.\\ -\ (j+1)\left({i}_{2}+j-{r}_{2}-2\right)\left(D+{i}_{1}-j+{r}_{1}+{r}_{2}-1\right){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j+1}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ +\ \left({i}_{2}+1\right)(j+1)\left(D+{i}_{1}-j+{r}_{1}+{r}_{2}-1\right){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+1,j+1}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ -\ \left({i}_{2}+1\right)(j+1)\left({i}_{1}+j-{r}_{1}\right){\vec{\alpha }}_{{i}_{1}-2,{i}_{2}+1,j+1}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ +\ \left({i}_{2}+j+1\right)\left({i}_{1}+j-{r}_{1}\right)\left({i}_{2}+j-{r}_{2}-2\right){\vec{\alpha }}_{{i}_{1}-1,{i}_{2},j}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ -\ \left({i}_{1}+j-{r}_{1}\right)\left({i}_{2}+j-{r}_{2}-4\right)\left({i}_{2}+j-{r}_{2}-2\right){\vec{\alpha }}_{{i}_{1},{i}_{2}-1,j-1}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ +\ \left({i}_{1}+1\right)\left({i}_{2}+j-{r}_{2}-4\right)\left({i}_{2}+j-{r}_{2}-2\right){\vec{\alpha }}_{{i}_{1}+1,{i}_{2}-2,j}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ -\ \left({i}_{2}+1\right)\left({i}_{2}+2\right)\left({i}_{1}+j-{r}_{1}\right){s}_{11}{\vec{\alpha }}_{{i}_{1}-1,{i}_{2}+2,j}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ +\ \left({i}_{2}+1\right)\left({i}_{1}+j-{r}_{1}\right)\left({i}_{2}+j-{r}_{2}-2\right){s}_{11}{\vec{\alpha }}_{{i}_{1},{i}_{2}+1,j-1}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ -\ \left({i}_{1}+1\right)\left(2{i}_{2}+1\right)\left({i}_{2}+j-{r}_{2}-2\right){s}_{11}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2},j}^{\left({r}_{1}-1,{r}_{2}+2\right)}\\ +\ \left.\left({i}_{1}+1\right)\left({i}_{2}+1\right)\left({i}_{2}+2\right){s}_{11}^{2}{\vec{\alpha }}_{{i}_{1}+1,{i}_{2}+2,j}^{\left({r}_{1}-1,{r}_{2}+2\right)}\right]={\vec{\beta }}_{{{\ell }}_{1};{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2}).}.\end{array}\end{eqnarray}$
Similarly, if we reduce 2 first, we have
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{(D+{r}_{2}-3){{ \mathcal D }}_{10}}{{r}_{1}+1}{ \mathcal I }[{r}_{1}+1,{r}_{2}]+\displaystyle \frac{(D+2{r}_{2}-4){{ \mathcal D }}_{10}{{ \mathcal D }}_{0^{\prime} 0}}{2({r}_{1}+1)({r}_{1}+2)}{ \mathcal I }[{r}_{1}+2,{r}_{2}-1]\\ =\ (D+{r}_{2}-3)\left[({s}_{11}+{M}_{1}^{2}){ \mathcal I }[{r}_{1},{r}_{2}]+{ \mathcal I }[{r}_{1},{r}_{2};\widehat{1}]\right]+(D+2{r}_{2}-4)\left[\left(2{s}_{0^{\prime} 1}K\cdot {{\ell }}_{1}\right){ \mathcal I }[{r}_{1},{r}_{2}-1]\right.\\ -\ \left.\left({s}_{0^{\prime} 1}-{R}_{2}\cdot {{\ell }}_{1}\right)\left({ \mathcal I }[{r}_{1},{r}_{2}-1;\widehat{1}]+{f}_{12}{ \mathcal I }[{r}_{1},{r}_{2}-1]\right)\right]-({r}_{2}-1)\left[4{M}_{2}^{2}{\left({s}_{0^{\prime} 1}-{R}_{2}\cdot {{\ell }}_{1}\right)}^{2}\right.\\ +\ \left.\left[{\left({f}_{12}+{D}_{1}-2K\cdot {{\ell }}_{1}\right)}^{2}-4{M}_{2}^{2}{\left(K-{{\ell }}_{1}\right)}^{2}\right]{s}_{0^{\prime} 0^{\prime} }\right]{ \mathcal I }[{r}_{1},{r}_{2}-2]-{{ \mathcal R }}_{{{\ell }}_{2},{Tad}}^{({r}_{1},{r}_{2})},\end{array}\end{eqnarray}$
which is the dual expression of (3.30). Similarly, the lower-topology term ${{ \mathcal R }}_{{{\ell }}_{2},{Tad}}^{({r}_{1},{r}_{2})}$ in the equation can be got from ${{ \mathcal R }}_{{Tad}}^{({r}_{2})}$ by regarding P0, P1 as D2, D3, respectively, and multiplying with ${\left(2{{\ell }}_{1}\cdot {R}_{1}\right)}^{{r}_{1}}/{D}_{1}$. Again, after plugging expansion (2.13) into the LHS of (3.33) and writing the RHS as
$\begin{eqnarray}\begin{array}{l}{{ \mathcal B }}_{{{\ell }}_{2}}^{({r}_{1},{r}_{2})}{\boldsymbol{J}}=\sum _{{i}_{1},{i}_{2},j}{s}_{01}^{{i}_{1}}{s}_{0^{\prime} 1}^{{i}_{2}}{s}_{00^{\prime} }^{j}{s}_{00}^{\displaystyle \frac{{r}_{1}-{i}_{1}-j}{2}}{s}_{0^{\prime} 0^{\prime} }^{\displaystyle \frac{{r}_{2}-{i}_{2}-j}{2}}{\vec{\beta }}_{{{\ell }}_{2};{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}\,{\boldsymbol{J}},\end{array}\end{eqnarray}$
we will get another algebraic recursion equation for expansion coefficients which is dual to (3.32).
By now, we have derived two ${ \mathcal D }$-type relations (3.30) and (3.33). Unlike the ${ \mathcal T }$-type relations which give a recursion relation for a particular rank configuration, ${ \mathcal D }$-type7 will mix them: one ${ \mathcal D }$-type relation (3.30) mixes ranks (r1, r2 + 1) and (r1 − 1, r2 + 2) while the other ${ \mathcal D }$-type relation (3.33) mixes ranks (r1 + 1, r2) and (r1 + 2, r2 − 1). When using both types, one must do reduction level by level. As shown in table 3, one can solve all expansion coefficients for r1 + r2 > 2 by combining ${ \mathcal T }$-type and ${ \mathcal D }$-type relations while there are still four expansion coefficients to be determined, which indicates we need more relations for r1 + r2 ≤ 2 level. As will be discussed later, this observation gives us a hint of the choice of master integrals.
Table 3. Number of expansion coefficients and independent equations for several rank levels.
r1 + r2 ${N}_{\vec{\alpha }}$ ${N}_{{ \mathcal T }}$ ${N}_{{ \mathcal T }\cup { \mathcal D }}$ ${N}_{\vec{\alpha }}-{N}_{{ \mathcal T }\cup { \mathcal D }}$
0 1 0 0 1
1 2 0 0 2
2 6 3 5 1
3 10 6 10 0
4 20 15 20 0
5 30 24 30 0
6 50 43 50 0

3.3. Master integrals choice

Up to now, we have avoided giving the explicit choice of master basis in (2.13), since all recursion relations of ${ \mathcal T }$-type and ${ \mathcal D }$-type are independent of the choice. The only constraint is that they cannot contain auxiliary vectors. However, as pointed out in table 3, the reduction for some lower-rank tensor integrals is not completely clear.
Let us consider them one by one. For rank level zero, it is the scalar sunset I1,1,1 with no auxiliary vectors, so there are no differential operators that can act on it with nonzero results. Then we must regard it as a master integral, i.e., J1I1,1,1. Next, we consider integrals with rank level one, for example, the integration
$\begin{eqnarray}\begin{array}{l}{I}_{\mathrm{1,1,1}}[{{\ell }}_{1}]=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}{{\ell }}_{1}^{\mu }}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
According to its tensor structure, we should have
$\begin{eqnarray}\begin{array}{l}{I}_{\mathrm{1,1,1}}[{{\ell }}_{1}]={{BK}}^{\mu }.\end{array}\end{eqnarray}$
The logic of the PV-reduction method is to solve B by multiplying K on both sides
$\begin{eqnarray}\begin{array}{l}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}(2{{\ell }}_{1}\cdot K)}{{D}_{1}{D}_{2}{D}_{3}}={{BK}}^{2}.\end{array}\end{eqnarray}$
Now a key point appears. Unlike the one-loop case, the contraction 1 · K cannot be written as the combinations of Di. Thus, we cannot solve B as a function of external momentum K, masses, and space-time dimension D only. This observation is well known, and it is related to the concept of the irreducible scalar product (ISP). For a given L-loop integrals with E + 1 external legs, there are $\tfrac{L(L+1)}{2}+{LE}$ independent scalar products involving at least one loop momentum. If there are N propagators Di, N scalar products can be written as the linear combination of Di's, which leads ${N}_{{ISP}}=\tfrac{L(L+1)}{2}+{LE}-N$ irreducible scalar products. For one-loop integrals, we have L = 1 and N = E + 1, so there is no ISP, and every tensor integral can be decomposed to the scalar basis. But for two-loop integrals, there are nontrivial ISPs. Thus there are multiple master integrals for a given topology. For our sunset topology, we have L = 2, E = 1, N = 3 and NISP = 2, which are given by (1 · K) and (2 · K). With the above analysis and the irreducibility of the LHS of (3.37), it is natural to take the LHS to be a master integral
$\begin{eqnarray}\begin{array}{l}{J}_{2}\equiv \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}(2{{\ell }}_{1}\cdot K)}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
Similarly, we get another master integral
$\begin{eqnarray}\begin{array}{l}{J}_{3}\equiv \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}(2{{\ell }}_{2}\cdot K)}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
In table 3, there are two undetermined expansion coefficients for rank level ne. After taking J2, J3 above to be master integrals, they can be solved easily as shown in the next section.
Then we consider the rank level two integrals, for example,
$\begin{eqnarray}\begin{array}{l}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}(2{{\ell }}_{1}\cdot {R}_{1})(2{{\ell }}_{2}\cdot {R}_{2})}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
According to its tensor structure, we have
$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1}^{(1,1)}={\vec{\alpha }}_{1,1,0}^{(1,1)}{s}_{01}{s}_{0^{\prime} 1}+{\vec{\alpha }}_{0,0,1}^{(1,1)}{s}_{00^{\prime} }.\end{array}\end{eqnarray}$
The only differential operator that can reduce the integral is ${{ \mathcal T }}_{00^{\prime} }$, which gives just one equation while there are two unknown expansion coefficients. As pointed out in table 3, there is only one undetermined expansion coefficient for rank level two. When combining the information of ISP, it is natural to take the integral obtained by acting with ${{ \mathcal D }}_{10}{{ \mathcal D }}_{10^{\prime} }$, i.e.,
$\begin{eqnarray}\begin{array}{l}\displaystyle \int {J}_{4}\equiv {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2K\cdot {{\ell }}_{1})(2K\cdot {{\ell }}_{2})}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
to be another master integral. In fact, another two choices, i.e.,
$\begin{eqnarray}\begin{array}{l}\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{{\left(2K\cdot {{\ell }}_{1}\right)}^{2}}{{D}_{1}{D}_{2}{D}_{3}}\,\,\,\mathrm{or}\,\,\,\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{{\left(2K\cdot {{\ell }}_{2}\right)}^{2}}{{D}_{1}{D}_{2}{D}_{3}}\end{array}\end{eqnarray}$
should be equivalently fine.
Having chosen master integrals for sunset topology, we discuss the master integrals for lower topologies. These lower topologies are obtained by removing one of the sunset's propagators, and the resulted topology is the product of two one-loop tadpole integrations. For one-loop integrals, we know the basis is the scalar integrals, thus it is easy to see that we have the following three master integrals
$\begin{eqnarray}\begin{array}{l}{J}_{5}\equiv \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{2}{D}_{3}},\,\,\,{J}_{6}\equiv \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{1}{D}_{3}},\,\,\,\,{J}_{7}\equiv \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{1}{D}_{2}}.\end{array}\end{eqnarray}$
One technical point is that the standard form of J5, J6 should be written with the proper momentum shifting. For example,
$\begin{eqnarray}\begin{array}{l}{J}_{5}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{({{\ell }}_{1}^{2}-{M}_{1}^{2})({\left({{\ell }}_{1}+{{\ell }}_{2}-K\right)}^{2}-{M}_{3}^{2})}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{({{\ell }}_{1}^{2}-{M}_{1}^{2})({{\ell }}_{2}^{2}-{M}_{3}^{2})}.\end{array}\end{eqnarray}$
Our discussion on ISP and the choice of basis hints that the number ${ \mathcal N }$ of master integrals is related to the number Nisp of ISP when the masses and momenta are general. Another point is that when using the FIRE to do the reduction, it will take a different master basis. In appendix D we will present the non-degenerate transformation matrix between these two basis, thus our choice of basis is legitimate.
Before ending this subsection, let us discuss briefly the number of master integrals when the kinematics and masses are not general, for example K2 = 0 or M1 = M2. For K2 = 0, but M1, M2, M3 are different, there are only four master integrals J1, J5, J6, J7 and J2, J3, J4 will be decomposed to a linear combination of them. We can get the proper reduction coefficients by taking the limit carefully, as discussed in [50]. If M1 = M2M3, but K2 ≠ 0, we will have J5 = J6 and J2 = J3, i.e., there are only five master integrals. If the reduction coefficients are not singular under the limit M1M2, we just add reduction coefficients together, i.e., c2J2 + c3J3 → (c2 + c3)J2. If the reduction coefficients are singular under the limit, we need to expand J3 by other master integrals with expansion coefficients as the Taylor series of (M1M2) as presented in [50].

4. Examples

Having laid out the general reduction frame in the previous sections, we present examples to demonstrate our algorithm. In this section, we will give the exact reduction process for the rank levels from one to four. The full expansion of coefficients is collected in appendix E and an attached Mathematica file.

4.1. Rank level one

Having chosen seven master integrals Ji, we start the reduction for tensor sunset with rank level one. There are two integrals
$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1}^{(1,0)}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2{R}_{1}\cdot {{\ell }}_{1})}{{D}_{1}{D}_{2}{D}_{3}},\,\,\,{I}_{1,1,1}^{(0,1)}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2{R}_{2}\cdot {{\ell }}_{2})}{{D}_{1}{D}_{2}{D}_{3}}.\end{array}\end{eqnarray}$
Due to the total rank being less than 2, both ${ \mathcal T }$-type and ${ \mathcal D }$-type recursions (3.30) and (3.33) cannot be used. However, we can apply operators ${{ \mathcal D }}_{10}$ and ${{ \mathcal D }}_{10^{\prime} }$ on the two integrals, respectively. For example, the action of ${{ \mathcal D }}_{10}$ on the integral ${I}_{1,1,1}^{(1,0)}$ gives
$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{10}{I}_{1,1,1}^{(1,0)}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2K\cdot {{\ell }}_{1})}{{D}_{1}{D}_{2}{D}_{3}}={J}_{2}={\vec{\delta }}_{2}{\boldsymbol{J}}\end{array}\end{eqnarray}$
where we have defined a constant vector
$\begin{eqnarray}\begin{array}{l}{\vec{\delta }}_{2}=\{0,1,0,0,0,0,0\}.\end{array}\end{eqnarray}$
The reason one can obtain the relation is that we choose J2 as a master integral.
For this case, the expansion (2.13) is
$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1}^{(1,0)}={\vec{\alpha }}_{1,0,0}^{(1,0)}{s}_{01}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
Plugging it into the LHS of (4.2), we have the relation
$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{10}{I}_{1,1,1}^{(1,0)}={\vec{\alpha }}_{1,0,0}^{(1,0)}{s}_{11}{\boldsymbol{J}}={\vec{\delta }}_{2}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
Comparing both sides, we can easily solve
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{1,0,0}^{(1,0)}=\displaystyle \frac{{\vec{\delta }}_{2}}{{s}_{11}}=\displaystyle \frac{1}{{s}_{11}}\{0,1,0,0,0,0,0\}.\end{array}\end{eqnarray}$
Similarly, we have
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,1,0}^{(0,1)}=\displaystyle \frac{{\vec{\delta }}_{3}}{{s}_{11}}=\displaystyle \frac{1}{{s}_{11}}\{0,0,1,0,0,0,0\}.\end{array}\end{eqnarray}$

4.2. Rank level two

There are three integrals. By the expansion (2.13), we have
$\begin{eqnarray}\begin{array}{l}{{\bf{C}}}^{(\mathrm{2,0})}={\vec{\alpha }}_{0,0,0}^{(2,0)}{s}_{00}+{\vec{\alpha }}_{2,0,0}^{(2,0)}{s}_{01}^{2},\\ {{\bf{C}}}^{(\mathrm{1,1})}={\vec{\alpha }}_{0,0,1}^{(1,1)}{s}_{00^{\prime} }+{\vec{\alpha }}_{1,1,0}^{(1,1)}{s}_{01}{s}_{0^{\prime} 1},\\ {{\bf{C}}}^{(\mathrm{0,2})}={\vec{\alpha }}_{0,0,0}^{(0,2)}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{0,2,0}^{(0,2)}{s}_{0^{\prime} 1}^{2}.\end{array}\end{eqnarray}$
Let us start from the rank (1, 1). The only ${ \mathcal T }$-type recursion relation is given by ${{ \mathcal T }}_{00^{\prime} }$. Using (3.15), we have
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{2}\left[D{\vec{\alpha }}_{0,0,1}^{(1,1)}+{s}_{11}{\vec{\alpha }}_{1,1,0}^{(1,1)}\right]={\vec{\alpha }}_{0,0,0;\widehat{3}-\widehat{1}-\widehat{2}}^{(0,0)}-{f}_{12}{\vec{\alpha }}_{0,0,0}^{(0,0)}+{s}_{11}{\vec{\alpha }}_{1,0,0}^{(1,0)}+{s}_{11}{\vec{\alpha }}_{0,1,0}^{(0,1)}.\end{array}\end{eqnarray}$
Then we consider the action of ${{ \mathcal D }}_{10}{{ \mathcal D }}_{10^{\prime} }$
$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{10}{{ \mathcal D }}_{10^{\prime} }{I}_{1,1,1}^{(1,1)}=\displaystyle \int d{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2{{\ell }}_{1}\cdot K)(2{{\ell }}_{2}\cdot K)}{{D}_{1}{D}_{2}{D}_{3}}={J}_{4}={\vec{\delta }}_{4}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
where ${\vec{\delta }}_{4}=\{0,0,0,1,0,0,0\}$. Using the expansion (4.8), we find the LHS is
$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{10}{{ \mathcal D }}_{10^{\prime} }({\vec{\alpha }}_{0,0,1}^{(1,1)}{s}_{0^{\prime} 0}+{\vec{\alpha }}_{1,1,0}^{(1,1)}{s}_{01}{s}_{0^{\prime} 1}){\boldsymbol{J}}={s}_{11}({\vec{\alpha }}_{0,0,1}^{(1,1)}+{\vec{\alpha }}_{1,1,0}^{(1,1)}{s}_{11}){\boldsymbol{J}}.\end{array}\end{eqnarray}$
Plugging it into (4.10), we have
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,1}^{(1,1)}+{\vec{\alpha }}_{1,1,0}^{(1,1)}{s}_{11}={\vec{\delta }}_{4}/{s}_{11}.\end{array}\end{eqnarray}$
Combining (4.9) and (4.12) we can solve out
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,1}^{(1,1)}=\displaystyle \frac{1}{D-1}\left[2\left[{\vec{\alpha }}_{0,0,0;\widehat{3}-\widehat{1}-\widehat{2}}^{(0,0)}-{f}_{12}{\vec{\alpha }}_{0,0,0}^{(0,0)}+{s}_{11}{\vec{\alpha }}_{1,0,0}^{(1,0)}+{s}_{11}{\vec{\alpha }}_{0,1,0}^{(0,1)}\right]-{\vec{\delta }}_{4}/{s}_{11}\right],\\ {\vec{\alpha }}_{1,1,0}^{(1,1)}=\displaystyle \frac{1}{(D-1){s}_{11}}\left[D{\vec{\delta }}_{4}/{s}_{11}-2\left[{\vec{\alpha }}_{0,0,0;\widehat{3}-\widehat{1}-\widehat{2}}^{(0,0)}-{f}_{12}{\vec{\alpha }}_{0,0,0}^{(0,0)}+{s}_{11}{\vec{\alpha }}_{1,0,0}^{(1,0)}+{s}_{11}{\vec{\alpha }}_{0,1,0}^{(0,1)}\right]\right].\end{array}\end{eqnarray}$
Using the results of lower rank levels and lower topologies, we get
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,1}^{(1,1)}=\displaystyle \frac{1}{D-1}\left\{-2{f}_{12},2,2,-\displaystyle \frac{1}{{s}_{11}},-2,-2,2\right\},\\ {\vec{\alpha }}_{1,1,0}^{(1,1)}=\displaystyle \frac{1}{(D-1){s}_{11}}\left\{2{f}_{12},-2,-2,\displaystyle \frac{D}{{s}_{11}},2,2,-2\right\}.\end{array}\end{eqnarray}$
From the above analysis, one can see the reason for taking master integral J4 as discussed in the previous section.
Next, we consider the rank (2, 0). The only ${ \mathcal T }$-type relation is given by ${{ \mathcal T }}_{00}$. Using (3.7) we have
$\begin{eqnarray}\begin{array}{l}2D{\vec{\alpha }}_{0,0,0}^{(2,0)}+2{s}_{11}{\vec{\alpha }}_{2,0,0}^{(2,0)}={\vec{\alpha }}_{0,0,0;\widehat{1}}^{(0,0)}+{M}_{1}^{2}{\vec{\alpha }}_{0,0,0}^{(0,0)}.\end{array}\end{eqnarray}$
The ${ \mathcal D }$-type relation (3.33) mix the rank (2, 0) and the (1, 1) and give
$\begin{eqnarray}\begin{array}{l}(D-2){\vec{\alpha }}_{0,0,1}^{(1,1)}+\displaystyle \frac{1}{2}(D-2){\vec{\alpha }}_{0,0,0}^{(2,0)}+(D-2){s}_{11}{\vec{\alpha }}_{1,1,0}^{(1,1)}+\displaystyle \frac{1}{2}(D-2){s}_{11}{\vec{\alpha }}_{2,0,0}^{(2,0)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$
Combining (4.16) and (4.15) and using (4.14), we can solve
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,0}^{(2,0)}=\displaystyle \frac{1}{D-1}\left\{2\left({f}_{12}+2{M}_{1}^{2}\right),-\displaystyle \frac{{f}_{12}}{{s}_{11}}-2,-\displaystyle \frac{2\left({M}_{1}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2}{{s}_{11}},4,2,-2\right\},\\ {\vec{\alpha }}_{2,0,0}^{(2,0)}=\displaystyle \frac{-1}{(D-1){s}_{11}}\left\{2\left({{Df}}_{12}+2{M}_{1}^{2}\right),\displaystyle \frac{-D\left({f}_{12}+2{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{-2D\left({M}_{1}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2D}{{s}_{11}},4,2D,-2D\right\}.\end{array}\end{eqnarray}$
By proper replacement, we have
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,0}^{(0,2)}=\displaystyle \frac{1}{D-1}\left\{2\left({f}_{12}+2{M}_{2}^{2}\right),-\displaystyle \frac{2\left({M}_{2}^{2}+{s}_{11}\right)}{{s}_{11}},-\displaystyle \frac{{f}_{12}}{{s}_{11}}-2,\displaystyle \frac{2}{{s}_{11}},2,4,-2\right\},\\ {\vec{\alpha }}_{0,2,0}^{(0,2)}=\displaystyle \frac{-1}{(D-1){s}_{11}}\left\{2\left({{Df}}_{12}+2{M}_{2}^{2}\right),\displaystyle \frac{-2D\left({M}_{2}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{-D\left({f}_{12}+2{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2D}{{s}_{11}},2D,4,-2D\right\}.\end{array}\end{eqnarray}$

4.3. Rank level three

There are four rank configurations and the expansion (2.13) is
$\begin{eqnarray}\begin{array}{l}{{\bf{C}}}^{(\mathrm{3,0})}={\vec{\alpha }}_{1,0,0}^{(3,0)}{s}_{00}{s}_{01}+{\vec{\alpha }}_{3,0,0}^{(3,0)}{s}_{01}^{3},\\ {{\bf{C}}}^{(\mathrm{2,1})}={\vec{\alpha }}_{0,1,0}^{(2,1)}{s}_{00}{s}_{0^{\prime} 1}+{\vec{\alpha }}_{1,0,1}^{(2,1)}{s}_{01}{s}_{0^{\prime} 0}+{\vec{\alpha }}_{2,1,0}^{(2,1)}{s}_{01}^{2}{s}_{0^{\prime} 1},\\ {{\bf{C}}}^{(\mathrm{1,2})}={\vec{\alpha }}_{0,1,1}^{(1,2)}{s}_{0^{\prime} 0}{s}_{0^{\prime} 1}+{\vec{\alpha }}_{1,0,0}^{(1,2)}{s}_{01}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{1,2,0}^{(1,2)}{s}_{01}{s}_{0^{\prime} 1}^{2},\\ {{\bf{C}}}^{(\mathrm{0,3})}={\vec{\alpha }}_{0,1,0}^{(0,3)}{s}_{0^{\prime} 1}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{0,3,0}^{(0,3)}{s}_{0^{\prime} 1}^{3}.\end{array}\end{eqnarray}$
We list 14 linear equations of ${ \mathcal T }$-type and ${ \mathcal D }$-type relations for these ten expansion coefficients. There are only ten of them are linearly independent and the other four extra can be used as the self-consistence check. We list ${ \mathcal T }$-type equations first,

${ \mathcal T }$-type relations

–rank (3,0)

$\begin{eqnarray}\begin{array}{l}{{ \mathcal T }}_{00}:(D+2){\vec{\alpha }}_{1,0,0}^{(3,0)}+3{s}_{11}{\vec{\alpha }}_{3,0,0}^{(3,0)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

–rank (2,1)

$\begin{eqnarray}\begin{array}{l}{{ \mathcal T }}_{00}:D{\vec{\alpha }}_{0,1,0}^{(2,1)}+{\vec{\alpha }}_{1,0,1}^{(2,1)}+{s}_{11}{\vec{\alpha }}_{2,1,0}^{(2,1)}=\mathrm{Known}\ \mathrm{Terms},\\ {{ \mathcal T }}_{00^{\prime} }:(D+1){\vec{\alpha }}_{1,0,1}^{(2,1)}+2{\vec{\alpha }}_{0,1,0}^{(2,1)}+2{s}_{11}{\vec{\alpha }}_{2,1,0}^{(2,1)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

–rank (1,2)

$\begin{eqnarray}\begin{array}{l}{{ \mathcal T }}_{00}:2{s}_{01}\left(D{\vec{\alpha }}_{1,0,0}^{(1,2)}+{\vec{\alpha }}_{0,1,1}^{(1,2)}+{s}_{11}{\vec{\alpha }}_{1,2,0}^{(1,2)}\right)=\mathrm{Known}\ \mathrm{Terms},\\ {{ \mathcal T }}_{00^{\prime} }:(D+1){\vec{\alpha }}_{0,1,1}^{(1,2)}+2{\vec{\alpha }}_{1,0,0}^{(1,2)}+2{s}_{11}{\vec{\alpha }}_{1,2,0}^{(1,2)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

–rank (0,3)

$\begin{eqnarray}\begin{array}{l}{{ \mathcal T }}_{0^{\prime} 0^{\prime} }:(D+2){\vec{\alpha }}_{0,1,0}^{(0,3)}+3{s}_{11}{\vec{\alpha }}_{0,3,0}^{(0,3)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

These six independent equations restrict the number of unknown expansion coefficients to 4. For every rank configuration, the number of ${ \mathcal T }$ equations is always one less than the number of expansion coefficients, which agrees with our discussion.
Now we consider the ${ \mathcal D }$ relations for rank level three, which are represented by four arcs in figure 1, where two red arcs for reducing 1 first and the other two orange arcs for reducing 2 first. We list them below:

${ \mathcal D }$-type relations by reducing 1 first

–Mix rank (0, 3) and (1, 2)

$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,1,0}^{(0,3)}+3{\vec{\alpha }}_{0,1,1}^{(1,2)}=\mathrm{Known}\ \mathrm{Terms},\\ 2{\vec{\alpha }}_{0,1,0}^{(0,3)}+3{\vec{\alpha }}_{0,1,1}^{(1,2)}+6{\vec{\alpha }}_{1,0,0}^{(1,2)}+3{s}_{11}{\vec{\alpha }}_{0,3,0}^{(0,3)}+6{s}_{11}{\vec{\alpha }}_{1,2,0}^{(1,2)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$
The reason for having two equations is that even with the removal of one R2 by ${ \mathcal D }$ operator, we are still left two different tensor structures, i.e., ${s}_{0^{\prime} 0^{\prime} }$ and ${s}_{0^{\prime} 1}^{2}$.

–Mix rank (1, 2) and (2, 1)

$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{4}{{Ds}}_{11}{\vec{\alpha }}_{0,1,1}^{(1,2)}+(D-1){s}_{11}{\vec{\alpha }}_{0,1,0}^{(2,1)}=\mathrm{Known}\ \mathrm{Terms},\\ \displaystyle \frac{1}{4}D{\vec{\alpha }}_{0,1,1}^{(1,2)}+\displaystyle \frac{1}{2}D\left({\vec{\alpha }}_{1,0,0}^{(1,2)}+{s}_{11}{\vec{\alpha }}_{1,2,0}^{(1,2)}\right)+(D-1)\left({\vec{\alpha }}_{1,0,1}^{(2,1)}+{s}_{11}{\vec{\alpha }}_{2,1,0}^{(2,1)}\right)=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

${ \mathcal D }$-type relations by reducing 2 first

–Mix rank (3, 0) and (2, 1)

$\begin{eqnarray}\begin{array}{l}3{\vec{\alpha }}_{1,0,1}^{(2,1)}+{\vec{\alpha }}_{1,0,0}^{(3,0)}=\mathrm{Known}\ \mathrm{Terms},\\ 6{\vec{\alpha }}_{0,1,0}^{(2,1)}+3{\vec{\alpha }}_{1,0,1}^{(2,1)}+2{\vec{\alpha }}_{1,0,0}^{(3,0)}+6{s}_{11}{\vec{\alpha }}_{2,1,0}^{(2,1)}+3{s}_{11}{\vec{\alpha }}_{3,0,0}^{(3,0)}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

–Mix rank (1, 2) and (2, 1)

$\begin{eqnarray}\begin{array}{l}(D-1){s}_{11}{\vec{\alpha }}_{1,0,0}^{(1,2)}+\displaystyle \frac{1}{4}{{Ds}}_{11}{\vec{\alpha }}_{1,0,1}^{(2,1)}=\mathrm{Known}\ \mathrm{Terms},\\ (D-1)\left({\vec{\alpha }}_{0,1,1}^{(1,2)}+{s}_{11}{\vec{\alpha }}_{1,2,0}^{(1,2)}\right)+\displaystyle \frac{D}{4}\left(2{\vec{\alpha }}_{0,1,0}^{(2,1)}+{\vec{\alpha }}_{1,0,1}^{(2,1)}+2{s}_{11}{\vec{\alpha }}_{2,1,0}^{(2,1)}\right)=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

One can pick ten independent equations from the relations above and solve all expansion coefficients. Denoting
$\begin{eqnarray}\begin{array}{l}{\vec{x}}^{3-\mathrm{level}}=\left\{{\vec{\alpha }}_{1,0,0}^{(3,0)},{\vec{\alpha }}_{3,0,0}^{(3,0)},{\vec{\alpha }}_{0,1,0}^{(2,1)},{\vec{\alpha }}_{1,0,1}^{(2,1)},{\vec{\alpha }}_{2,1,0}^{(2,1)},{\vec{\alpha }}_{0,1,0}^{(0,3)},{\vec{\alpha }}_{0,3,0}^{(0,3)},{\vec{\alpha }}_{1,0,0}^{(1,2)},{\vec{\alpha }}_{0,1,1}^{(1,2)},{\vec{\alpha }}_{1,2,0}^{(1,2)}\right\},\end{array}\end{eqnarray}$
we have linear equations $W{\vec{x}}^{3-\mathrm{level}}=b$ with matrix W
$\begin{eqnarray}\begin{array}{l}\left(\begin{array}{cccccccccc}1 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0\\ \tfrac{1}{3} & \tfrac{{s}_{11}}{2} & 1 & \tfrac{1}{2} & {s}_{11} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -\tfrac{D}{4} & -\tfrac{1}{4} & -\tfrac{{s}_{11}}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 & \tfrac{1}{3} & \tfrac{{s}_{11}}{2} & 1 & \tfrac{1}{2} & {s}_{11}\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\tfrac{D}{4} & -\tfrac{1}{4} & -\tfrac{{s}_{11}}{4}\\ 0 & 0 & 1-D & 0 & 0 & 0 & 0 & 0 & -\tfrac{D}{4} & 0\\ 0 & 0 & 0 & 1-D & {s}_{11}-{{Ds}}_{11} & 0 & 0 & -\tfrac{D}{2} & -\tfrac{D}{4} & -\tfrac{{{Ds}}_{11}}{2}\\ 0 & 0 & 0 & -\tfrac{D}{4} & 0 & 0 & 0 & 1-D & 0 & 0\\ 0 & 0 & -\tfrac{D}{2} & -\tfrac{D}{4} & -\tfrac{{{Ds}}_{11}}{2} & 0 & 0 & 0 & 1-D & {s}_{11}-{{Ds}}_{11}\end{array}\right),\end{array}\end{eqnarray}$
and the known vector b which corresponds to lower rank level and lower topologies. We solve these linear equations and present the final results in appendix E.
Figure 1. Algorithm for tensor reduction of sunset topology, where every point represents a particular tensor configuration (r1, r2). After using the ${ \mathcal T }$-type relations, only one unknown coefficient is left for each point. To determine the last unknown piece, we need to use ${ \mathcal D }$-type relations to relate different tensor configurations with the same rank level. We have used the red lines to represent relations coming from ${ \mathcal D }$-type relations for 1, and orange lines, for 2 respectively (here we draw ${ \mathcal D }$-type relations for r1 + r2 ≤ 5). Each line provides a nontrivial relation among unknown coefficients. One can see that for rank level r ≥ 3, the number of lines is equal or larger than the number of unknown coefficients, thus they will give enough equations.

4.4. Rank level four

There are five rank configurations and the expansion (2.13) is
$\begin{eqnarray}\begin{array}{l}{{\bf{C}}}^{(\mathrm{4,0})}={\vec{\alpha }}_{0,0,0}^{(4,0)}{s}_{00}^{2}+{\vec{\alpha }}_{2,0,0}^{(4,0)}{s}_{00}{s}_{01}^{2}+{\vec{\alpha }}_{4,0,0}^{(4,0)}{s}_{01}^{4},\\ {{\bf{C}}}_{1,1,1}^{(3,1)}={\vec{\alpha }}_{0,0,1}^{(3,1)}{s}_{00}{s}_{00^{\prime} }+{\vec{\alpha }}_{1,1,0}^{(3,1)}{s}_{00}{s}_{01}{s}_{0^{\prime} 1}+{\vec{\alpha }}_{2,0,1}^{(3,1)}{s}_{01}^{2}{s}_{00^{\prime} }+{\vec{\alpha }}_{3,1,0}^{(3,1)}{s}_{01}^{3}{s}_{0^{\prime} 1}\\ {{\bf{C}}}^{(\mathrm{2,2})}={\vec{\alpha }}_{0,0,2}^{(2,2)}{s}_{00^{\prime} }^{2}+{\vec{\alpha }}_{0,2,0}^{(2,2)}{s}_{00}{s}_{0^{\prime} 1}^{2}+{\vec{\alpha }}_{1,1,1}^{(2,2)}{s}_{01}{s}_{00^{\prime} }{s}_{0^{\prime} 1}+{\vec{\alpha }}_{2,2,0}^{(2,2)}{s}_{01}^{2}{s}_{0^{\prime} 1}^{2}+{\vec{\alpha }}_{0,0,0}^{(2,2)}{s}_{00}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{2,0,0}^{(2,2)}{s}_{01}^{2}{s}_{0^{\prime} 0^{\prime} },\\ {{\bf{C}}}^{(\mathrm{1,3})}={\vec{\alpha }}_{0,0,1}^{(1,3)}{s}_{00^{\prime} }{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{0,2,1}^{(1,3)}{s}_{00^{\prime} }{s}_{0^{\prime} 1}^{2}+{\vec{\alpha }}_{1,1,0}^{(1,3)}{s}_{01}{s}_{0^{\prime} 1}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{1,3,0}^{(1,3)}{s}_{01}{s}_{0^{\prime} 1}^{3},\\ {{\bf{C}}}^{(\mathrm{0,4})}={\vec{\alpha }}_{0,0,0}^{(0,4)}{s}_{0^{\prime} 0^{\prime} }^{2}+{\vec{\alpha }}_{0,2,0}^{(0,4)}{s}_{0^{\prime} 1}^{2}{s}_{0^{\prime} 0^{\prime} }+{\vec{\alpha }}_{0,4,0}^{(0,4)}{s}_{0^{\prime} 1}^{4}.\end{array}\end{eqnarray}$
One can get 34 linear equations from ${ \mathcal T }$-type and ${ \mathcal D }$-type relations for these 20 expansion coefficients. We can pick 20 independent equations among them. There are 18 ${ \mathcal T }$-type equations
$\begin{eqnarray}\begin{array}{l}\left\{4D{\vec{\alpha }}_{0,0,0}^{(0,4)}+8{\vec{\alpha }}_{0,0,0}^{(0,4)}+2{s}_{11}{\vec{\alpha }}_{0,2,0}^{(0,4)},2D{\vec{\alpha }}_{0,2,0}^{(0,4)}+8{\vec{\alpha }}_{0,2,0}^{(0,4)}+12{s}_{11}{\vec{\alpha }}_{0,4,0}^{(0,4)},2D{\vec{\alpha }}_{0,0,1}^{(1,3)}+4{\vec{\alpha }}_{0,0,1}^{(1,3)}+2{s}_{11}{\vec{\alpha }}_{0,2,1}^{(1,3)},\right.\\ 2D{\vec{\alpha }}_{1,1,0}^{(1,3)}+4{\vec{\alpha }}_{0,2,1}^{(1,3)}+4{\vec{\alpha }}_{1,1,0}^{(1,3)}+6{s}_{11}{\vec{\alpha }}_{1,3,0}^{(1,3)},D{\vec{\alpha }}_{0,0,1}^{(1,3)}+2{\vec{\alpha }}_{0,0,1}^{(1,3)}+{s}_{11}{\vec{\alpha }}_{1,1,0}^{(1,3)},\\ D{\vec{\alpha }}_{0,2,1}^{(1,3)}+2{\vec{\alpha }}_{0,2,1}^{(1,3)}+2{\vec{\alpha }}_{1,1,0}^{(1,3)}+3{s}_{11}{\vec{\alpha }}_{1,3,0}^{(1,3)},2D{\vec{\alpha }}_{0,0,0}^{(2,2)}+2{\vec{\alpha }}_{0,0,2}^{(2,2)}+2{s}_{11}{\vec{\alpha }}_{2,0,0}^{(2,2)},\\ 2D{\vec{\alpha }}_{0,2,0}^{(2,2)}+2{\vec{\alpha }}_{1,1,1}^{(2,2)}+2{s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)},2D{\vec{\alpha }}_{0,0,0}^{(2,2)}+2{\vec{\alpha }}_{0,0,2}^{(2,2)}+2{s}_{11}{\vec{\alpha }}_{0,2,0}^{(2,2)},2D{\vec{\alpha }}_{2,0,0}^{(2,2)}+2{\vec{\alpha }}_{1,1,1}^{(2,2)}+2{s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)},\\ 2D{\vec{\alpha }}_{0,0,2}^{(2,2)}+4{\vec{\alpha }}_{0,0,0}^{(2,2)}+2{\vec{\alpha }}_{0,0,2}^{(2,2)}+{s}_{11}{\vec{\alpha }}_{1,1,1}^{(2,2)},D{\vec{\alpha }}_{1,1,1}^{(2,2)}+4{\vec{\alpha }}_{0,2,0}^{(2,2)}+2{\vec{\alpha }}_{1,1,1}^{(2,2)}+4{\vec{\alpha }}_{2,0,0}^{(2,2)}+4{s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)},\\ 2D{\vec{\alpha }}_{0,0,1}^{(3,1)}+4{\vec{\alpha }}_{0,0,1}^{(3,1)}+2{s}_{11}{\vec{\alpha }}_{2,0,1}^{(3,1)},2D{\vec{\alpha }}_{1,1,0}^{(3,1)}+4{\vec{\alpha }}_{1,1,0}^{(3,1)}+4{\vec{\alpha }}_{2,0,1}^{(3,1)}+6{s}_{11}{\vec{\alpha }}_{3,1,0}^{(3,1)},\\ D{\vec{\alpha }}_{0,0,1}^{(3,1)}+2{\vec{\alpha }}_{0,0,1}^{(3,1)}+{s}_{11}{\vec{\alpha }}_{1,1,0}^{(3,1)},D{\vec{\alpha }}_{2,0,1}^{(3,1)}+2{\vec{\alpha }}_{1,1,0}^{(3,1)}+2{\vec{\alpha }}_{2,0,1}^{(3,1)}+3{s}_{11}{\vec{\alpha }}_{3,1,0}^{(3,1)},4D{\vec{\alpha }}_{0,0,0}^{(4,0)}+8{\vec{\alpha }}_{0,0,0}^{(4,0)}+2{s}_{11}{\vec{\alpha }}_{2,0,0}^{(4,0)},\\ \left.2D{\vec{\alpha }}_{2,0,0}^{(4,0)}+8{\vec{\alpha }}_{2,0,0}^{(4,0)}+12{s}_{11}{\vec{\alpha }}_{4,0,0}^{(4,0)}\right\}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$
For 16 ${ \mathcal D }$-type equations, we have

reducing 1 first

$\begin{eqnarray}\begin{array}{l}\left\{\tfrac{1}{3}(D-2){\vec{\alpha }}_{0,0,0}^{(0,4)}+\tfrac{2}{3}(D-2){\vec{\alpha }}_{0,0,1}^{(1,3)}+\tfrac{1}{6}(D-2){s}_{11}{\vec{\alpha }}_{0,2,0}^{(0,4)}+\tfrac{2}{3}(D-2){s}_{11}{\vec{\alpha }}_{0,2,1}^{(1,3)},\right.\\ \tfrac{1}{6}(D-2){\vec{\alpha }}_{0,0,0}^{(0,4)}+\tfrac{1}{3}(D-2){\vec{\alpha }}_{0,0,1}^{(1,3)}+\tfrac{1}{12}(D-2){s}_{11}{\vec{\alpha }}_{0,2,0}^{(0,4)}+\tfrac{1}{3}(D-2){s}_{11}{\vec{\alpha }}_{1,1,0}^{(1,3)},\\ \tfrac{1}{4}(D-2){\vec{\alpha }}_{0,2,0}^{(0,4)}+\tfrac{1}{3}(D-2){\vec{\alpha }}_{0,2,1}^{(1,3)}+\tfrac{2}{3}(D-2){\vec{\alpha }}_{1,1,0}^{(1,3)}+\tfrac{1}{2}(D-2){s}_{11}{\vec{\alpha }}_{0,4,0}^{(0,4)}+(D-2){s}_{11}{\vec{\alpha }}_{1,3,0}^{(1,3)},\\ \tfrac{1}{6}D{\vec{\alpha }}_{0,0,1}^{(1,3)}+(D-1){\vec{\alpha }}_{0,0,0}^{(2,2)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{0,2,1}^{(1,3)}+(D-1){s}_{11}{\vec{\alpha }}_{0,2,0}^{(2,2)},\\ \tfrac{1}{3}D{\vec{\alpha }}_{0,0,1}^{(1,3)}+(D-1){\vec{\alpha }}_{0,0,2}^{(2,2)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{0,2,1}^{(1,3)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{1,1,0}^{(1,3)}+\tfrac{1}{2}(D-1){s}_{11}{\vec{\alpha }}_{1,1,1}^{(2,2)},\\ \tfrac{1}{6}D{\vec{\alpha }}_{0,2,1}^{(1,3)}+\tfrac{1}{3}D{\vec{\alpha }}_{1,1,0}^{(1,3)}+\tfrac{1}{2}(D-1){\vec{\alpha }}_{1,1,1}^{(2,2)}+(D-1){\vec{\alpha }}_{2,0,0}^{(2,2)}+\tfrac{1}{2}{{Ds}}_{11}{\vec{\alpha }}_{1,3,0}^{(1,3)}+(D-1){s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)},\\ \tfrac{1}{2}(D+2){\vec{\alpha }}_{0,0,0}^{(2,2)}+\tfrac{1}{2}(D+2){\vec{\alpha }}_{0,0,2}^{(2,2)}+D{\vec{\alpha }}_{0,0,1}^{(3,1)}+\tfrac{1}{2}(D+2){s}_{11}{\vec{\alpha }}_{0,2,0}^{(2,2)}+\tfrac{1}{4}(D+2){s}_{11}{\vec{\alpha }}_{1,1,1}^{(2,2)}+{{Ds}}_{11}{\vec{\alpha }}_{1,1,0}^{(3,1)},\\ \left.\tfrac{1}{4}(D+2){\vec{\alpha }}_{1,1,1}^{(2,2)}+\tfrac{1}{2}(D+2){\vec{\alpha }}_{2,0,0}^{(2,2)}+D{\vec{\alpha }}_{2,0,1}^{(3,1)}+\tfrac{1}{2}(D+2){s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)}+{{Ds}}_{11}{\vec{\alpha }}_{3,1,0}^{(3,1)}\right\}=\mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

reducing 2 first

$\begin{eqnarray}\begin{array}{l}\left\{D{\vec{\alpha }}_{0,0,1}^{(1,3)}+\tfrac{1}{2}(D+2){\vec{\alpha }}_{0,0,0}^{(2,2)}+\tfrac{1}{2}(D+2){\vec{\alpha }}_{0,0,2}^{(2,2)}+{{Ds}}_{11}{\vec{\alpha }}_{1,1,0}^{(1,3)}+\tfrac{1}{4}(D+2){s}_{11}{\vec{\alpha }}_{1,1,1}^{(2,2)}+\tfrac{1}{2}(D+2){s}_{11}{\vec{\alpha }}_{2,0,0}^{(2,2)},\right.\\ D{\vec{\alpha }}_{0,2,1}^{(1,3)}+\tfrac{1}{2}(D+2){\vec{\alpha }}_{0,2,0}^{(2,2)}+\tfrac{1}{4}(D+2){\vec{\alpha }}_{1,1,1}^{(2,2)}+{{Ds}}_{11}{\vec{\alpha }}_{1,3,0}^{(1,3)}+\tfrac{1}{2}(D+2){s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)},\\ (D-1){\vec{\alpha }}_{0,0,2}^{(2,2)}+\tfrac{1}{3}D{\vec{\alpha }}_{0,0,1}^{(3,1)}+\tfrac{1}{2}(D-1){s}_{11}{\vec{\alpha }}_{1,1,1}^{(2,2)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{1,1,0}^{(3,1)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{2,0,1}^{(3,1)},\\ (D-1){\vec{\alpha }}_{0,0,0}^{(2,2)}+\tfrac{1}{6}D{\vec{\alpha }}_{0,0,1}^{(3,1)}+(D-1){s}_{11}{\vec{\alpha }}_{2,0,0}^{(2,2)}+\tfrac{1}{6}{{Ds}}_{11}{\vec{\alpha }}_{2,0,1}^{(3,1)},\\ (D-1){\vec{\alpha }}_{0,2,0}^{(2,2)}+\tfrac{1}{2}(D-1){\vec{\alpha }}_{1,1,1}^{(2,2)}+\tfrac{1}{3}D{\vec{\alpha }}_{1,1,0}^{(3,1)}+\tfrac{1}{6}D{\vec{\alpha }}_{2,0,1}^{(3,1)}+(D-1){s}_{11}{\vec{\alpha }}_{2,2,0}^{(2,2)}+\tfrac{1}{2}{{Ds}}_{11}{\vec{\alpha }}_{3,1,0}^{(3,1)},\\ \tfrac{1}{3}(D-2){\vec{\alpha }}_{0,0,1}^{(3,1)}+\tfrac{1}{6}(D-2){\vec{\alpha }}_{0,0,0}^{(4,0)}+\tfrac{1}{3}(D-2){s}_{11}{\vec{\alpha }}_{1,1,0}^{(3,1)}+\tfrac{1}{12}(D-2){s}_{11}{\vec{\alpha }}_{2,0,0}^{(4,0)},\\ \tfrac{2}{3}(D-2){\vec{\alpha }}_{0,0,1}^{(3,1)}+\tfrac{1}{3}(D-2){\vec{\alpha }}_{0,0,0}^{(4,0)}+\tfrac{2}{3}(D-2){s}_{11}{\vec{\alpha }}_{2,0,1}^{(3,1)}+\tfrac{1}{6}(D-2){s}_{11}{\vec{\alpha }}_{2,0,0}^{(4,0)},\\ \left.\tfrac{2}{3}(D-2){\vec{\alpha }}_{1,1,0}^{(3,1)}+\tfrac{1}{3}(D-2){\vec{\alpha }}_{2,0,1}^{(3,1)}+\tfrac{1}{4}(D-2){\vec{\alpha }}_{2,0,0}^{(4,0)}+(D-2){s}_{11}{\vec{\alpha }}_{3,1,0}^{(3,1)}+\tfrac{1}{2}(D-2){s}_{11}{\vec{\alpha }}_{4,0,0}^{(4,0)}\right\}\\ =\ \mathrm{Known}\ \mathrm{Terms}.\end{array}\end{eqnarray}$

Picking 20 independent equations, we can solve all expansion coefficients of rank level four. Since its expression is long, we present them in an attached Mathematica file. All coefficients have been checked with the analytic output of FIRE [38, 39, 41].
Before ending this section, let us summarize the algorithm to reduce tensor integrals of sunset topology to the master basis. The number of expansion coefficients for a particular rank level r is given by
$\begin{eqnarray}\begin{array}{l}{N}_{\vec{a}}[r]=\sum _{{r}_{1}+{r}_{2}=r}\sum _{j=0}^{\min \{{r}_{1},{r}_{2}\}}{N}_{c}({r}_{1}-j){N}_{c}({r}_{2}-j)\end{array}\end{eqnarray}$
where ${N}_{c}(m)=\lfloor \tfrac{m}{2}\rfloor +1$ is the number of expansion coefficients for a one-loop rank-m tensor bubble. The recursion procedure can be nicely represented in figure 1.

5. Conclusion and outlook

In this paper, we have taken the first step in generalizing our improved PV-reduction method with auxiliary vector R to two-loop integrals, i.e., we have carried out the tensor reduction for the simplest sunset topology. For two-loop integrals, the ${ \mathcal T }$-type relations can be established straightforwardly, while the ${ \mathcal D }$-type relations are rather nontrivial. We need to consider the reduction of its sub-one-loop integrals first. Combining the two types of relations, one can solve all expansion coefficients with the proper choice of master basis.
One of our motivations for the paper is to find an alternative method for higher loop tensor reduction other than the IBP method. Comparing these two methods, one can find some similarities. All IBP relations are generated by following six primary relations $\int \tfrac{\partial }{\partial {{\ell }}_{i}}\cdot {K}_{j}$ with i = 1, 2 and Kj = (1, 2, K). Similarly, in our algorithm, there are also six operators ${\widetilde{K}}_{j}\cdot \tfrac{\partial }{{\dot{R}}_{i}}$ with i = 1, 2 and ${\widetilde{K}}_{j}=({R}_{1},{R}_{2},K)$. The one-to-one mapping between these two types of manipulations seems to hint at a deep connection between these two methods although we are not clear at this moment. As pointed out in the paper, in our algorithm we have avoided the appearance of higher power propagators, thus the number of equations one needs to solve is much fewer than that using the standard IBP method. However, in [52] an idea has been suggested to avoid the higher power of propagators in the IBP method. It will be interesting to see if such an idea can be used in our algorithm.
There are several interesting questions coming from this work. The first one is that, in section 3, we have discussed the choice of master integrals to be evaluating the ISP. We hope that for arbitrary two-loop or higher loop integrals with general masses and momenta K, one can determine the master basis from this perspective.
The second question is the following. As emphasized several times, the nontrivial ${ \mathcal D }$-type relations depend crucially on the reduction relation (3.17) of one-loop integrals. We have tested the reduction of triangles and found similar reduction relation also holds for several examples. We find such a reduction relation holds for general one-loop integrals with the proof being presented in [50].
The third problem is obvious. In this paper, we focus on the sunset topology. There are other topologies for two-loop integrals. One needs to check if the algorithm present in this paper can be generalized to these cases. With results from higher topologies, we can reduce sunset with propagators having higher power using the idea given in [49]. We hope to give a positive answer to these interesting questions in our future work.

This work is supported by Chinese NSF funding under Grant Nos. 11935013, 11947301, and 12047502 (Peng Huanwu Center).

In this part, we will collect the reduction of one-loop tensor tadpoles and bubbles, which have been extensively used in this paper.

For the one-loop rank r tensor tadpole

$\begin{eqnarray}\begin{array}{l}{I}_{1}^{(r)}\equiv \displaystyle \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\left(2\pi \right)}^{D}}\displaystyle \frac{{\left(2R\cdot {\ell }\right)}^{r}}{({{\ell }}^{2}-{M}_{0}^{2})},\end{array}\end{eqnarray}$
the reduction result is given by
$\begin{eqnarray}\begin{array}{l}{I}_{1}^{(r)}={C}_{1\to 1}^{(r)}\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\left(2\pi \right)}^{D}}\displaystyle \frac{1}{({{\ell }}^{2}-{M}_{0}^{2})},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}{C}_{1\to 1}^{(r)}=\gamma (r,{M}_{0}){\left({R}^{2}\right)}^{\displaystyle \frac{r}{2}},\,\,\,\,\gamma (r,{M}_{0})\equiv \displaystyle \frac{1+{\left(-\right)}^{r}}{2}\displaystyle \frac{(r-1)!!{2}^{r}{M}_{0}^{r}}{{\prod }_{i=1}^{\tfrac{r}{2}}D+2(i-1)}.\end{array}\end{eqnarray}$

For the one-loop rank r tensor bubble

$\begin{eqnarray}\begin{array}{l}{I}_{2}^{(r)}\equiv \displaystyle \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\left(2\pi \right)}^{D}}\displaystyle \frac{{\left(2R\cdot {\ell }\right)}^{r}}{({{\ell }}^{2}-{M}_{0}^{2})({\left({\ell }-K\right)}^{2}-{M}_{1}^{2})},\end{array}\end{eqnarray}$
the reduction result is given by
$\begin{eqnarray}\begin{array}{l}{I}_{2}^{(r)}={C}_{2\to 2}^{(r)}{I}_{2}+\sum _{i=0,1}{C}_{2\to 2;\widehat{i}}^{(r)}{I}_{2;\widehat{i}}\,,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}{I}_{2}={I}_{2}^{(0)},\,\,\,{I}_{2;\widehat{0}}=\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\left(2\pi \right)}^{D}}\displaystyle \frac{1}{({{\ell }}^{2}-{M}_{1}^{2})},\,\,\,{I}_{2;\widehat{1}}=\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{D}{\ell }}{{\left(2\pi \right)}^{D}}\displaystyle \frac{1}{({{\ell }}^{2}-{M}_{0}^{2})}.\end{array}\end{eqnarray}$
If we collect these coefficients into a list ${{ \mathcal C }}_{2}^{(r)}\equiv \left\{{C}_{2\to 2}^{(r)},{C}_{2\to 2;\widehat{1}}^{(r)},{C}_{2\to 2;\widehat{0}}^{(r)}\right\}$, using the notations
$\begin{eqnarray}\begin{array}{l}{f}_{1}\,=\,{K}^{2}+{M}_{0}^{2}-{M}_{1}^{2},\,\,\,{s}_{00}={R}^{2},\,\,\,{s}_{01}=R\cdot K,\,\,\,{s}_{11}={K}^{2},\end{array}\end{eqnarray}$
we will have the following results:

For the rank$\qquad$r = 1:

$\begin{eqnarray}\begin{array}{l}{{ \mathcal C }}_{2}^{(1)}=\left\{\displaystyle \frac{{f}_{1}{s}_{01}}{{s}_{11}},-\displaystyle \frac{{s}_{01}}{{s}_{11}},\displaystyle \frac{{s}_{01}}{{s}_{11}}\right\}.\end{array}\end{eqnarray}$

For the rank$\qquad$r = 2:

$\begin{eqnarray}\begin{array}{l}{{ \mathcal C }}_{2}^{(2)}=\left\{\displaystyle \frac{{{Df}}_{1}^{2}{s}_{01}^{2}}{(D-1){s}_{11}^{2}}-\displaystyle \frac{4{M}_{0}^{2}{s}_{01}^{2}+{s}_{00}({f}_{1}^{2}-4{s}_{11}{M}_{0}^{2})}{(D-1){s}_{11}},\,\,-\displaystyle \frac{{{Df}}_{1}{s}_{01}^{2}}{(D-1){s}_{11}^{2}}+\displaystyle \frac{{s}_{00}{f}_{1}}{(D-1){s}_{11}},\right.\\ \left.\displaystyle \frac{{{Df}}_{1}{s}_{01}^{2}}{(D-1){s}_{11}^{2}}+\displaystyle \frac{2(D-2){s}_{01}^{2}+{s}_{00}({s}_{11}-{M}_{0}^{2}+{M}_{1}^{2})}{(D-1){s}_{11}}\right\}.\end{array}\end{eqnarray}$
For our application, we have separated terms according to the power of pole s11. One crucial point is that we can write ${{ \mathcal C }}_{2}^{(2)}$ as the combination of lower-rank coefficients and the contributions from lower topologies (tadpoles)
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2}^{(2)} & = & \displaystyle \frac{{{Df}}_{1}{s}_{01}}{(D-1){s}_{11}}{{ \mathcal C }}_{2}^{(1)}-\displaystyle \frac{4{M}_{0}^{2}{s}_{01}^{2}+{s}_{00}({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11})}{(D-1){s}_{11}}{{ \mathcal C }}_{2}^{(0)}\\ & & +\ \left\{0,\displaystyle \frac{{s}_{00}{f}_{1}}{(D-1){s}_{11}},\right.\left.\displaystyle \frac{2(D-2){s}_{01}^{2}+{s}_{00}({s}_{11}-{M}_{0}^{2}+{M}_{1}^{2})}{(D-1){s}_{11}}\right\}.\end{array}\end{eqnarray}$

For the rank$\qquad$r = 3: The three reduction coefficients are

$\begin{array}{rcl}{C}_{2\to 2;\widehat{1}}^{(3)} & = & -\displaystyle \frac{(D+2){f}_{1}^{2}{s}_{01}^{3}}{(D-1){s}_{11}^{3}}+\displaystyle \frac{3{f}_{1}^{2}{s}_{00}{s}_{01}}{(D-1){s}_{11}^{2}}+\displaystyle \frac{8{M}_{0}^{2}{s}_{01}^{3}}{{{Ds}}_{11}^{2}}-\displaystyle \frac{12{M}_{0}^{2}{s}_{01}{s}_{00}}{{{Ds}}_{11}},\\ {C}_{2\to 2;\widehat{0}}^{(3)} & = & \displaystyle \frac{{\left({s}_{11}+{M}_{1}^{2}-{M}_{0}^{2}\right)}^{2}(-3{s}_{00}{s}_{01}{s}_{11}+(D+2){s}_{01}^{3})}{(D-1){s}_{11}^{3}}-\displaystyle \frac{4{M}_{1}^{2}{s}_{01}(2{s}_{01}^{2}-3{s}_{00}{s}_{11})}{{{Ds}}_{11}^{2}},\\ & & +\ 6{s}_{01}\displaystyle \frac{({s}_{11}+{M}_{1}^{2}-{M}_{0}^{2})({s}_{11}{s}_{00}-{{Ds}}_{01}^{2})}{(D-1){s}_{11}^{2}}+12{s}_{01}^{2}\displaystyle \frac{{s}_{01}}{{s}_{11}}\\ {C}_{2\to 2}^{(3)} & = & \tfrac{{f}_{1}\left({s}_{01}^{3}\left((D+2){f}_{1}^{2}-12{M}_{0}^{2}{s}_{11}\right)+3{s}_{00}{s}_{11}{s}_{01}\left(4{M}_{0}^{2}{s}_{11}-{f}_{1}^{2}\right)\right)}{(D-1){s}_{11}^{3}}\end{array}$
By matching the terms with different powers of pole s11, we can expand ${{ \mathcal C }}_{2}^{(3)}$ as
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2}^{(3)} & = & \displaystyle \frac{(D+2){f}_{1}{s}_{01}}{{{Ds}}_{11}}{{ \mathcal C }}_{2}^{(2)}-\left[\displaystyle \frac{2\left({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}\right){s}_{00}}{{{Ds}}_{11}}+\displaystyle \frac{8{M}_{0}^{2}{s}_{01}^{2}}{{{Ds}}_{11}}\right]{{ \mathcal C }}_{2}^{(1)}\\ & & +\ \left\{0,-\displaystyle \frac{4{M}_{0}^{2}{s}_{00}{s}_{01}}{{{Ds}}_{11}},\displaystyle \frac{4\left(-{M}_{0}^{2}+2{M}_{1}^{2}+{s}_{11}\right){s}_{00}{s}_{01}}{{{Ds}}_{11}}+\displaystyle \frac{4(D-2){s}_{01}^{3}}{{{Ds}}_{11}}\right\}.\end{array}\end{eqnarray}$
One technical point of expansion (A.12) is that there are other different expansions, for example
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2}^{(3)} & = & \displaystyle \frac{(D+2){f}_{1}{s}_{01}}{{{Ds}}_{11}}{{ \mathcal C }}_{2}^{(2)}+\displaystyle \frac{-2{s}_{00}{\left({M}_{0}^{2}-{M}_{1}^{2}\right)}^{2}-8{M}_{0}^{2}{s}_{01}^{2}}{{{Ds}}_{11}}{{ \mathcal C }}_{2}^{(1)}\\ & & +\,\displaystyle \frac{2{s}_{01}}{{{Ds}}_{11}}\left\{{s}_{00}(-{f}_{1}^{2}+{f}_{1}(3{M}_{0}^{2}+{M}_{1}^{2})),{s}_{00}({s}_{11}-4{M}_{0}^{2}-2{M}_{1}^{2}),\ {s}_{00}({s}_{11}+6{M}_{1}^{2})+2(D-2){s}_{01}^{2}\right\}.\end{array}\end{eqnarray}$
The difference between (A.13) and (A.12) is whether the coefficient of the bubble in the last term is zero or not. For simplicity of application, we prefer the form of (A.12). The choice of bubble coefficient to be zero for the remaining term has fixed the expansion uniquely.

For the rank$\qquad$r = 4: After some algebra, we have

$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2}^{(4)} & = & \displaystyle \frac{(D+4){f}_{1}{s}_{01}}{(D+1){s}_{11}}{{ \mathcal C }}_{2}^{(3)}-\left[\displaystyle \frac{3({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}}{(D+1){s}_{11}}+\displaystyle \frac{12{M}_{0}^{2}{s}_{01}^{2}}{(D+1){s}_{11}}\right]{{ \mathcal C }}_{2}^{(2)}\\ & & +\ \left\{0,\displaystyle \frac{12{M}_{0}^{2}\left({M}_{0}^{2}-{M}_{1}^{2}+{s}_{11}\right){s}_{00}^{2}}{D(D+1){s}_{11}},\displaystyle \frac{12\left(-{M}_{0}^{2}+3{M}_{1}^{2}+{s}_{11}\right){s}_{00}{s}_{01}^{2}}{(D+1){s}_{11}}+\displaystyle \frac{8(D-2){s}_{01}^{4}}{(D+1){s}_{11}}+\displaystyle \frac{12{M}_{1}^{2}\left(-{M}_{0}^{2}+{M}_{1}^{2}+{s}_{11}\right){s}_{00}^{2}}{D(D+1){s}_{11}}\right\}.\end{array}\end{eqnarray}$

For the rank$\qquad$r = 5:

$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal C }}_{2}^{(5)} & = & \displaystyle \frac{(D+6){f}_{1}{s}_{01}}{(D+2){s}_{11}}{{ \mathcal C }}_{2}^{(4)}-\left[\displaystyle \frac{4({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}}{(D+2){s}_{11}}+\displaystyle \frac{16{M}_{0}^{2}{s}_{01}^{2}}{(D+2){s}_{11}}\right]{{ \mathcal C }}_{2}^{(3)}\\ & & +\ \left\{0,-\displaystyle \frac{48{M}_{0}^{4}{s}_{00}^{2}{s}_{01}}{D(D+2){s}_{11}},\displaystyle \frac{32\left(-{M}_{0}^{2}+4{M}_{1}^{2}+{s}_{11}\right){s}_{00}{s}_{01}^{3}}{(D+2){s}_{11}}+\displaystyle \frac{16(D-2){s}_{01}^{5}}{(D+2){s}_{11}}+\displaystyle \frac{48{M}_{1}^{2}\left(-2{M}_{0}^{2}+3{M}_{1}^{2}+2{s}_{11}\right){s}_{00}^{2}{s}_{01}}{D(D+2){s}_{11}}\right\}.\end{array}\end{eqnarray}$

From these examples, one can observe the general expansion for any rank r > 0 to be

$\begin{eqnarray}\begin{array}{l}{I}_{2}^{(r)}=\displaystyle \frac{(D+2(r-2)){f}_{1}{s}_{01}{I}_{2}^{(r-1)}-(r-1)\left(4{M}_{0}^{2}{s}_{01}^{2}+({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}\right){I}_{2}^{(r-2)}+{{ \mathcal I }}_{{Tad}}^{(r)}}{(D+r-3){s}_{11}}\end{array}\end{eqnarray}$
where ${{ \mathcal I }}_{{Tad}}^{(r)}$ is the contribution of tadpoles containing no poles of s11. Relation (A.16) is one key relation used in the paper, so it is desirable to give proof. Note that reduction coefficients are completely determined by recursion relations produced by ${ \mathcal D }$-type operators and a ${ \mathcal T }$-type operator. We can prove (A.16) by arguing that it is a solution to all ${ \mathcal D }$-type recursions and ${ \mathcal T }$-type recursion relation in (2.7). We will do the proof recursively: assuming (A.16) is valid for all r < r0, then it is also true for r0.

Let us start from ${ \mathcal D }$-type recursion relations, i.e., the differential equation generated by ${{ \mathcal D }}_{1}$ for the bubble. Acting with KR on both sides of (A.12) and using 2K · = D0D1 + f1. The LHS is

$\begin{eqnarray}\begin{array}{l}{{ \mathcal D }}_{1}{I}_{2}^{({r}_{0})}={r}_{0}{f}_{1}{I}_{2}^{({r}_{0}-1)}+{r}_{0}{I}_{2;\widehat{0}-\widehat{1}}^{({r}_{0}-1)}={r}_{0}{f}_{1}{I}_{2}^{({r}_{0}-1)}+O(\mathrm{tad}).\end{array}\end{eqnarray}$
The term ${r}_{0}{I}_{2;\widehat{0}-\widehat{1}}^{(r-1)}$ can be reduced to scalar tadpole without any poles from Gram determent s11, and for simplicity, we just denote the contribution of tadpole topology as O(tad). The RHS becomes
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{(D+{r}_{0}-3){s}_{11}}\left[(D+2({r}_{0}-2)){f}_{1}({s}_{11}{I}_{2}^{({r}_{0}-1)}+({r}_{0}-1){s}_{01}{f}_{1}{I}_{2}^{({r}_{0}-2)})-({r}_{0}-1)\left(2{f}_{1}^{2}{s}_{01}\right){I}_{2}^{({r}_{0}-2)}-({r}_{0}-1)\left(4{M}_{0}^{2}{s}_{01}^{2}+({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}\right)({r}_{0}-2){f}_{1}{I}_{2}^{({r}_{0}-3)}+O(\mathrm{tad})\right],\end{array}\end{eqnarray}$
To require (A.18) to be equal to (A.17), one needs the following equation
$\begin{eqnarray}\begin{array}{l}{I}_{2}^{({r}_{0}-1)}=\displaystyle \frac{(D+2({r}_{0}-3)){f}_{1}{s}_{01}{I}_{2}^{({r}_{0}-2)}-({r}_{0}-2)\left(4{M}_{0}^{2}{s}_{01}^{2}+({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11}){s}_{00}\right){I}_{2}^{({r}_{0}-3)}+O(\mathrm{tad})}{(D+{r}_{0}-4){s}_{11}},\end{array}\end{eqnarray}$
which is just (A.16) with r = r0 − 1.

Then we consider the ${ \mathcal T }$-type recursion. Acting with ${ \mathcal T }$ on the LHS of (A.16), we get

$\begin{eqnarray}\begin{array}{l}{ \mathcal T }{I}_{2}^{({r}_{0})}=4{r}_{0}({r}_{0}-1){M}_{0}^{2}{I}_{2}^{({r}_{0}-2)}+O(\mathrm{tad}),\end{array}\end{eqnarray}$
while acting on the RHS we get
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{(D+{r}_{0}-3){s}_{11}}\left[(D+2({r}_{0}-2)){f}_{1}\left[2({r}_{0}-1){f}_{1}{I}_{2}^{({r}_{0}-2)}+4{s}_{01}({r}_{0}-1)({r}_{0}-2){M}_{0}^{2}{I}_{2}^{({r}_{0}-3)}\right]\right.\\ -\ ({r}_{0}-1)\left(4{M}_{0}^{2}\left[2{s}_{11}{I}_{2}^{({r}_{0}-2)}+4({r}_{0}-2){s}_{01}{f}_{1}{I}_{2}^{({r}_{0}-3)}+4({r}_{0}-2)({r}_{0}-3){s}_{01}^{2}{M}_{0}^{2}{I}_{2}^{({r}_{0}-4)}\right]\right.\\ +\ \left.\left.({f}_{1}^{2}-4{M}_{0}^{2}{s}_{11})\left[2(D+2{r}_{0}-4){I}_{2}^{({r}_{0}-2)}+4({r}_{0}-2)({r}_{0}-3){M}_{0}^{2}{s}_{00}{I}^{({r}_{0}-4)})\right]\right)+O(\mathrm{tad})\right].\end{array}\end{eqnarray}$
One can prove (A.20) is equal to (A.21) by employing the recursion relation (A.16) for rank r0 − 2.

One crucial point of the above proof is that, in principle, one can establish recursion relations of ${{ \mathcal I }}_{{Tad}}^{(r)}$ for general r. Thus we can solve it and get the complete relation (A.16) with explicit expression for ${{ \mathcal I }}_{{Tad}}^{(r)}$. This result will give another recursive way to analytically compute reduction coefficients, which may be more efficient than the one given in [48]. Furthermore, knowing ${{ \mathcal I }}_{{Tad}}^{(r)}$, one may write down the analytic expression of ${\vec{\beta }}_{{{\ell }}_{1};{i}_{1},{i}_{2},j}^{({r}_{1},{r}_{2})}$ in (3.32) and its dual form. Then we can get the algebraic recursion relation for all coefficients for any rank level, just like what has been done in [47, 48]. It is obvious that with higher and higher rank levels, all available programs, like FIRE, Kira, Reduce [4043] will become harder and harder to handle analytically. However, the method proposed in this paper can still work with fewer efforts.

Here we give the reduction results for integrals got by removing the ith propagator in the tensor sunsets, i.e., ${I}_{1,1,1;\widehat{i}}^{({r}_{1},{r}_{2})}$. We denote

$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1;\widehat{i}}^{({r}_{1},{r}_{2})}={{\bf{C}}}_{\widehat{i}}^{({r}_{1},{r}_{2})}{\boldsymbol{J}}.\end{array}\end{eqnarray}$
The reduction coefficients ${{\bf{C}}}_{\widehat{i}}^{({r}_{1},{r}_{2})}$ can be obtained using the results (A.3). Among the three lower topologies, ${I}_{1,1,1;\widehat{3}}^{({r}_{1},{r}_{2})}$ is trivial, which is given by
$\begin{eqnarray}\begin{array}{rcl}{I}_{1,1,1;\widehat{3}}^{({r}_{1},{r}_{2})} & = & \displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}{\left(2{{\ell }}_{1}\cdot {R}_{1}\right)}^{{r}_{1}}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{2}^{2}-{M}_{2}^{2})}\\ & = & \gamma ({r}_{1},{M}_{1})\gamma ({r}_{2},{M}_{2}){\left({R}_{1}^{2}\right)}^{\displaystyle \frac{{r}_{1}}{2}}{\left({R}_{2}^{2}\right)}^{\displaystyle \frac{{r}_{2}}{2}}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}}{({{\ell }}_{1}^{2}-{M}_{1}^{2})({{\ell }}_{2}^{2}-{M}_{2}^{2})}\\ & = & \gamma ({r}_{1},{M}_{1})\gamma ({r}_{2},{M}_{2}){\left({R}_{1}^{2}\right)}^{\displaystyle \frac{{r}_{1}}{2}}{\left({R}_{2}^{2}\right)}^{\displaystyle \frac{{r}_{2}}{2}}\,{J}_{7},\end{array}\end{eqnarray}$
from which we can easily read out ${{\bf{C}}}_{\widehat{i}}^{({r}_{1},{r}_{2})}$ in (B.1). For ${I}_{1,1,1;\widehat{1}}^{({r}_{1},{r}_{2})}$, because the subtlety discussed in (3.45), we need to shift 1 in the numerator. The computation details are:
$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1;\widehat{1}}^{({r}_{1},{r}_{2})}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}{\left(2{{\ell }}_{1}\cdot {R}_{1}\right)}^{{r}_{1}}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})[{\left({{\ell }}_{1}+{{\ell }}_{2}-K\right)}^{2}-{M}_{3}^{2}]}\\ \underline{\underline{{{\ell }}_{1}\to {{\ell }}_{1}-{{\ell }}_{2}+K}}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}{\left(2{{\ell }}_{1}\cdot {R}_{1}-2{{\ell }}_{2}\cdot {R}_{1}+2K\cdot {R}_{1}\right)}^{{r}_{1}}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{1}^{2}-{M}_{3}^{2})}\\ =\ \sum _{i=0}^{{r}_{1}}\left(\displaystyle \genfrac{}{}{0em}{}{{r}_{1}}{i}\right){\left(2{R}_{1}\cdot K\right)}^{{r}_{1}-i}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}{\left(2{{\ell }}_{1}\cdot {R}_{1}-2{{\ell }}_{2}\cdot {R}_{1}\right)}^{i}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{1}^{2}-{M}_{3}^{2})}\\ =\ \sum _{i=0}^{{r}_{1}}\sum _{j=0}^{i}\left(\displaystyle \genfrac{}{}{0em}{}{{r}_{1}}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right){\left(2{R}_{1}\cdot K\right)}^{{r}_{1}-i}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}{\left(2{{\ell }}_{1}\cdot {R}_{1}\right)}^{i-j}{\left(-2{{\ell }}_{2}\cdot {R}_{1}\right)}^{j}{\left(2{{\ell }}_{2}\cdot {R}_{2}\right)}^{{r}_{2}}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{1}^{2}-{M}_{3}^{2})}\\ =\ \sum _{i=0}^{{r}_{1}}\sum _{j=0}^{i}\left(\displaystyle \genfrac{}{}{0em}{}{{r}_{1}}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right){\left(2{R}_{1}\cdot K\right)}^{{r}_{1}-i}\gamma (i-j,{M}_{3}){\left({R}_{1}^{2}\right)}^{\displaystyle \frac{i-j}{2}}\\ \times \,{\left(-1\right)}^{j}\gamma ({r}_{2}+j,{M}_{2})\displaystyle \frac{{r}_{2}!{\left({R}_{1}\cdot {\partial }_{{R}_{2}}\right)}^{j}}{({r}_{2}+j)!}{\left({R}_{2}^{2}\right)}^{\displaystyle \frac{{r}_{2}+j}{2}}\displaystyle \int \displaystyle \frac{1}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{1}^{2}-{M}_{3}^{2})}\\ =\ \sum _{i=0}^{{r}_{1}}\sum _{j=0}^{i}\left(\displaystyle \genfrac{}{}{0em}{}{{r}_{1}}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\gamma (i-j,{M}_{3})\gamma ({r}_{2}+j,{M}_{2})\displaystyle \frac{{\left(-1\right)}^{j}{r}_{2}!}{({r}_{2}+j)!}{\left(2{R}_{1}\cdot K\right)}^{{r}_{1}-i}{\left({R}_{1}^{2}\right)}^{\displaystyle \frac{i-j}{2}}\\ \times \ {\left({R}_{1}\cdot {\partial }_{{R}_{2}}\right)}^{j}{\left({R}_{2}^{2}\right)}^{\displaystyle \frac{{r}_{2}+j}{2}}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}}{({{\ell }}_{2}^{2}-{M}_{2}^{2})({{\ell }}_{1}^{2}-{M}_{3}^{2})}.\end{array}\end{eqnarray}$
Similarly, we have
$\begin{eqnarray}\begin{array}{l}{I}_{1,1,1;\widehat{2}}^{({r}_{1},{r}_{2})}=\sum _{i=0}^{{r}_{2}}\sum _{j=0}^{i}\left(\displaystyle \genfrac{}{}{0em}{}{{r}_{2}}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\gamma (i-j,{M}_{3})\gamma ({r}_{1}+j,{M}_{1})\displaystyle \frac{{\left(-1\right)}^{j}{r}_{1}!}{({r}_{1}+j)!}{\left(2{R}_{2}\cdot K\right)}^{{r}_{2}-i}{\left({R}_{2}^{2}\right)}^{\displaystyle \frac{i-j}{2}}\\ \times \ {\left({R}_{2}\cdot {\partial }_{{R}_{1}}\right)}^{j}{\left({R}_{1}^{2}\right)}^{\displaystyle \frac{{r}_{1}+j}{2}}\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{1}{\rm{d}}{{\ell }}_{2}}{({{\ell }}_{1}^{2}-{M}_{1}^{2})({{\ell }}_{2}^{2}-{M}_{3}^{2})}.\end{array}\end{eqnarray}$

To write down ${ \mathcal D }$-type recursion relation for given r1, r2, we need calculate ${{ \mathcal B }}_{{{\ell }}_{1}}^{({r}_{1},{r}_{2})},{{ \mathcal B }}_{{{\ell }}_{2}}^{({r}_{1},{r}_{2})}$ defined in (3.31). Here we list some results. For the rank (1, r2) and (r1, 1), the general forms are

$\begin{eqnarray}\begin{array}{l}{{ \mathcal B }}_{{{\ell }}_{1}}^{(1,{r}_{2})}=(D-2)\left[({s}_{11}+{M}_{2}^{2}){{\bf{C}}}^{(1,{r}_{2})}+{{\bf{C}}}_{\widehat{2}}^{(1,{r}_{2})}+\displaystyle \frac{{s}_{01}{{ \mathcal D }}_{10^{\prime} }}{{r}_{2}+1}{{\bf{C}}}^{(0,{r}_{2}+1)}\right.\\ -\left.{s}_{01}\left({{\bf{C}}}_{\widehat{1}+\widehat{2}-\widehat{3}}^{(0,{r}_{2})}+{f}_{12}{{\bf{C}}}^{(0,{r}_{2})}\right)+\displaystyle \frac{{{ \mathcal T }}_{00^{\prime} }}{2({r}_{2}+1)}\left({{\bf{C}}}_{\widehat{1}+\widehat{2}-\widehat{3}}^{(0,{r}_{2}+1)}+{f}_{12}{{\bf{C}}}^{(0,{r}_{2}+1)}\right)\right]\\ {{ \mathcal B }}_{{{\ell }}_{2}}^{({r}_{1},1)}=(D-2)\left[({s}_{11}+{M}_{1}^{2}){{\bf{C}}}^{({r}_{1},1)}+{{\bf{C}}}_{\widehat{1}}^{({r}_{1},1)}+\displaystyle \frac{{s}_{0^{\prime} 1}{{ \mathcal D }}_{10}}{{r}_{1}+1}{{\bf{C}}}^{({r}_{1}+\mathrm{1,0})}\right.\\ -\left.{s}_{0^{\prime} 1}\left({{\bf{C}}}_{\widehat{1}+\widehat{2}-\widehat{3}}^{({r}_{1},0)}+{f}_{12}{{\bf{C}}}^{(0,{r}_{2})}\right)+\displaystyle \frac{{{ \mathcal T }}_{0^{\prime} 0}}{2({r}_{1}+1)}\left({{\bf{C}}}_{\widehat{1}+\widehat{2}-\widehat{3}}^{({r}_{1}+1,0)}+{f}_{12}{{\bf{C}}}^{({r}_{1}+\mathrm{1,0})}\right)\right].\end{array}\end{eqnarray}$
One can also write down expressions for (2, r2), (3, r2) etc. The expression will become longer and longer. Since in examples the rank level is up to four, we just list the terms we used in the examples
For the dual cases ${{ \mathcal B }}_{{{\ell }}_{2}}^{(a,b)}$, one can obtain them from the above results with proper replacements.

In section 3.3, we have discussed the choice of master basis. The basis chosen by FIRE6 is

$\begin{eqnarray}\begin{array}{l}{\boldsymbol{F}}=\left\{{I}_{\mathrm{2,1,1}},{I}_{\mathrm{1,2,1}},{I}_{\mathrm{1,1,2}},{I}_{\mathrm{1,1,1}},{I}_{\mathrm{1,1,0}},{I}_{\mathrm{1,0,1}},{I}_{\mathrm{0,1,1}}\right\},\end{array}\end{eqnarray}$
and the basis used in this paper is
$\begin{eqnarray}\begin{array}{l}{J}_{1}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{1}{{D}_{1}{D}_{2}{D}_{3}},{J}_{2}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{2{{\ell }}_{1}\cdot K}{{D}_{1}{D}_{2}{D}_{3}},{J}_{3}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{2{{\ell }}_{2}\cdot K}{{D}_{1}{D}_{2}{D}_{3}},\\ {J}_{4}=\displaystyle \int {\rm{d}}{{\ell }}_{\mathrm{1,2}}\displaystyle \frac{(2{{\ell }}_{1}\cdot K)(2{{\ell }}_{2}\cdot K)}{{D}_{1}{D}_{2}{D}_{3}},{J}_{5}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{2}{D}_{3}},{J}_{6}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{1}{D}_{3}},{J}_{7}=\displaystyle \int \displaystyle \frac{{\rm{d}}{{\ell }}_{\mathrm{1,2}}}{{D}_{1}{D}_{2}}.\end{array}\end{eqnarray}$
The transform matrix J = TF is
$\begin{eqnarray}\begin{array}{l}{T}_{\mathrm{1,1}\sim 7}=\{0,0,0,1,0,0,0\},\\ {T}_{\mathrm{2,1}\sim 7}=\left\{\displaystyle \frac{4{M}_{1}\left({M}_{1}-{s}_{11}\right)}{3(D-2)},\displaystyle \frac{2{M}_{2}\left(3{M}_{1}-{M}_{2}-3{M}_{3}+{s}_{11}\right)}{3(D-2)},\displaystyle \frac{2{M}_{3}\left(3{M}_{1}-3{M}_{2}-{M}_{3}+{s}_{11}\right)}{3(D-2)},\right.\\ \left.\displaystyle \frac{2\left(-2(D-3){M}_{1}+(D-3){M}_{2}+{{DM}}_{3}+{{Ds}}_{11}-3{M}_{3}-2{s}_{11}\right)}{3(D-2)},-\displaystyle \frac{1}{3},-\displaystyle \frac{1}{3},\displaystyle \frac{2}{3}\right\},\\ {T}_{\mathrm{3,1}\sim 7}=\left\{\displaystyle \frac{2{M}_{1}\left(-{M}_{1}+3{M}_{2}-3{M}_{3}+{s}_{11}\right)}{3(D-2)},\displaystyle \frac{4{M}_{2}\left({M}_{2}-{s}_{11}\right)}{3(D-2)},\displaystyle \frac{2{M}_{3}\left(-3{M}_{1}+3{M}_{2}-{M}_{3}+{s}_{11}\right)}{3(D-2)},\right.\\ \left.\displaystyle \frac{2\left((D-3){M}_{1}-2(D-3){M}_{2}+{{DM}}_{3}+{{Ds}}_{11}-3{M}_{3}-2{s}_{11}\right)}{3(D-2)},-\displaystyle \frac{1}{3},\displaystyle \frac{2}{3},-\displaystyle \frac{1}{3}\right\},\\ {T}_{\mathrm{4,1}}=-\displaystyle \frac{4(2D-3){M}_{1}^{2}{s}_{11}^{2}}{3(D-2)(3D-4)}+\displaystyle \frac{4{M}_{1}^{2}{s}_{11}\left((3D-4){M}_{1}^{2}+(4D-7){M}_{2}^{2}+(1-2D){M}_{3}^{2}\right)}{3(D-2)(3D-4)}\\ -\displaystyle \frac{4{M}_{1}^{4}\left((D-1){M}_{1}^{2}-5(D-1){M}_{2}^{2}+(7D-11){M}_{3}^{2}\right)}{3(D-2)(3D-4)},\\ {T}_{\mathrm{4,2}}=\displaystyle \frac{4(3-2D){M}_{2}^{2}{s}_{11}^{2}}{3(D-2)(3D-4)}+\displaystyle \frac{4{M}_{2}^{2}{s}_{11}\left((4D-7){M}_{1}^{2}+(3D-4){M}_{2}^{2}+(1-2D){M}_{3}^{2}\right)}{3(D-2)(3D-4)}\\ -\displaystyle \frac{4{M}_{2}^{4}\left(-5(D-1){M}_{1}^{2}+(D-1){M}_{2}^{2}+(7D-11){M}_{3}^{2}\right)}{3(D-2)(3D-4)},\\ {T}_{\mathrm{4,3}}=\displaystyle \frac{2(5D-6){M}_{3}^{2}{s}_{11}^{2}}{3(D-2)(3D-4)}-\displaystyle \frac{4{M}_{3}^{2}{s}_{11}\left((7-4D)({M}_{1}^{2}+{M}_{2}^{2})+(3D-4){M}_{3}^{2}\right)}{3(D-2)(3D-4)}+\displaystyle \frac{2{M}_{3}^{2}(12-9D)({M}_{1}^{4}+{M}_{2}^{4})}{3(D-2)(3D-4)}\\ +\displaystyle \frac{2{M}_{3}^{2}\left(2{M}_{1}^{2}\left(3(3D-4){M}_{2}^{2}+(7-4D){M}_{3}^{2}\right)+(D-2){M}_{3}^{4}+2(7-4D){M}_{2}^{2}{M}_{3}^{2}\right)}{3(D-2)(3D-4)},\\ {T}_{\mathrm{4,4}}=\displaystyle \frac{(6-4D){s}_{11}^{2}}{12-9D}-\displaystyle \frac{2{s}_{11}\left(\left(-7{D}^{2}+26D-20\right){M}_{3}^{2}+\ \left(8{D}^{2}-33D+32\right)\left({M}_{1}^{2}+{M}_{2}^{2}\right)\right)}{3(D-2)(3D-4)}\\ +\displaystyle \frac{2(D-3)\left(-(D-2){M}_{3}^{4}+(7D-12)({M}_{1}^{2}+{M}_{2}^{2}){M}_{3}^{2}+2(D-1)\left({M}_{1}^{4}+{M}_{2}^{4}\right)-8(D-1){M}_{1}^{2}{M}_{2}^{2}\right)}{3(D-2)(3D-4)},\\ {T}_{\mathrm{4,5}}=\displaystyle \frac{(6-4D){s}_{11}}{12-9D}-\displaystyle \frac{2\left((D-1){M}_{1}^{2}+(D-1){M}_{2}^{2}+(D-2){M}_{3}^{2}\right)}{9D-12},\\ {T}_{\mathrm{4,6}}=\displaystyle \frac{(7D-10){M}_{1}^{2}+(8-5D){M}_{2}^{2}+(D-2){M}_{3}^{2}}{9D-12}+\displaystyle \frac{(6-5D){s}_{11}}{9D-12},\\ {T}_{\mathrm{4,7}}=\displaystyle \frac{(8-5D){M}_{1}^{2}+(7D-10){M}_{2}^{2}+(D-2){M}_{3}^{2}}{9D-12}+\displaystyle \frac{(6-5D){s}_{11}}{9D-12},\\ {T}_{\mathrm{5,1}\sim 7}=\{0,0,0,0,0,0,1\},\\ {T}_{\mathrm{6,1}\sim 7}=\{0,0,0,0,0,1,0\},\\ {T}_{\mathrm{7,1}\sim 7}=\{0,0,0,0,1,0,0\}.\end{array}\end{eqnarray}$
One can check that with general masses and K, it is non-degenerate.

Here we collect the reduction results from rank levels one to three for reference. It is too long to write in text form for rank level four, so we collect them in an attached Mathematica file.

• rank r1 + r2 = 1

$\begin{eqnarray}{\vec{\alpha }}_{1,0,0}^{(1,0)}=\displaystyle \frac{1}{{s}_{11}}\left\{0,1,0,0,0,0,0\right\},\,\,\,{\vec{\alpha }}_{0,1,0}^{(0,1)}=\displaystyle \frac{1}{{s}_{11}}\left\{0,0,1,0,0,0,0\right\}.\end{eqnarray}$

• rank r1 + r2 = 2

$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,0,1}^{(1,1)}=\displaystyle \frac{1}{D-1}\left\{-2{f}_{12},2,2,-\displaystyle \frac{1}{{s}_{11}},-2,-2,2\right\},\\ {\vec{\alpha }}_{1,1,0}^{(1,1)}=\displaystyle \frac{1}{(D-1){s}_{11}}\left\{2{f}_{12},-2,-2,\displaystyle \frac{D}{{s}_{11}},2,2,-2\right\},\\ {\vec{\alpha }}_{0,0,0}^{(2,0)}=\displaystyle \frac{1}{D-1}\left\{2\left({f}_{12}+2{M}_{1}^{2}\right),-\displaystyle \frac{{f}_{12}}{{s}_{11}}-2,-\displaystyle \frac{2\left({M}_{1}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2}{{s}_{11}},4,2,-2\right\},\\ {\vec{\alpha }}_{2,0,0}^{(2,0)}=\displaystyle \frac{-1}{(D-1){s}_{11}}\left\{2\left({{Df}}_{12}+2{M}_{1}^{2}\right),\displaystyle \frac{-D\left({f}_{12}+2{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{-2D\left({M}_{1}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2D}{{s}_{11}},4,2D,-2D\right\},\\ {\vec{\alpha }}_{0,0,0}^{(0,2)}=\displaystyle \frac{1}{D-1}\left\{2\left({f}_{12}+2{M}_{2}^{2}\right),-\displaystyle \frac{2\left({M}_{2}^{2}+{s}_{11}\right)}{{s}_{11}},-\displaystyle \frac{{f}_{12}}{{s}_{11}}-2,\displaystyle \frac{2}{{s}_{11}},2,4,-2\right\},\\ {\vec{\alpha }}_{0,2,0}^{(0,2)}=\displaystyle \frac{-1}{(D-1){s}_{11}}\left\{2\left({{Df}}_{12}+2{M}_{2}^{2}\right),\displaystyle \frac{-2D\left({M}_{2}^{2}+{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{-D\left({f}_{12}+2{s}_{11}\right)}{{s}_{11}},\displaystyle \frac{2D}{{s}_{11}},2D,4,-2D\right\}.\\ \end{array}\end{eqnarray}$

• rank r1 + r2 = 3

There are ten expansion coefficients for rank-3 level.

$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{1,0,0}^{(3,0)}=\left\{\displaystyle \frac{6\left(4{f}_{12}\left((D-1){M}_{1}^{2}+(1-2D){M}_{2}^{2}\right)+3{{Df}}_{12}^{2}-8{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{12(D-2){f}_{12}}{(D-1)(3D-2)},\right.\\ \displaystyle \frac{6D\left(-3{f}_{12}+2{M}_{1}^{2}+4{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}}-\displaystyle \frac{3\left((4-8D){f}_{12}{M}_{2}^{2}+(3D-2){f}_{12}^{2}+8(D-1){M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}\\ -\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2},-\displaystyle \frac{6{M}_{1}^{2}\left((5D-4){f}_{12}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{6\left(3{{Df}}_{12}+2(D-2){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}}\\ -\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2},\displaystyle \frac{6\left((4D-2){f}_{12}+(D-2){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{6(D-2)}{(D-1)(3D-2){s}_{11}},\\ \displaystyle \frac{12\left(D\left(2{D}^{2}-5D+4\right){M}_{1}^{2}-4\left(\left({D}^{2}-3D+1\right){M}_{2}^{2}+{\left(D-1\right)}^{2}{M}_{3}^{2}\right)-2{{Df}}_{12}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}+\displaystyle \frac{12\left(4{D}^{2}-11D+8\right)}{(D-1)\left(3{D}^{2}-8D+4\right)},\\ \displaystyle \frac{6\left(D\left(3{D}^{2}-2D-4\right){f}_{12}-2\left({D}^{2}+2D-4\right){M}_{1}^{2}-4D\left(2{D}^{2}-4D+1\right){M}_{2}^{2}+4(D-1){{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ \left.+\,\displaystyle \frac{12\left({D}^{2}-6D+6\right)}{(D-1)\left(3{D}^{2}-8D+4\right)},-\displaystyle \frac{6\left(3{D}^{2}{f}_{12}+2(2D-1)\left((D-2){M}_{1}^{2}-2{{DM}}_{2}^{2}\right)\right)}{(D-1)D(3D-2){s}_{11}}-\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{3,0,0}^{(3,0)}=\left\{-\displaystyle \frac{2(D+2)\left(4{f}_{12}\left((D-1){M}_{1}^{2}+(1-2D){M}_{2}^{2}\right)+3{{Df}}_{12}^{2}-8{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{4(D-2)(D+2){f}_{12}}{(D-1)(3D-2){s}_{11}},\right.\\ \displaystyle \frac{4\left(2{D}^{2}-7D+2\right){M}_{1}^{2}+6D(D+2){f}_{12}-8D(D+2){M}_{2}^{2}}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{4(D-2)(D+2)}{(D-1)(3D-2){s}_{11}}\\ +\,\displaystyle \frac{(D+2)\left(4(1-2D){f}_{12}{M}_{2}^{2}+(3D-2){f}_{12}^{2}+8(D-1){M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}},\displaystyle \frac{4(D-2)(D+2)}{(D-1)(3D-2){s}_{11}}\\ +\,\displaystyle \frac{2(D+2){M}_{1}^{2}\left((5D-4){f}_{12}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}}+\displaystyle \frac{2(D+2)\left(3{{Df}}_{12}+2(D-2){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}},\\ \displaystyle \frac{8-2{D}^{2}}{\left(3{D}^{2}-5D+2\right){s}_{11}^{2}}-\displaystyle \frac{2(D+2)\left((4D-2){f}_{12}+(D-2){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}},\\ \displaystyle \frac{4\left(2{D}^{3}-19{D}^{2}+38D-24\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}-\displaystyle \frac{4(D+2)\left(D\left(2{D}^{2}-5D+4\right){M}_{1}^{2}-2{{Df}}_{12}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ +\,\displaystyle \frac{16(D+2)\left(\left({D}^{2}-3D+1\right){M}_{2}^{2}+{\left(D-1\right)}^{2}{M}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},-\displaystyle \frac{4(D+2)\left({D}^{2}-6D+6\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}\\ -\displaystyle \frac{2(D+2)\left(D\left(3{D}^{2}-2D-4\right){f}_{12}-2\left({D}^{2}+2D-4\right){M}_{1}^{2}-4D\left(2{D}^{2}-4D+1\right){M}_{2}^{2}+4(D-1){{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},\\ \left.\displaystyle \frac{2(D+2)\left(3{D}^{2}{f}_{12}+2(2D-1)\left((D-2){M}_{1}^{2}-2{{DM}}_{2}^{2}\right)\right)}{(D-1)D(3D-2){s}_{11}^{2}}+\displaystyle \frac{4(D-2)(D+2)}{(D-1)(3D-2){s}_{11}}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,1,0}^{(2,1)}=\left\{\displaystyle \frac{4{{Df}}_{12}}{3{D}^{2}-5D+2}+\displaystyle \frac{-4{f}_{12}\left((D-1){M}_{1}^{2}+(1-2D){M}_{2}^{2}\right)-2{f}_{12}^{2}+8{M}_{1}^{2}{M}_{2}^{2}}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\right.\\ +\,\displaystyle \frac{2{M}_{2}^{2}\left((1-2D){f}_{12}+2(D-1){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{2\left(2(D-1){M}_{1}^{2}-2{{DM}}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\\ +\,\displaystyle \frac{2{M}_{1}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{2\left(4(D-1){M}_{1}^{2}+2(1-2D){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},\\ \displaystyle \frac{2D}{\left(3{D}^{2}-5D+2\right){s}_{11}}-\displaystyle \frac{{{Df}}_{12}+4(D-1){M}_{1}^{2}+4(1-2D){M}_{2}^{2}}{(D-1)(3D-2){s}_{11}^{2}},\displaystyle \frac{2D(2D-5)}{(D-1)\left(3{D}^{2}-8D+4\right)}\\ +\,\displaystyle \frac{2\left(D\left(-2{D}^{2}+5D-4\right){M}_{1}^{2}+7{D}^{2}{M}_{2}^{2}+{D}^{2}{M}_{3}^{2}+2{{Df}}_{12}-20{{DM}}_{2}^{2}+8{M}_{2}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}},\\ \displaystyle \frac{-4\left({D}^{2}-5D+4\right){M}_{1}^{2}+4D\left(2{D}^{2}-4D+1\right){M}_{2}^{2}+2(4-3D){{Df}}_{12}-4(D-1){{DM}}_{3}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\left.\displaystyle \frac{4\left({D}^{2}-D-1\right)}{(D-1)\left(3{D}^{2}-8D+4\right)},\displaystyle \frac{2\left(2(D-1){M}_{1}^{2}+2(1-2D){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{1,0,1}^{(2,1)}=\left\{\displaystyle \frac{16{f}_{12}}{2-3D}-\displaystyle \frac{4\left(2{f}_{12}\left((D-1){M}_{1}^{2}+(1-2D){M}_{2}^{2}\right)+{f}_{12}^{2}-4{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{16}{3D-2}\right.\\ +\,\displaystyle \frac{4{M}_{2}^{2}\left((1-2D){f}_{12}+2(D-1){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{4\left(2(D-1){M}_{1}^{2}-2{{DM}}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{4{M}_{1}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}\\ +\,\displaystyle \frac{16}{3D-2}+\displaystyle \frac{4\left(4(D-1){M}_{1}^{2}+2(1-2D){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{8}{(2-3D){s}_{11}}-\displaystyle \frac{2\left({{Df}}_{12}+4(D-1){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}},\\ \displaystyle \frac{4\left(\left(3{D}^{2}-8D+6\right){{Df}}_{12}-3{D}^{3}{M}_{2}^{2}+3{D}^{3}{M}_{3}^{2}+15{D}^{2}{M}_{2}^{2}-7{D}^{2}{M}_{3}^{2}+\ \left(-5{D}^{2}+13D-8\right){{DM}}_{1}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\displaystyle \frac{-24{{DM}}_{2}^{2}+4{{DM}}_{3}^{2}+8{M}_{2}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}+\displaystyle \frac{48-28D}{3{D}^{2}-8D+4},\displaystyle \frac{40-16D}{3{D}^{2}-8D+4}+\displaystyle \frac{4(4-3D){{Df}}_{12}-8(D-1){{DM}}_{3}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\left.\displaystyle \frac{-8\left({D}^{2}-5D+4\right){M}_{1}^{2}+8D\left(2{D}^{2}-4D+1\right){M}_{2}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}},\displaystyle \frac{4\left(2(D-1){M}_{1}^{2}+2(1-2D){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{16}{3D-2}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{2,1,0}^{(2,1)}=\left\{\displaystyle \frac{2(D+2)\left(2{f}_{12}\left((D-1){M}_{1}^{2}+(1-2D){M}_{2}^{2}\right)+{f}_{12}^{2}-4{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{4{\left(D-2\right)}^{2}{f}_{12}}{(D-1)(3D-2){s}_{11}},\right.\\ -\ \displaystyle \frac{2(D+2)\left(2(D-1){M}_{1}^{2}-2{{DM}}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{2(D+2){M}_{2}^{2}\left((2D-1){f}_{12}-2(D-1){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}}\\ +\,\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{4\left({D}^{2}-7D+6\right){M}_{1}^{2}+4\left(2{D}^{2}+3D-2\right){M}_{2}^{2}-2(D+2){f}_{12}}{(D-1)(3D-2){s}_{11}^{2}}\\ -\displaystyle \frac{2(D+2){M}_{1}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}}+\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{2{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}^{2}}\\ +\,\displaystyle \frac{(D+2)\left({{Df}}_{12}+4(D-1){M}_{1}^{2}+4(1-2D){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}},\displaystyle \frac{2\left(-2\left(3{D}^{2}-7D+6\right){{Df}}_{12}-{D}^{3}{M}_{2}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ +\,\displaystyle \frac{2\left(-7{D}^{3}{M}_{3}^{2}-10{D}^{2}{M}_{2}^{2}+14{D}^{2}{M}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}+\displaystyle \frac{-4{D}^{3}+38{D}^{2}-76D+48}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}+\displaystyle \frac{2\left(40{{DM}}_{2}^{2}-8{{DM}}_{3}^{2}-16{M}_{2}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ +\,\displaystyle \frac{2\left(2{D}^{3}+5{D}^{2}-22D+16\right){{DM}}_{1}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},-\displaystyle \frac{2(D+2)\left(-2\left({D}^{2}-5D+4\right){M}_{1}^{2}+2D\left(2{D}^{2}-4D+1\right){M}_{2}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ -\displaystyle \frac{2(D+2)\left((4-3D){{Df}}_{12}-2(D-1){{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}-\displaystyle \frac{4\left({D}^{3}-5{D}^{2}+13D-10\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}},\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}}\\ \left.-\ \displaystyle \frac{2(D+2)\left(2(D-1){M}_{1}^{2}+2(1-2D){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}^{2}}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,1,0}^{(0,3)}=\left\{\displaystyle \frac{6\left((4-8D){f}_{12}{M}_{1}^{2}+4(D-1){f}_{12}{M}_{2}^{2}+3{{Df}}_{12}^{2}-8{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{12(D-2){f}_{12}}{(D-1)(3D-2)},-\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2}\right.\\ -\ \displaystyle \frac{6{M}_{2}^{2}\left((5D-4){f}_{12}+4(1-2D){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{6\left(3{{Df}}_{12}+(4-8D){M}_{1}^{2}+2(D-2){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2}\\ +\,\displaystyle \frac{6D\left(-3{f}_{12}+4{M}_{1}^{2}+2{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}}-\displaystyle \frac{3\left((4-8D){f}_{12}{M}_{1}^{2}+(3D-2){f}_{12}^{2}+8(D-1){M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}},\\ \displaystyle \frac{6\left((4D-2){f}_{12}+(4-8D){M}_{1}^{2}+(D-2){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{6(D-2)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{12\left({D}^{2}-6D+6\right)}{(D-1)\left(3{D}^{2}-8D+4\right)}\\ +\,\displaystyle \frac{6\left(D\left(3{D}^{2}-2D-4\right){f}_{12}-4D\left(2{D}^{2}-4D+1\right){M}_{1}^{2}-2\left({D}^{2}+2D-4\right){M}_{2}^{2}+4(D-1){{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}},\\ \displaystyle \frac{12\left(2{D}^{3}{M}_{2}^{2}-5{D}^{2}{M}_{2}^{2}-4{D}^{2}{M}_{3}^{2}-4\left({D}^{2}-3D+1\right){M}_{1}^{2}-2{{Df}}_{12}+4{{DM}}_{2}^{2}+8{{DM}}_{3}^{2}-4{M}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\left.\displaystyle \frac{12\left(4{D}^{2}-11D+8\right)}{(D-1)\left(3{D}^{2}-8D+4\right)},-\displaystyle \frac{6\left(3{D}^{2}{f}_{12}+4(1-2D){{DM}}_{1}^{2}+2(D-2)(2D-1){M}_{2}^{2}\right)}{(D-1)D(3D-2){s}_{11}}-\displaystyle \frac{12(D-2)}{3{D}^{2}-5D+2}\right\},\\ \,\,\,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,3,0}^{(0,3)}=\left\{-\displaystyle \frac{4(D-2)(D+2){f}_{12}}{(D-1)(3D-2){s}_{11}}-\displaystyle \frac{2(D+2)\left(3{{Df}}_{12}^{2}+(4-8D){M}_{1}^{2}{f}_{12}+4(D-1){M}_{2}^{2}{f}_{12}-8{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}},\right.\\ \displaystyle \frac{2(D+2)\left(4(1-2D){M}_{1}^{2}+(5D-4){f}_{12}\right){M}_{2}^{2}}{(D-1)(3D-2){s}_{11}^{3}}+\displaystyle \frac{2(D+2)\left((4-8D){M}_{1}^{2}+2(D-2){M}_{2}^{2}+3{{Df}}_{12}\right)}{(D-1)(3D-2){s}_{11}^{2}}\\ +\,\displaystyle \frac{4(D-2)(D+2)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{4\left({D}^{2}-4\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{-8D(D+2){M}_{1}^{2}+4\left(2{D}^{2}-7D+2\right){M}_{2}^{2}+6D(D+2){f}_{12}}{(D-1)(3D-2){s}_{11}^{2}}\\ +\,\displaystyle \frac{(D+2)\left((3D-2){f}_{12}^{2}+4(1-2D){M}_{1}^{2}{f}_{12}+8(D-1){M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}},-\displaystyle \frac{2\left({D}^{2}-4\right)}{\left(3{D}^{2}-5D+2\right){s}_{11}^{2}}\\ -\displaystyle \frac{2(D+2)\left((4-8D){M}_{1}^{2}+(D-2){M}_{2}^{2}+(4D-2){f}_{12}\right)}{(D-1)(3D-2){s}_{11}^{3}},-\displaystyle \frac{4(D+2)\left({D}^{2}-6D+6\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}\\ -\displaystyle \frac{2(D+2)\left(-4D\left(2{D}^{2}-4D+1\right){M}_{1}^{2}-2\left({D}^{2}+2D-4\right){M}_{2}^{2}+4(D-1){{DM}}_{3}^{2}+D\left(3{D}^{2}-2D-4\right){f}_{12}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},\\ \displaystyle \frac{4\left(2{D}^{3}-19{D}^{2}+38D-24\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}-\displaystyle \frac{4(D+2)\left(2{M}_{2}^{2}{D}^{3}-5{M}_{2}^{2}{D}^{2}-4{M}_{3}^{2}{D}^{2}+4{M}_{2}^{2}D+8{M}_{3}^{2}D-2{{Df}}_{12}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ -\displaystyle \frac{4(D+2)\left(-4\left({D}^{2}-3D+1\right){M}_{1}^{2}-4{M}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},\displaystyle \frac{2\left(3{f}_{12}{D}^{2}+4(1-2D){M}_{1}^{2}D+2(D-2)(2D-1){M}_{2}^{2}\right)(D+2)}{(D-1)D(3D-2){s}_{11}^{2}}\\ +\,\left.\displaystyle \frac{4(D-2)(D+2)}{(D-1)(3D-2){s}_{11}}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{1,0,0}^{(1,2)}=\left\{\displaystyle \frac{4{{Df}}_{12}}{3{D}^{2}-5D+2}+\displaystyle \frac{4{f}_{12}\left((2D-1){M}_{1}^{2}-(D-1){M}_{2}^{2}\right)-2{f}_{12}^{2}+8{M}_{1}^{2}{M}_{2}^{2}}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\right.\\ +\,\displaystyle \frac{2{M}_{2}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{2\left((2-4D){M}_{1}^{2}+4(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\\ +\,\displaystyle \frac{2{M}_{1}^{2}\left((1-2D){f}_{12}+2(D-1){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{2\left(-2{{DM}}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}},\displaystyle \frac{2D}{\left(3{D}^{2}-5D+2\right){s}_{11}}\\ +\,\displaystyle \frac{-{{Df}}_{12}+(8D-4){M}_{1}^{2}-4(D-1){M}_{2}^{2}}{(D-1)(3D-2){s}_{11}^{2}},\displaystyle \frac{4\left({D}^{2}-D-1\right)}{(D-1)\left(3{D}^{2}-8D+4\right)}+\displaystyle \frac{4D\left(2{D}^{2}-4D+1\right){M}_{1}^{2}}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\displaystyle \frac{2(4-3D){{Df}}_{12}-4(D-1)\left((D-4){M}_{2}^{2}+{{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}},\displaystyle \frac{2D(2D-5)}{(D-1)\left(3{D}^{2}-8D+4\right)}\\ +\,\displaystyle \frac{2\left(\left(7{D}^{2}-20D+8\right){M}_{1}^{2}+D\left(\left(-2{D}^{2}+5D-4\right){M}_{2}^{2}+{{DM}}_{3}^{2}\right)+2{{Df}}_{12}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}},-\displaystyle \frac{4D}{3{D}^{2}-5D+2}\\ +\,\left.\displaystyle \frac{2\left(2(1-2D){M}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{0,1,1}^{(1,2)}=\left\{\displaystyle \frac{8{f}_{12}\left((2D-1){M}_{1}^{2}-(D-1){M}_{2}^{2}\right)-4{f}_{12}^{2}+16{M}_{1}^{2}{M}_{2}^{2}}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{16{f}_{12}}{2-3D},\displaystyle \frac{4{M}_{2}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}\right.\\ +\,\displaystyle \frac{4\left((2-4D){M}_{1}^{2}+4(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{16}{3D-2},\displaystyle \frac{4{M}_{1}^{2}\left((1-2D){f}_{12}+2(D-1){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}\\ +\,\displaystyle \frac{4\left(-2{{DM}}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{16}{3D-2},\displaystyle \frac{8}{(2-3D){s}_{11}}-\displaystyle \frac{2\left({{Df}}_{12}+(4-8D){M}_{1}^{2}+4(D-1){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}},\\ \displaystyle \frac{8D\left(2{D}^{2}-4D+1\right){M}_{1}^{2}+4(4-3D){{Df}}_{12}-8(D-1)\left((D-4){M}_{2}^{2}+{{DM}}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}+\displaystyle \frac{40-16D}{3{D}^{2}-8D+4},\\ \displaystyle \frac{4\left(D\left(3{D}^{2}-8D+6\right){f}_{12}+\ \left(-3{D}^{3}+15{D}^{2}-24D+8\right){M}_{1}^{2}-(D-1)D\left((5D-8){M}_{2}^{2}+(4-3D){M}_{3}^{2}\right)\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}}\\ +\,\left.\displaystyle \frac{48-28D}{3{D}^{2}-8D+4},\displaystyle \frac{4\left(2(1-2D){M}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}}+\displaystyle \frac{16}{3D-2}\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\vec{\alpha }}_{1,2,0}^{(1,2)}=\left\{\displaystyle \frac{2(D+2)\left(-2{f}_{12}\left((2D-1){M}_{1}^{2}-(D-1){M}_{2}^{2}\right)+{f}_{12}^{2}-4{M}_{1}^{2}{M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{4{\left(D-2\right)}^{2}{f}_{12}}{(D-1)(3D-2){s}_{11}},\right.\\ \displaystyle \frac{4\left(2{D}^{2}+3D-2\right){M}_{1}^{2}+4\left({D}^{2}-7D+6\right){M}_{2}^{2}-2(D+2){f}_{12}}{(D-1)(3D-2){s}_{11}^{2}}-\displaystyle \frac{2(D+2){M}_{2}^{2}\left((D-1){f}_{12}+2(1-2D){M}_{1}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}}\\ +\,\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}},-\displaystyle \frac{2(D+2)\left(-2{{DM}}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}^{2}}+\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}}\\ +\,\displaystyle \frac{2(D+2){M}_{1}^{2}\left((2D-1){f}_{12}-2(D-1){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}},\displaystyle \frac{(D+2)\left({{Df}}_{12}+4(1-2D){M}_{1}^{2}+4(D-1){M}_{2}^{2}\right)}{(D-1)(3D-2){s}_{11}^{3}}\\ -\displaystyle \frac{2{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}^{2}},-\displaystyle \frac{4\left({D}^{3}-5{D}^{2}+13D-10\right)}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}\\ -\displaystyle \frac{2(D+2)\left(2D\left(2{D}^{2}-4D+1\right){M}_{1}^{2}+(4-3D){{Df}}_{12}-2(D-1)\left((D-4){M}_{2}^{2}+{{DM}}_{3}^{2}\right)\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}},\\ \displaystyle \frac{-4{D}^{3}+38{D}^{2}-76D+48}{(D-1)\left(3{D}^{2}-8D+4\right){s}_{11}}-\displaystyle \frac{2\left(D\left(7{D}^{2}-14D+8\right){M}_{3}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ -\ \displaystyle \frac{2\left(2D\left(3{D}^{2}-7D+6\right){f}_{12}+\ \left({D}^{3}+10{D}^{2}-40D+16\right){M}_{1}^{2}-D\left(2{D}^{3}+5{D}^{2}-22D+16\right){M}_{2}^{2}\right)}{(D-1)D\left(3{D}^{2}-8D+4\right){s}_{11}^{2}}\\ ,\left.\displaystyle \frac{4{\left(D-2\right)}^{2}}{(D-1)(3D-2){s}_{11}}-\displaystyle \frac{2(D+2)\left(2(1-2D){M}_{1}^{2}+2(D-1){M}_{2}^{2}+{f}_{12}\right)}{(D-1)(3D-2){s}_{11}^{2}}\right\}.\,\,\,\end{array}\end{eqnarray}$

1
Brown L M Feynman R P 1952 Radiative corrections to Compton scattering Phys. Rev. 85 231 244

DOI

2
Melrose D B 1965 Reduction of Feynman diagrams Nuovo Cim 40 181 213

DOI

3
Passarino G Veltman M J G 1979 One loop corrections for e+ e- annihilation into mu+ mu- in the Weinberg model Nucl. Phys. B 160 151 207

DOI

4
Hooft G 't Veltman M J G 1979 Scalar one loop integrals Nucl. Phys. B 153 365 401

DOI

5
van Neerven W L Vermaseren J A M 1984 Large loop integrals Phys. Lett. B 137 241 244

DOI

6
Stuart R G 1988 Algebraic reduction of one loop Feynman diagrams to scalar integrals Comput. Phys. Commun. 48 367 389

DOI

7
van Oldenborgh G J Vermaseren J A M 1990 New algorithms for one loop integrals Z. Phys. C 46 425 438

DOI

8
Bern Z Dixon L J Kosower D A 1993 Dimensionally regulated one loop integrals Phys. Lett. B 302 299 308 [hep-ph/9212308]. [Erratum: Phys.Lett.B 318, 649 (1993)].

DOI

9
Bern Z Dixon L J Kosower D A 1994 Dimensionally regulated pentagon integrals Nucl. Phys. B 412 751 816 [hep-ph/9306240].

DOI

10
Bern Z Dixon L J Dunbar D C Kosower D A 1995 Fusing gauge theory tree amplitudes into loop amplitudes Nucl. Phys. B 435 59 101 [hep-ph/9409265].

DOI

11
Fleischer J Jegerlehner F Tarasov O V 2000 Algebraic reduction of one loop Feynman graph amplitudes Nucl. Phys. B 566 423 440 [hep-ph/9907327].

DOI

12
Binoth T Guillet J P Heinrich G 2000 Reduction formalism for dimensionally regulated one loop N point integrals Nucl. Phys. B 572 361 386 [hep-ph/9911342].

DOI

13
Denner A Dittmaier S 2003 Reduction of one loop tensor five point integrals Nucl. Phys. B 658 175 202

DOI

14
Duplancic G Nizic B 2004 Reduction method for dimensionally regulated one loop N point Feynman integrals Eur. Phys. J. C 35 105 118 [hep-ph/0303184].

DOI

15
Britto R Cachazo F Feng B 2005 Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills Nucl. Phys. B 725 275 305 [hep-th/0412103].

DOI

16
Britto R Buchbinder E Cachazo F Feng B 2005 One-loop amplitudes of gluons in SQCD Phys. Rev. D 72 065012 [hep-ph/0503132].

DOI

17
Denner A Dittmaier S 2006 Reduction schemes for one-loop tensor integrals Nucl. Phys. B 734 62 115 [hep-ph/0509141].

DOI

18
Anastasiou C Britto R Feng B Kunszt Z Mastrolia P 2007 D-dimensional unitarity cut method Phys. Lett. B 645 213 216 [hep-ph/0609191].

DOI

19
Anastasiou C Britto R Feng B Kunszt Z Mastrolia P 2007 Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes JHEP 03 111 [hep-ph/0612277].

DOI

20
Ellis R K Zanderighi G 2008 Scalar one-loop integrals for QCD JHEP 02 002

DOI

21
Ossola G Papadopoulos C G Pittau R 2007 Reducing full one-loop amplitudes to scalar integrals at the integrand level Nucl. Phys. B 763 147 169

DOI

22
Ossola G Papadopoulos C G Pittau R 2007 Numerical evaluation of six-photon amplitudes JHEP 07 085

DOI

23
Forde D 2007 Direct extraction of one-loop integral coefficients Phys. Rev. D 75 125019

DOI

24
Giele W T Kunszt Z Melnikov K 2008 Full one-loop amplitudes from tree amplitudes JHEP 04 049

DOI

25
Ellis R K Giele W T Kunszt Z Melnikov K 2009 Masses, fermions and generalized D-dimensional unitarity Nucl. Phys. B 822 270 282

DOI

26
Weiglein G Scharf R Bohm M 1994 Reduction of general two loop selfenergies to standard scalar integrals Nucl. Phys. B 416 606 644

DOI

27
Usyukina N I Davydychev A I 1995 Two loop three point diagrams with irreducible numerators Phys. Lett. B 348 503 512 hep-ph/9412356]

DOI

28
Davydychev A I Tausk J B 1995 Two loop vacuum diagrams and tensor decomposition in 4th Int. Workshop on Software Engineering and Artificial Intelligence for High-energy and Nuclear Physics 4

29
Davydychev A I Tausk J B 1996 Tensor reduction of two loop vacuum diagrams and projectors for expanding three point functions Nucl. Phys. B 465 507 520

DOI

30
Fleischer J Tarasov O V 1994 Calculation of Feynman diagrams from their small momentum expansion Z. Phys. C 64 413 426

DOI

31
Passarino G 2001 An approach toward the numerical evaluation of multiloop Feynman diagrams Nucl. Phys. B 619 257 312

DOI

32
Tarasov O V 1996 A new approach to the momentum expansion of multiloop Feynman diagrams Nucl. Phys. B 480 397 412

DOI

33
Tarasov O V 1998 Reduction of Feynman graph amplitudes to a minimal set of basic integrals Acta Phys. Polon. B 29 2655

DOI

34
Ferroglia A Passera M Passarino G Uccirati S 2004 Two loop vertices in quantum field theory: infrared convergent scalar configurations Nucl. Phys. B 680 199 270 [hep-ph/0311186].

DOI

35
Kotikov A V Teber S 2019 Multi-loop techniques for massless Feynman diagram calculations Phys. Part. Nucl. 50 1 41 [arXiv:1805.05109].

36
Tkachov F V 1981 A theorem on analytical calculability of four loop renormalization group functions Phys. Lett. B 100 65 68

DOI

37
Chetyrkin K G Tkachov F V 1981 Integration by parts: the algorithm to calculate beta functions in 4 loops Nucl. Phys. B 192 159 204

DOI

38
Smirnov A V 2008 Algorithm FIRE–Feynman integral reduction JHEP 10 107

DOI

39
Smirnov A V 2015 FIRE5: a C++ implementation of Feynman Integral reduction Comput. Phys. Commun. 189 182 191

DOI

40
Lee R N 2014 LiteRed 1.4: a powerful tool for reduction of multiloop integrals J. Phys. Conf. Ser. 523 012059

DOI

41
Smirnov A V Chuharev F S 2020 FIRE6: Feynman integral reduction with modular arithmetic Comput. Phys. Commun. 247 106877

DOI

42
von Manteuffel A Studerus C 2012 Reduze 2—distributed Feynman integral reduction arXiv:1201.4330

43
Maierhöfer P Usovitsch J Uwer P 2018 Kira–a Feynman integral reduction program Comput. Phys. Commun. 230 99 112

DOI

44
Gerlach M Herren F Lang M 2022 tapir: a tool for topologies, amplitudes, partial fraction decomposition and input for reductions arXiv:2201.05618

45
Liu X Ma Y-Q 2022 AMFlow: a Mathematica package for Feynman integrals computation via auxiliary mass flow arXiv:2201.11669

46
Actis S Ferroglia A Passarino G Passera M Uccirati S 2004 Two-loop tensor integrals in quantum field theory Nucl. Phys. B 703 3 126 [hep-ph/0402132].

DOI

47
Feng B Li T Li X 2021 Analytic tadpole coefficients of one-loop integrals JHEP 09 081 [arXiv:2107.03744].

48
Hu C Li T Li X 2021 One-loop Feynman integral reduction by differential operators Phys. Rev. D 104 116014 [arXiv:2108.00772].

49
Feng B Li T Wang H Zhang Y 2022 Reduction of general one-loop integrals using auxiliary vector arXiv:2203.14449

50
Feng B Hu C Li T Song Y 2022 Reduction with degenerate Gram matrix for one-loop integrals arXiv:2205.03000

51
Henn J M 2013 Multiloop integrals in dimensional regularization made simple Phys. Rev. Lett. 110 251601 [arXiv:1304.1806].

52
Gluza J Kajda K Kosower D A 2011 Towards a basis for planar two-loop integrals Phys. Rev. D 83 045012

DOI

Outlines

/