Welcome to visit Communications in Theoretical Physics,
Topical Reviews: Particle Physics and Quantum Field Theory

Two-Higgs-doublet models in light of current experiments: a brief review

  • Lei Wang , 1 ,
  • Jin Min Yang 2, 3 ,
  • Yang Zhang 4
Expand
  • 1Department of Physics, Yantai University, Yantai 264005, China
  • 2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Physics and Microelectronics, Zhengzhou University, ZhengZhou 450001, China

Received date: 2022-03-28

  Revised date: 2022-06-17

  Accepted date: 2022-07-11

  Online published: 2022-08-29

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

We briefly survey several typical CP-conserving two-Higgs-doublet models (2HDMs) in light of current experiments. First we derive the masses and couplings of the mass eigenstates from the Lagrangians. Then we analyze the constraints from theory and oblique electroweak parameters. Finally, we delineate the status of 2HDM in light of the LHC searches, the dark matter detections and the muon g − 2 measurement.

Cite this article

Lei Wang , Jin Min Yang , Yang Zhang . Two-Higgs-doublet models in light of current experiments: a brief review[J]. Communications in Theoretical Physics, 2022 , 74(9) : 097202 . DOI: 10.1088/1572-9494/ac7fe9

1. Introduction

A two-Higgs-doublet model (2HDM) is a simple extension of the Standard Model (SM) by introducing an additional SU(2)L Higgs doublet, which predicts three neutral Higgs bosons and a pair of charged Higgs bosons H±. The 2HDM can be CP-violating [1], but it is also useful to study its CP conserving version, where the neutral Higgs bosons can be classified into the CP-even states (h and H) and the CP-odd state (A). The tree-level flavour changing neutral current (FCNC) can appear in the general 2HDM, which is forbidden by imposing Z2 discrete symmetry in several different ways, such as type-I 2HDM [2, 3], type-II 2HDM [2, 4], lepton-specific 2HDM (L2HDM), flipped 2HDM [510], and inert 2HDM [1113]. Also the tree-level FCNC is absent in the aligned 2HDM in which the Yukawa-coupling matrices of the two Higgs doublet fields are assumed to be proportional [14]. In addition, due to a certain type of symmetry, the FCNC is naturally suppressed by the off-diagonal element of the CKM matrix in the Branco–Grimus–Lavoura 2HDM [15].
Various 2HDMs have been extensively studied in particle physics. Because of the plentiful Yukawa couplings of the quarks and leptons, the 2HDMs have been studied in meson decays, and the L2HDM is used to explain the muon g − 2 anomaly [22, 1620, 171, 2333]. In the inert 2HDM, one may take the lightest component of the inert Higgs doublet field is neutral, and consider it as a dark matter (DM) candidate because of its stability. If an additional field protected by a new symmetry is added to other types of 2HDMs, then these models also can provide a DM candidate. In these models, the multiple scalar fields can be the portals between the DM and the SM sector, and lead to some interesting effects on the DM observables via their various Yukawa couplings [3450]. On the other hand, the analyses of ATLAS and CMS collaborations at the LHC show that the properties of the discovered 125 GeV Higgs boson agree well with the SM Higgs boson [51, 52]. Other than that, no experiment claims to have observed any new resonance with 5σ level. However, there are some interesting excesses that imply the existence of new scalars. For example, the CMS Run II results for Higgs boson searches in the diphoton final state show a local excess of ∼3σ around 96 GeV [53]. The ATLAS collaboration reported a local excess of ∼3σ around 130 GeV in the searches for tH±b with H±cb [54]. Besides, very recently the CDF II result for the W-mass has an approximate 7σ discrepancy from the SM prediction [55]. The 2HDM can give additional corrections to the masses of gauge bosons via the self-energy diagrams exchanging extra Higgs fields, and simply explain the CDF W-mass when the extra Higgses have appropriate mass splittings (see e.g. [5669]).
In the literature there already have been some reviews on 2HDMs (see e.g. [7075]). In this note we emphasize current experiments and briefly review several typical CP-conserving 2HDMs. We will start from the Lagrangians and derive the masses and couplings of the particles. Then we analyze the constraints from theory and oblique electroweak parameters, respectively. Finally, we discuss the status of 2HDMs in light of the LHC searches, the dark matter detections and the muon g − 2 measurement.
The content is organized as follows. In sections 2 and 3, we demonstrate several typical CP-conserving 2HDMs and discuss the constraints from theory and oblique parameters. In sections 4, 5, and 6, we review the status of the 2HDMs in light of the LHC Higgs searches, the DM detections and the muon g − 2 measurement. Finally, we give a summary in section 7.

2. Several typical 2HDMs

The general scalar potential of 2HDM is given as
$\begin{eqnarray}\begin{array}{rcl}{V}_{\mathrm{tree}} & = & {m}_{11}^{2}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})+{m}_{22}^{2}({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})-{m}_{12}^{2}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}+{\rm{h}}.{\rm{c}}.)\\ & & +\displaystyle \frac{{\lambda }_{1}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}\right)}^{2}+\displaystyle \frac{{\lambda }_{2}}{2}{\left({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\lambda }_{3}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})\\ & & +{\lambda }_{4}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{1})+\left[\displaystyle \frac{{\lambda }_{5}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}\right.\\ & & +{\lambda }_{6}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})+{\lambda }_{7}({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})\\ & & \left.+{\rm{h}}.{\rm{c}}.\Space{0ex}{2.95ex}{0ex}\right],\end{array}\end{eqnarray}$
and the Φ1 and Φ2 are complex Higgs doublets with hypercharge Y = 1:
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}=\left(\begin{array}{c}{\phi }_{1}^{+}\\ \displaystyle \frac{1}{\sqrt{2}}\,({v}_{1}+{\phi }_{1}+{\rm{i}}{a}_{1})\end{array}\right),\\ {{\rm{\Phi }}}_{2}=\left(\begin{array}{c}{\phi }_{2}^{+}\\ \displaystyle \frac{1}{\sqrt{2}}\,({v}_{2}+{\phi }_{2}+{\rm{i}}{a}_{2})\end{array}\right).\end{array}\end{eqnarray}$
Here we restrict to the CP-conserving models in which all λi and ${m}_{12}^{2}$ are real and the electroweak vacuum expectation values (VEVs) v1 and v2 are also real with ${v}^{2}\,={v}_{1}^{2}+{v}_{2}^{2}={\left(246\,\mathrm{GeV}\right)}^{2}$.

2.1. Type-I, type-II, lepton-specific and flipped 2HDMs

In order to forbid tree-level FCNC, one may introduce an additional Z2 discrete symmetry under which the charge assignments of fields are shown in table 1. Because of this Z2 symmetry, the λ6 and λ7 terms in the general scalar potential in equation (2.1) are absent, while the soft breaking ${m}_{12}^{2}$ term is still allowed. The mass parameters ${m}_{11}^{2}$ and ${m}_{22}^{2}$ in the potential are determined by the potential minimization conditions at (v1, v2):
$\begin{eqnarray}\begin{array}{l}{m}_{11}^{2}={m}_{12}^{2}{t}_{\beta }-\displaystyle \frac{1}{2}{v}^{2}\left({\lambda }_{1}{c}_{\beta }^{2}+{\lambda }_{345}{s}_{\beta }^{2}\right),\\ {m}_{22}^{2}={m}_{12}^{2}/{t}_{\beta }-\displaystyle \frac{1}{2}{v}^{2}\left({\lambda }_{2}{s}_{\beta }^{2}+{\lambda }_{345}{c}_{\beta }^{2}\right),\end{array}\end{eqnarray}$
where the shorthand notations ${t}_{\beta }\equiv \tan \beta ={v}_{2}/{v}_{1}$, ${s}_{\beta }\equiv \sin \beta $, ${c}_{\beta }\equiv \cos \beta $, and λ345 = λ3 + λ4 + λ5 are employed.
Table 1. The Z2 charge assignment in the four types of 2HDMs without FCNC. The other fields are even under Z2 symmetry.
Model Φ2 Φ1 ${u}_{R}^{i}$ ${d}_{R}^{i}$ ${e}_{R}^{i}$
Type I + + + +
Type II + +
Lepton-specific + + +
Flipped + + +
From the scalar potential in equation (2.1) with λ6 =λ7 = 0, we can obtain the mass matrices of the Higgs fields
$\begin{eqnarray}\left(\begin{array}{ll}{\phi }_{1} & {\phi }_{2}\end{array}\right)\left(\begin{array}{ll}{m}_{12}^{2}{t}_{\beta }+{\lambda }_{1}{v}^{2}{c}_{\beta }^{2} & \quad -{m}_{12}^{2}+\tfrac{{\lambda }_{345}}{2}{v}^{2}{s}_{2\beta }\\ -{m}_{12}^{2}+\tfrac{{\lambda }_{345}}{2}{v}^{2}{s}_{2\beta } & \quad {m}_{12}^{2}/{t}_{\beta }+{\lambda }_{2}{v}^{2}{s}_{\beta }^{2}\end{array}\right)\left(\begin{array}{l}{\phi }_{1}\\ {\phi }_{2}\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\left(\begin{array}{ll}{a}_{1} & {a}_{2}\end{array}\right)\left[{m}_{12}^{2}-\tfrac{1}{2}{\lambda }_{5}{v}^{2}{s}_{2\beta }\right]\left(\begin{array}{ll}{t}_{\beta } & \quad -1\\ -1 & \quad 1/{t}_{\beta }\end{array}\right)\left(\begin{array}{l}{a}_{1}\\ {a}_{2}\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\left(\begin{array}{ll}{\phi }_{1}^{+} & {\phi }_{2}^{+}\end{array}\right)\left[{m}_{12}^{2}-\tfrac{1}{4}({\lambda }_{4}+{\lambda }_{5}){v}^{2}{s}_{2\beta }\right]\left(\begin{array}{ll}{t}_{\beta } & \quad -1\\ -1 & \quad 1/{t}_{\beta }\end{array}\right)\left(\begin{array}{l}{\phi }_{1}^{-}\\ {\phi }_{2}^{-}\end{array}\right).\end{eqnarray}$
The mass eigenstates are obtained from the original fields by the rotation matrices:
$\begin{eqnarray}\left(\begin{array}{c}H\\ h\end{array}\right)=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array}\right)\left(\begin{array}{c}{\phi }_{1}\\ {\phi }_{2}\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\left(\begin{array}{c}{G}^{0}\\ A\end{array}\right)=\left(\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{array}\right)\left(\begin{array}{c}{a}_{1}\\ {a}_{2}\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\left(\begin{array}{c}{G}^{\pm }\\ {H}^{\pm }\end{array}\right)=\left(\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{array}\right)\left(\begin{array}{c}{\phi }_{1}^{\pm }\\ {\phi }_{2}^{\pm }\end{array}\right),\end{eqnarray}$
where G0 and G± are Goldstone bosons which are absorbed as longitudinal components of the Z and W± bosons. The remained physical states are two neutral CP-even states h and H, one neutral pseudoscalar A, and a pair of charged scalars H±. Their masses are given by
$\begin{eqnarray}\begin{array}{rcl}{m}_{H,h}^{2} & = & \displaystyle \frac{1}{2}\left[{M}_{P,11}^{2}+{M}_{P,22}^{2}\right.\\ & & \left.\pm \sqrt{{\left({M}_{P,11}^{2}-{M}_{P,22}^{2}\right)}^{2}+4{\left({M}_{P,12}^{2}\right)}^{2}}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}{m}_{A}^{2}=\displaystyle \frac{{m}_{12}^{2}}{{s}_{\beta }{c}_{\beta }}-{\lambda }_{5}{v}^{2},\end{eqnarray}$
$\begin{eqnarray}{m}_{{H}^{\pm }}^{2}=\displaystyle \frac{{m}_{12}^{2}}{{s}_{\beta }{c}_{\beta }}-\displaystyle \frac{1}{2}({\lambda }_{4}+{\lambda }_{5}){v}^{2},\end{eqnarray}$
where ${M}_{P}^{2}$ is the mass matrix shown in equation (2.4).
The gauge-kinetic Lagrangian is given as
$\begin{eqnarray}{{ \mathcal L }}_{{\rm{g}}}={\left({D}^{\mu }{{\rm{\Phi }}}_{1}\right)}^{\dagger }\left({D}_{\mu }{{\rm{\Phi }}}_{1}\right)+{\left({D}^{\mu }{{\rm{\Phi }}}_{2}\right)}^{\dagger }\left({D}_{\mu }{{\rm{\Phi }}}_{2}\right).\end{eqnarray}$
We can obtain the neutral Higgs couplings to VV (VVZZ, WW)
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal L }}_{{\rm{g}}} & \supset & \displaystyle \frac{{g}^{2}+g{{\prime} }^{2}}{8}{v}^{2}\,{ZZ}\,\left(1+2\displaystyle \frac{h}{v}{y}_{h}^{V}+2\displaystyle \frac{H}{v}{y}_{H}^{V}\right)\\ & & +\displaystyle \frac{{g}^{2}}{4}{v}^{2}\,{W}^{+}{W}^{-}\,\left(1+2\displaystyle \frac{h}{v}{y}_{h}^{V}+2\displaystyle \frac{H}{v}{y}_{H}^{V}\right),\end{array}\end{eqnarray}$
where ${y}_{h}^{V}=\sin (\beta -\alpha )$ and ${y}_{H}^{V}=\cos (\beta -\alpha )$.
According to different charge assignments, there are four different models with Yukawa interactions:
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {Y}_{u2}\,{\overline{Q}}_{L}\,{\tilde{{\rm{\Phi }}}}_{2}\,{u}_{R}+\,{Y}_{d2}\,{\overline{Q}}_{L}\,{{\rm{\Phi }}}_{2}{d}_{R}\\ & & +{Y}_{{\ell }2}\,{\overline{L}}_{L}\,{{\rm{\Phi }}}_{2}\,{e}_{R}+\,{\rm{h.c.}}\,(\mathrm{type}\,{\rm{I}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {Y}_{u2}\,{\overline{Q}}_{L}\,{\tilde{{\rm{\Phi }}}}_{2}\,{u}_{R}+{Y}_{d1}\,{\overline{Q}}_{L}\,{{\rm{\Phi }}}_{1}{d}_{R}\\ & & +{Y}_{{\ell }1}\,{\overline{L}}_{L}\,{{\rm{\Phi }}}_{1}\,{e}_{R}+{\rm{h}}.{\rm{c}}.\,(\mathrm{type}\,\mathrm{II}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {Y}_{u2}\,{\overline{Q}}_{L}{\tilde{{\rm{\Phi }}}}_{2}{u}_{R}+{Y}_{d1}\,{\overline{Q}}_{L}{{\rm{\Phi }}}_{2}{d}_{R}\,\\ & & +{Y}_{{\ell }1}{\overline{L}}_{L}{{\rm{\Phi }}}_{1}{e}_{R}+{\rm{h}}.{\rm{c}}.\,(\,\mathrm{lepton}\,\mathrm{specific}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {Y}_{u2}\,{\overline{Q}}_{L}{\tilde{{\rm{\Phi }}}}_{2}{u}_{R}+{Y}_{d1}{\overline{Q}}_{L}\,{{\rm{\Phi }}}_{1}\,{d}_{R}\\ & & +{Y}_{{\ell }1}\,{\overline{L}}_{L}{{\rm{\Phi }}}_{2}{e}_{R}+{\rm{h}}.{\rm{c}}.\,(\,\mathrm{flipped}\,\mathrm{model}),\end{array}\end{eqnarray}$
where ${Q}_{L}^{{\rm{T}}}=({u}_{L},{d}_{L})$, ${L}_{L}^{{\rm{T}}}=({\nu }_{L},{l}_{L})$, ${\widetilde{{\rm{\Phi }}}}_{\mathrm{1,2}}={\rm{i}}{\tau }_{2}{{\rm{\Phi }}}_{1,2}^{* }$, and Yu2, Yd1,2 and Y1,2 are 3 × 3 matrices in family space.
We can obtain the Yukawa couplings
$\begin{eqnarray}\begin{array}{rcl}-{{ \mathcal L }}_{Y} & = & \frac{{m}_{f}}{v}\,{y}_{h}^{f}\,h\bar{f}f+\frac{{m}_{f}}{v}\,{y}_{H}^{f}\,H\bar{f}f\\ & & -{\rm{i}}\frac{{m}_{u}}{v}{\kappa }_{u}\,A\bar{u}{\gamma }_{5}u+{\rm{i}}\frac{{m}_{d}}{v}{\kappa }_{d}\,A\bar{d}{\gamma }_{5}d\\ & & +{\rm{i}}\frac{{m}_{\ell }}{v}{\kappa }_{\ell }\,A\bar{\ell }{\gamma }_{5}\ell +{H}^{+}\bar{u}{V}_{\mathrm{CKM}}\left(\frac{\sqrt{2}{m}_{d}}{v}{\kappa }_{d}{P}_{R}\right.\\ & & \left.-\frac{\sqrt{2}{m}_{u}}{v}{\kappa }_{u}{P}_{L}\right)d+{\rm{h}}{\rm{.}}{\rm{c}}{\rm{.}}\\ & & +\frac{\sqrt{2}{m}_{\ell }}{v}{\kappa }_{\ell }{H}^{+}\,\bar{\nu }{P}_{R}e+{\rm{h}}{\rm{.}}{\rm{c}}{\rm{.}}\end{array}\end{eqnarray}$
where ${y}_{h}^{f}=\sin (\beta -\alpha )+\cos (\beta -\alpha ){\kappa }_{f}$ and ${y}_{H}^{f}=\cos (\beta -\alpha )-\sin (\beta -\alpha ){\kappa }_{f}$. The values of κu, κd and κ for the four models are shown in table 2.
Table 2. The κu, κd, and κ for the four types of 2HDMs.
Type-I Type-II Lepton-specific Flipped
κu 1/tβ 1/tβ 1/tβ 1/tβ
κd 1/tβ tβ 1/tβ tβ
κ 1/tβ tβ tβ 1/tβ

2.2. Inert Higgs doublet model

We impose an exact Z2 discrete symmetry in the 2HDM and assume that it remains after the potential minimization. Under the Z2 symmetry all the SM fields are taken to be even, while the new (inert) doublet Φ2 is odd:
$\begin{eqnarray}{{\rm{\Phi }}}_{1}=\left(\begin{array}{c}{G}^{+}\\ \displaystyle \frac{1}{\sqrt{2}}\,(v+h+{\rm{i}}G)\end{array}\right),\ \ {{\rm{\Phi }}}_{2}=\left(\begin{array}{c}{H}^{+}\\ \displaystyle \frac{1}{\sqrt{2}}\,(H+{\rm{i}}A)\end{array}\right).\end{eqnarray}$
The Φ1 field has a vev v = 246 GeV, and Φ2 has no vev.
The scalar potential is
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal V } & = & {m}_{11}^{2}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})+{m}_{22}^{2}({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})+\displaystyle \frac{{\lambda }_{1}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}\right)}^{2}\\ & & +\displaystyle \frac{{\lambda }_{2}}{2}{\left({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\lambda }_{3}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})\\ & & +{\lambda }_{4}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{1})+\left[\displaystyle \frac{{\lambda }_{5}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\rm{h}}.{\rm{c}}.\right].\end{array}\end{eqnarray}$
The parameter ${m}_{11}^{2}$ is fixed by the scalar potential minimum conditions
$\begin{eqnarray}{m}_{11}^{2}=-\tfrac{1}{2}{\lambda }_{1}{v}^{2}.\end{eqnarray}$
The fields H± and A are the mass eigenstates and their masses are given by
$\begin{eqnarray}\begin{array}{l}{m}_{{H}^{\pm }}^{2}={m}_{22}^{2}+\displaystyle \frac{{\lambda }_{3}}{2}{v}^{2},\\ {m}_{A}^{2}={m}_{{H}^{\pm }}^{2}+\displaystyle \frac{1}{2}({\lambda }_{4}-{\lambda }_{5}){v}^{2}.\end{array}\end{eqnarray}$
There is no mixing between h and H, which are the CP-even mass eigenstates
$\begin{eqnarray}\begin{array}{l}{m}_{h}^{2}={\lambda }_{1}{v}^{2}\equiv {\left(125\,\mathrm{GeV}\right)}^{2},\\ {m}_{H}^{2}={m}_{A}^{2}+{\lambda }_{5}{v}^{2}.\end{array}\end{eqnarray}$
The fermion masses can be obtained via the Yukawa interactions with Φ1
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {y}_{u}\,{\overline{Q}}_{L}{\tilde{{\rm{\Phi }}}}_{1}{u}_{R}+{y}_{d}{\overline{Q}}_{L}{{\rm{\Phi }}}_{1}{d}_{R}\\ & & +{y}_{l}{\overline{L}}_{L}{{\rm{\Phi }}}_{1}{e}_{R}+{\rm{h.c.}},\end{array}\end{eqnarray}$
where yu, yd and y are 3 × 3 matrices in family space. Because of the exact Z2 symmetry, the inert field Φ2 has no Yukawa interactions with fermions. The lightest neutral field, H or A, is stable and may be considered a DM candidate. If right-handed neutrinos are introduced, then Φ2 can interact with them, giving rise to the neutrino masses via the one loop with DM [76].

3. Constraints from theory and oblique parameters

3.1. Vacuum stability

Vacuum stability requires the potential to be bounded from below and stay positive for arbitrarily large values of the fields. The Higgs potential with a soft Z2 symmetry breaking term is given by
$\begin{eqnarray}\begin{array}{rcl}{V}_{\mathrm{tree}} & = & {m}_{11}^{2}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})+{m}_{22}^{2}({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})-\left[{m}_{12}^{2}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}+{\rm{h}}.{\rm{c}}.)\right]\\ & & +\displaystyle \frac{{\lambda }_{1}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}\right)}^{2}+\displaystyle \frac{{\lambda }_{2}}{2}{\left({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\lambda }_{3}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})\\ & & +{\lambda }_{4}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{1})+\left[\displaystyle \frac{{\lambda }_{5}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\rm{h}}.{\rm{c}}.\right].\end{array}\end{eqnarray}$
The fields can be parametrized as
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}={X}_{1}^{2},\quad {{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2}={X}_{2}^{2},\\ {{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}={X}_{1}{X}_{2}\rho {{\rm{e}}}^{{\rm{i}}\theta }\,\mathrm{with}\,0\leqslant \rho \leqslant 1.\end{array}\end{eqnarray}$
For large values of the fields, the quadratic terms can be neglected and the quartic part is
$\begin{eqnarray}\begin{array}{rcl}{V}_{4} & = & \displaystyle \frac{{\lambda }_{1}}{2}{X}_{1}^{4}+\displaystyle \frac{{\lambda }_{2}}{2}{X}_{2}^{4}+{\lambda }_{3}{X}_{1}^{2}{X}_{2}^{2}+{\lambda }_{4}{X}_{1}^{2}{X}_{2}^{2}{\rho }^{2}\\ & & +{\lambda }_{5}{X}_{1}^{2}{X}_{2}^{2}{\rho }^{2}\cos 2\theta .\end{array}\end{eqnarray}$
After stabilizing θ at the minimum, we obtain the θ-independent part of potential
$\begin{eqnarray}\begin{array}{rcl}{V}_{\theta -\mathrm{indep}} & = & \displaystyle \frac{{\lambda }_{1}}{2}{X}_{1}^{4}+\displaystyle \frac{{\lambda }_{2}}{2}{X}_{2}^{4}+{\lambda }_{3}{X}_{1}^{2}{X}_{2}^{2}+{\lambda }_{4}{X}_{1}^{2}{X}_{2}^{2}{\rho }^{2}\\ & & -| {\lambda }_{5}| {X}_{1}^{2}{X}_{2}^{2}{\rho }^{2}.\end{array}\end{eqnarray}$
For λ4 − ∣λ5∣ > 0, the potential has a minimal value at ρ = 0,
$\begin{eqnarray}{V}_{\theta -\rho -\mathrm{indep}}=\displaystyle \frac{{\lambda }_{1}}{2}{X}_{1}^{4}+\displaystyle \frac{{\lambda }_{2}}{2}{X}_{2}^{4}+{\lambda }_{3}{X}_{1}^{2}{X}_{2}^{2}.\end{eqnarray}$
For λ4 − ∣λ5∣ < 0, the potential has a minimal value at ρ = 1,
$\begin{eqnarray}\begin{array}{rcl}{V}_{\theta -\rho -\mathrm{indep}} & = & \displaystyle \frac{{\lambda }_{1}}{2}{X}_{1}^{4}+\displaystyle \frac{{\lambda }_{2}}{2}{X}_{2}^{4}+{\lambda }_{3}{X}_{1}^{2}{X}_{2}^{2}\\ & & +{\lambda }_{4}{X}_{1}^{2}{X}_{2}^{2}-| {\lambda }_{5}| {X}_{1}^{2}{X}_{2}^{2}.\end{array}\end{eqnarray}$
Therefore, the vacuum stability requires
$\begin{eqnarray}\begin{array}{l}{\lambda }_{1}\gt 0,\,\,\,{\lambda }_{2}\gt 0,\,\,\,{\lambda }_{3}+\sqrt{{\lambda }_{1}{\lambda }_{2}}\gt 0,\\ {\lambda }_{3}+{\lambda }_{4}-| {\lambda }_{5}| +\sqrt{{\lambda }_{1}{\lambda }_{2}}\gt 0.\end{array}\end{eqnarray}$
In addition, there is the possibility that the 2HDM scalar potential of equation (3.1) has two minima, and the selected minimum is required to be global in order to avoid a metastable vacuum, which imposes the following condition [77],
$\begin{eqnarray}{m}_{12}^{2}({m}_{11}^{2}-{k}^{2}{m}_{22}^{2})(\tan \beta -k)\gt 0\end{eqnarray}$
with $k=\sqrt[4]{{\lambda }_{1}/{\lambda }_{2}}.$

3.2. Unitarity

The amplitudes for scalar–scalar scattering s1s2s3s4 at high energies respect unitarity [78]. A simple and explicit derivation can also be found in [79]. The starting point is the unitarity of the S matrix, S = 1 + iT,
$\begin{eqnarray}{{SS}}^{\dagger }=1\longrightarrow {T}^{\dagger }T=-{\rm{i}}(T-{T}^{\dagger }).\end{eqnarray}$
Then in terms of matrix elements of scattering from a pair of particles a = 1, 2 with momenta p1, p2 to a pair b = 3, 4 with momenta k3, k4 we have
$\begin{eqnarray}\langle \{k,b\}| {\rm{i}}{T}| \{p,a\}\rangle \equiv {\rm{i}}{{ \mathcal M }}_{{ba}}{\left(2\pi \right)}^{4}{\delta }^{4}({k}_{3}+{k}_{4}-{p}_{1}-{p}_{2}).\end{eqnarray}$
We can obtain a bound on the partial wave
$\begin{eqnarray}-\displaystyle \frac{{\rm{i}}}{2}({a}_{J}-{a}_{J}^{\dagger })\geqslant {a}_{J}{a}_{J}^{\dagger },\end{eqnarray}$
where aJ is a normal matrix related to the partial wave decomposition of 2 → 2 scattering matrix elements ${{ \mathcal M }}_{{ba}}$,
$\begin{eqnarray}\begin{array}{rcl}{a}_{J}^{\mathrm{ba}} & \equiv & \displaystyle \frac{1}{32\pi }\sqrt{\displaystyle \frac{4| {{\bf{p}}}^{b}| | {{\bf{p}}}^{a}| }{{2}^{{\delta }_{12}}{2}^{{\delta }_{34}}\,s}}\\ & & {\displaystyle \int }_{-1}^{1}{\rm{d}}(\cos \theta ){{ \mathcal M }}_{{ba}}(\cos \theta ){P}_{J}(\cos \theta ).\end{array}\end{eqnarray}$
The factor δ12(δ34) is 1 when the particles 1 and 2 (3 and 4) are identical, and zero otherwise. PJ are the Legendre polynomials, pi is the centre-of-mass three-momentum for particle i, and $s={\left({p}_{1}+{p}_{2}\right)}^{2}$ is the standard Mandelstam variable.
We can diagonalize a and a in equation (3.11) with a unitary matrix, and obtain the constraints on the eigenvalues $({a}_{J}^{i})$:
$\begin{eqnarray}\mathrm{Im}({a}_{J}^{i})\geqslant | {a}_{J}^{i}{| }^{2}\to {\left[(\mathrm{Re}({a}_{J}^{i})\right]}^{2}+{\left[(\mathrm{Im}{a}_{J}^{i})-\displaystyle \frac{1}{2}\right]}^{2}\leqslant \displaystyle \frac{1}{4}.\end{eqnarray}$
At tree-level, the bound is generally relaxed to
$\begin{eqnarray}| \mathrm{Re}({a}_{J}^{i})| \leqslant \displaystyle \frac{1}{2}.\end{eqnarray}$
We assume the external masses of s1,2,3,4 are vanishing at a high energy limit, and focus on the J = 0 partial wave. The modified zeroth partial wave for s1s2s3s4 is
$\begin{eqnarray}{a}_{0}\simeq \displaystyle \frac{1}{16\pi }\left({2}^{-\displaystyle \frac{1}{2}({\delta }_{12}+{\delta }_{34})}{Q}_{1234}\right),\end{eqnarray}$
where Q1234 is a quartic coupling of s1s2s3s4.
Now we study the unitarity constraints on the 2HDM scalar potential. For the scalar potential in equation (3.1), one can take the uncoupled sets of scalar pairs
$\begin{eqnarray}\left\{{\phi }_{1}^{+}{\phi }_{2}^{-},{\phi }_{1}^{-}{\phi }_{2}^{+},{\phi }_{1}{\phi }_{2},{\phi }_{1}{a}_{2},{a}_{1}{\phi }_{2},{a}_{1}{a}_{2}\right\},\end{eqnarray}$
$\begin{eqnarray}\left\{{\phi }_{1}^{+}{\phi }_{1},{\phi }_{1}^{+}{a}_{1},{\phi }_{2}^{+}{\phi }_{2},{\phi }_{2}^{+}{a}_{2}\right\},\end{eqnarray}$
$\begin{eqnarray}\left\{{\phi }_{1}^{+}{\phi }_{2},{\phi }_{1}^{+}{a}_{2},{\phi }_{2}^{+}{\phi }_{1},{\phi }_{2}^{+}{a}_{1}\right\},\end{eqnarray}$
$\begin{eqnarray}\left\{{\phi }_{1}{a}_{1},{\phi }_{2}{a}_{2}\right\},\end{eqnarray}$
$\begin{eqnarray}\left\{{\phi }_{1}^{+}{\phi }_{1}^{-},{\phi }_{2}^{+}{\phi }_{2}^{-},{\phi }_{1}{\phi }_{1},{\phi }_{2}{\phi }_{2},{a}_{1}{a}_{1},{a}_{2}{a}_{2}\right\}\end{eqnarray}$
to construct the matrix containing the tree-level amplitudes for s1s2s3s4. We can obtain different eigenvalues of these matrices [80, 81]
$\begin{eqnarray}{a}_{\pm }=\tfrac{3}{2}({\lambda }_{1}+{\lambda }_{2})\pm \sqrt{\tfrac{9}{4}{\left({\lambda }_{1}-{\lambda }_{2}\right)}^{2}+{\left(2{\lambda }_{3}+{\lambda }_{4}\right)}^{2}},\end{eqnarray}$
$\begin{eqnarray}{b}_{\pm }=\tfrac{1}{2}({\lambda }_{1}+{\lambda }_{2})\pm \sqrt{\tfrac{1}{4}{\left({\lambda }_{1}-{\lambda }_{2}\right)}^{2}+{\lambda }_{4}^{2}},\end{eqnarray}$
$\begin{eqnarray}{c}_{\pm }^{}=\tfrac{1}{2}({\lambda }_{1}+{\lambda }_{2})\pm \sqrt{\tfrac{1}{4}{\left({\lambda }_{1}-{\lambda }_{2}\right)}^{2}+{\lambda }_{5}^{2}},\end{eqnarray}$
$\begin{eqnarray}{{\mathtt{e}}}_{\pm }={\lambda }_{3}+2{\lambda }_{4}\pm 3{\lambda }_{5},\end{eqnarray}$
$\begin{eqnarray}{{\mathtt{f}}}_{\pm }={\lambda }_{3}^{}\pm {\lambda }_{4},\end{eqnarray}$
$\begin{eqnarray}{{\mathtt{g}}}_{\pm }={\lambda }_{3}^{}\pm {\lambda }_{5}.\end{eqnarray}$
The unitarity of the scattering process ${s}_{1}^{}{s}_{2}^{}\to {s}_{3}^{}{s}_{4}^{}$ leads to
$\begin{eqnarray}| {a}_{\pm }| ,| {b}_{\pm }| ,| {c}_{\pm }| ,| {{\mathtt{e}}}_{\pm }| ,| {{\mathtt{f}}}_{\pm }| ,| {{\mathtt{g}}}_{\pm }| \,\leqslant 8\pi .\end{eqnarray}$
Here we stress that the conditions of equation (3.27) just indicate the approximate level above which the tree-level scattering amplitudes do not provide reliable results anymore. The problem is that we cannot rely on perturbative expansion when analyzing scattering, and therefore equation (3.27) is just our safety check, not the strict theory limitation. In addition, we take the standard approach to derive equations (3.15) and (3.27) and only consider quartic point-like couplings in the high energy limit. At finite energy, the additional diagrams of s, t, u channel in s1s2s3s4 scattering can give some corrections to equations (3.15) and (3.27) [82].

3.3. Oblique parameters

The 2HDM can give additional contributions to gauge boson self-energies by the exchange of extra Higgs fields in the loops. The oblique parameters S, T and U were used to describe deviations of 2HDM from the SM, which are given as [8385]
$\begin{eqnarray}\begin{array}{rcl}S & = & \displaystyle \frac{1}{\pi {M}_{Z}^{2}}\,\left\{{\sin }^{2}(\beta -\alpha )\,\left[{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{h}^{2})\right.\right.\\ & & \left.-{M}_{Z}^{2}\,{{ \mathcal B }}_{0}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{h}^{2})+{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{H}^{2},{M}_{A}^{2})\right]\\ & & +\,{\cos }^{2}(\beta -\alpha )\,\left[{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{H}^{2})\right.\\ & & \left.-{M}_{Z}^{2}\,{{ \mathcal B }}_{0}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{H}^{2})+{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{h}^{2},{M}_{A}^{2})\right]\\ & & -\,{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{{H}^{\pm }}^{2},{M}_{{H}^{\pm }}^{2})-{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{h,\mathrm{ref}}^{2})\\ & & \left.+{M}_{Z}^{2}\,{{ \mathcal B }}_{0}({M}_{Z}^{2};{M}_{Z}^{2},{M}_{h,\mathrm{ref}}^{2})\right\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}T & = & \displaystyle \frac{1}{16\pi {M}_{W}^{2}{s}_{W}^{2}}\,\left\{{\sin }^{2}(\beta -\alpha )\,\left[{ \mathcal F }({M}_{{H}^{\pm }}^{2},{M}_{H}^{2})\right.\right.\\ & & \left.-{ \mathcal F }({M}_{H}^{2},{M}_{A}^{2})+3{ \mathcal F }({M}_{Z}^{2},{M}_{h}^{2})-3{ \mathcal F }({M}_{W}^{2},{M}_{h}^{2})\right]\\ & & +\,{\cos }^{2}(\beta -\alpha )\,\left[{ \mathcal F }({M}_{{H}^{\pm }}^{2},{M}_{h}^{2})-{ \mathcal F }({M}_{h}^{2},{M}_{A}^{2})\right.\\ & & \left.+3{ \mathcal F }({M}_{Z}^{2},{M}_{H}^{2})-3{ \mathcal F }({M}_{W}^{2},{M}_{H}^{2})\right]\\ & & +\,{ \mathcal F }({M}_{{H}^{\pm }}^{2},{M}_{A}^{2})-3{ \mathcal F }({M}_{Z}^{2},{M}_{h,\mathrm{ref}}^{2})\\ & & \left.+3{ \mathcal F }({M}_{W}^{2},{M}_{h,\mathrm{ref}}^{2})\right\}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}U & = & { \mathcal H }({M}_{W}^{2})-{ \mathcal H }({M}_{Z}^{2})\\ & & +\displaystyle \frac{1}{\pi {M}_{W}^{2}}\,\left\{{\cos }^{2}(\beta -\alpha )\,{{ \mathcal B }}_{22}({M}_{W}^{2};{M}_{{H}^{\pm }}^{2},{M}_{h}^{2})\right.\\ & & +{\sin }^{2}(\beta -\alpha )\,{{ \mathcal B }}_{22}({M}_{W}^{2};{M}_{{H}^{\pm }}^{2},{M}_{H}^{2})\\ & & \left.+\,{{ \mathcal B }}_{22}({M}_{W}^{2};{M}_{{H}^{\pm }}^{2},{M}_{A}^{2})-2{{ \mathcal B }}_{22}({M}_{W}^{2};{M}_{{H}^{\pm }}^{2},{M}_{{H}^{\pm }}^{2})\right\}\\ & & -\displaystyle \frac{1}{\pi {M}_{Z}^{2}}\,\left\{{\cos }^{2}(\beta -\alpha )\,{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{h}^{2},{M}_{A}^{2})\right.\\ & & +{\sin }^{2}(\beta -\alpha )\,{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{H}^{2},{M}_{A}^{2})\\ & & \left.-\,{{ \mathcal B }}_{22}({M}_{Z}^{2};{M}_{{H}^{\pm }}^{2},{M}_{{H}^{\pm }}^{2})\right\},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal H }({M}_{V}^{2}) & \equiv & \,\displaystyle \frac{1}{\pi {M}_{V}^{2}}\,\left\{{\sin }^{2}(\beta -\alpha )\,\left[{{ \mathcal B }}_{22}({M}_{V}^{2};{M}_{V}^{2},{M}_{h}^{2})\right.\right.\\ & & \left.-{M}_{V}^{2}\,{{ \mathcal B }}_{0}({M}_{V}^{2};{M}_{V}^{2},{M}_{h}^{2})\right]+{\cos }^{2}(\beta -\alpha )\\ & & \times \left[{{ \mathcal B }}_{22}({M}_{V}^{2};{M}_{V}^{2},{M}_{H}^{2})-{M}_{V}^{2}\,{{ \mathcal B }}_{0}({M}_{V}^{2};{M}_{V}^{2},{M}_{H}^{2})\right]\\ & & -\,{{ \mathcal B }}_{22}({M}_{V}^{2};{M}_{V}^{2},{M}_{h,\mathrm{ref}}^{2})\\ & & +\,\left.{M}_{V}^{2}\,{{ \mathcal B }}_{0}({M}_{V}^{2};{M}_{V}^{2},{M}_{h,\mathrm{ref}}^{2})\right\}.\end{array}\end{eqnarray}$
The loop functions are given by
$\begin{eqnarray}\begin{array}{rcl}{B}_{22}({q}^{2};{m}_{1}^{2},{m}_{2}^{2}) & = & \displaystyle \frac{1}{4}\,({\rm{\Delta }}+1)\,[{m}_{1}^{2}+{m}_{2}^{2}-\displaystyle \frac{1}{3}\,{q}^{2}]\\ & & -\displaystyle \frac{1}{2}\,{\displaystyle \int }_{0}^{1}{\rm{d}}{x}\,X\,\mathrm{log}(X-{\rm{i}}\epsilon ),\\ {B}_{0}({q}^{2};{m}_{1}^{2},{m}_{2}^{2}) & = & {\rm{\Delta }}-{\int }_{0}^{1}{\rm{d}}{x}\,\mathrm{log}(X-{\rm{i}}\epsilon ),\\ { \mathcal F }({m}_{1}^{2},{m}_{2}^{2}) & = & \displaystyle \frac{1}{2}\,({m}_{1}^{2}+{m}_{2}^{2})-\displaystyle \frac{{m}_{1}^{2}{m}_{2}^{2}}{{m}_{1}^{2}-{m}_{2}^{2}}\\ & & \times \,\mathrm{log}\left(\displaystyle \frac{{m}_{1}^{2}}{{m}_{2}^{2}}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}X\,\equiv \,{m}_{1}^{2}\,x+{m}_{2}^{2}\,(1-x)-{q}^{2}\,x(1-x),\\ {\rm{\Delta }}\,\equiv \,\displaystyle \frac{2}{4-d}+\mathrm{ln}4\pi -{\gamma }_{E},\end{array}\end{eqnarray}$
in d space-time dimensions. The ${{ \mathcal B }}_{22}$ and ${{ \mathcal B }}_{0}$ functions are defined as
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal B }}_{22}({q}^{2};{m}_{1}^{2},{m}_{2}^{2}) & \equiv & {B}_{22}({q}^{2};{m}_{1}^{2},{m}_{2}^{2})\\ & & -{B}_{22}(0;{m}_{1}^{2},{m}_{2}^{2}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal B }}_{0}({q}^{2};{m}_{1}^{2},{m}_{2}^{2}) & \equiv & {B}_{0}({q}^{2};{m}_{1}^{2},{m}_{2}^{2})\\ & & -{B}_{0}(0;{m}_{1}^{2},{m}_{2}^{2}).\end{array}\end{eqnarray}$
The above expressions show that the oblique parameters S, T and U are sensitive to the mass splitting of extra Higgs bosons. If h is taken as the 125 GeV Higgs, H or A is favored to have small mass splitting from H±. Figure 1 shows mH and mA for type-II 2HDM allowed by the global fit values to the oblique parameters [86]
$\begin{eqnarray}S=0.02\pm 0.10,\,\,T=0.07\pm 0.12,\,\,U=0.00\pm 0.09,\end{eqnarray}$
with correlation coefficients
$\begin{eqnarray}{\rho }_{{ST}}=0.89,\,\,{\rho }_{{SU}}=-0.54,\,\,{\rho }_{{TU}}=-0.83.\end{eqnarray}$
In figure 1 ${m}_{{H}^{\pm }}\gt 570\,\mathrm{GeV}$ is taken to satisfy the constraints of the experimental data of bsγ [88].
Figure 1. Scatter plots of mA and mH satisfying the constraints of vacuum stability, unitarity, perturbativity, and the oblique parameters for 570 GeV $\leqslant \,{m}_{{H}^{\pm }}\,\leqslant $ 900 GeV, taken from [87].
Very recently the CDF collaboration reported their new result for the W-boson mass measurement [55]
$\begin{eqnarray}{m}_{W}=80.4335\pm 0.0094\,\mathrm{GeV},\end{eqnarray}$
which has an approximate 7σ deviation from the SM prediction, mW(SM) = 80.357 ± 0.006 GeV [89]. The shifted W-mass modifies the global fit values to S, T, and U [90]
$\begin{eqnarray}S=0.06\pm 0.10,\,\,T=0.11\pm 0.12,\,\,U=0.14\pm 0.09,\end{eqnarray}$
with correlation coefficients
$\begin{eqnarray}{\rho }_{{ST}}=0.9,\,\,{\rho }_{{SU}}=-0.59,\,\,{\rho }_{{TU}}=-0.85.\end{eqnarray}$
The W-boson mass can be inferred from the following relation [91],
$\begin{eqnarray}\begin{array}{rcl}{m}_{W}^{2} & = & {m}_{W}^{2}(\mathrm{SM})+\displaystyle \frac{\alpha {c}_{W}^{2}}{{c}_{W}^{2}-{s}_{W}^{2}}{m}_{Z}^{2}\\ & & \times \,\left(-\displaystyle \frac{1}{2}S+{c}_{W}^{2}T+\displaystyle \frac{{c}_{W}^{2}-{s}_{W}^{2}}{4{s}_{W}^{2}}U\right).\end{array}\end{eqnarray}$
In the 2HDM, the correction to T is usually larger than S and U. In order to accommodate the W-mass reported by the CDF II collaboration, the 2HDM needs to give an appropriate value of T. Therefore, H/A is disfavored to degenerate in mass with H±. Various types of 2HDMs have been used to explain the W-mass [5669]. Reference [59] discussed the CDF W-mass in the 2HDM with an exact Z4 symmetry and found that the CDF W-mass favors the mass splitting between H± and H/A to be larger than 10 GeV, and allows H and A to degenerate. The ${m}_{H}^{\pm }$ and mA are favored to be smaller than 650 GeV for mH < 120 GeV, and allowed to have more large values with increasing of mH.

4. Constraints from LHC searches for Higgs bosons

4.1. Signal data of the 125 GeV Higgs

In the four types of 2HDMs, the neutral Higgs Yukawa couplings normalized to the SM are given by
$\begin{eqnarray}{y}_{h}^{{f}_{i}}=\left[\sin (\beta -\alpha )+\cos (\beta -\alpha ){\kappa }_{f}\right],\end{eqnarray}$
$\begin{eqnarray}{y}_{H}^{{f}_{i}}=\left[\cos (\beta -\alpha )-\sin (\beta -\alpha ){\kappa }_{f}\right],\end{eqnarray}$
$\begin{eqnarray}{y}_{A}^{{f}_{{\rm{i}}}}=-{\rm{i}}{\kappa }_{f}\,(\mathrm{for}\,{u}),\end{eqnarray}$
$\begin{eqnarray}{y}_{A}^{{f}_{{\rm{i}}}}={\rm{i}}{\kappa }_{f}\,(\mathrm{for}\,{d},\,{\ell }).\end{eqnarray}$
The neutral Higgs couplings with gauge bosons normalized to the SM are
$\begin{eqnarray}{y}_{h}^{V}=\sin (\beta -\alpha ),\,\,\,{y}_{H}^{V}=\cos (\beta -\alpha ),\end{eqnarray}$
with V denoting W or Z.
The analyses of ATLAS and CMS collaborations show that the coupling strengths of the discovered 125 GeV boson agree well with the SM Higgs boson, but the sign of the couplings cannot be measured directly. If we take h as the 125 GeV Higgs boson, its couplings have two different cases:
$\begin{eqnarray}{y}_{h}^{{f}_{i}}\,\times \,{y}_{h}^{V}\gt 0\,\,\,(\mathrm{for}\,\mathrm{SM}-\mathrm{like}\,\mathrm{couplings}),\end{eqnarray}$
$\begin{eqnarray}{y}_{h}^{{f}_{i}}\,\times \,{y}_{h}^{V}\lt 0\,\,\,(\mathrm{for}\,\mathrm{wrong}-\mathrm{sign}\,\mathrm{Yukawa}\,\mathrm{couplings}).\end{eqnarray}$
In the case of the SM-like couplings, the couplings of the 125 GeV Higgs are very close to those in the SM, which has an alignment limit. In the exact alignment limit [92, 93], namely $\cos (\beta -\alpha )=0$, from equations (4.1) and (4.5) we see that h has the same couplings to the fermions and gauge bosons as in the SM, and the heavy CP-even Higgs H has no couplings to the gauge bosons.
Now we discuss the wrong-sign Yukawa couplings [87, 94109]. The signal data of the 125 GeV Higgs require the absolute values of ${y}_{h}^{{f}_{i}}$ and ${y}_{h}^{V}$ to be close to 1.0. Thus, we approximately express ${y}_{h}^{{f}_{i}}$ and ${y}_{h}^{V}$ with ε and $\cos (\beta -\alpha )$ as
$\begin{eqnarray}\begin{array}{l}{y}_{h}^{{f}_{i}}=-1+\epsilon ,\,\,{y}_{h}^{V}\simeq 1-0.5{\cos }^{2}(\beta -\alpha )\\ \mathrm{for}\,\sin (\beta -\alpha )\gt 0\,\mathrm{and}\,\cos (\beta -\alpha )\gt 0\,,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{y}_{h}^{{f}_{i}}=1-\epsilon ,\,\,{y}_{h}^{V}\simeq -1+0.5{\cos }^{2}(\beta -\alpha )\\ \,\mathrm{for}\,\sin (\beta -\alpha )\lt 0\,\mathrm{and}\,\cos (\beta -\alpha )\gt 0.\end{array}\end{eqnarray}$
From equation (4.1) we can get
$\begin{eqnarray}\begin{array}{l}{\kappa }_{f}=\displaystyle \frac{-2+\varepsilon +0.5\cos {\left(\beta -\alpha \right)}^{2}}{\cos (\beta -\alpha )}\ll -1\\ \mathrm{for}\,\sin (\beta -\alpha )\gt 0\,\mathrm{and}\,\cos (\beta -\alpha )\gt 0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\kappa }_{f}=\displaystyle \frac{2-\varepsilon -0.5\cos {\left(\beta -\alpha \right)}^{2}}{\cos (\beta -\alpha )}\gg 1\\ \mathrm{for}\,\sin (\beta -\alpha )\lt 0\,\mathrm{and}\,\cos (\beta -\alpha )\gt 0.\end{array}\end{eqnarray}$
In the four types of 2HDMs, the measurement of the branching fraction of bsγ favors a $\tan \beta $ greater than 1. Therefore, for $\sin (\beta -\alpha )\gt 0$ and $\cos (\beta -\alpha )\gt 0$, there may exist wrong-sign Yukawa couplings for the down-type quarks and leptons in the type-II model, for the leptons in the L2HDM, and for the down-type quarks in the flipped 2HDM.
Figure 2 shows $\sin (\beta -\alpha )$ and $\tan \beta $ of type-II model allowed by the 125 GeV Higgs signal data. The value of $\sin (\beta -\alpha )$ in the case of the wrong-sign Yukawa couplings is allowed to deviate from 1 more sizably than in the case of the SM-like couplings. In the case of the wrong-sign Yukawa couplings, $\tan \beta $ has stringent upper and lower bounds for a given value of $\sin (\beta -\alpha )$.
Figure 2. Scatter plots of $\sin (\beta -\alpha )$ and $\tan \beta $ of type-II model satisfying the constraints of the 125 GeV Higgs signal data, taken from [112].

4.2. Searches for additional scalars at LHC

The ATLAS and CMS collaborations have searched for an additional scalar from its decay into various SM channels or from its exotic decays. Since the Yukawa couplings of down-type quarks and leptons can be both enhanced by a factor of $\tan \beta $, the type-II model can be more stringently constrained than the other three types of models by the flavor observables and the LHC searches for additional Higgs.
At the LHC, the dominant production processes of H and A are from the gluon–gluon fusions, which are generated by exchanging top quark and b-quark in the loops. There may be destructive interference between contributions of b-quark loop and top quark loop. The SusHi [110] was used to calculate the cross sections for H and A in the gluon fusion and $b\bar{b}$-associated production at NNLO in QCD, while the 2HDMC was employed to precisely calculate the branching ratios of the various decay modes of H and A [111].
The studies in [87, 112] used a large number of ATLAS and CMS analyses at the 8 TeV and 13 TeV LHC to constrain the type-II 2HDM. Table 3 lists some analyses at the 13 TeV LHC with more than 35.9 fb−1 integrated luminosity data. Figure 3 shows the surviving samples with the SM-like coupling of the type-II model satisfying various LHC direct searches. The couplings of AhZ and AHZ are respectively proportional to $\cos (\beta -\alpha )$ and $\sin (\beta -\alpha )$. For the case of the SM-like coupling, $| \sin (\beta -\alpha )| $ is very closed to 1. Therefore, the AhZ channel fails to constrain the parameter space, and the AHZ channel can exclude many points in the region of mH < 360 GeV. The H/Aτ+τ channels give an upper bound on $\tan \beta $, and allow mH to vary from 150 GeV to 800 GeV for appropriate $\tan \beta $ and $\sin (\beta -\alpha )$. Figure 3 shows the joint constraints of H/Aτ+τ, AHZ, HWW, ZZ, γγ, and Hhh exclude the whole region of mH < 360 GeV.
Figure 3. The surviving samples with the SM-like couplings of type-II model, taken from [112]. The triangles (sky blue), circles (royal blue), squares (black), inverted triangles (purple), and pluses (red) are respectively excluded by the H/Aτ+τ, HWW, ZZ, γγ, Hhh, AHZ, and AhZ channels at the LHC. The bullets (green) samples are allowed by various LHC direct searches.
Table 3. The upper limits at 95% C.L. on the production cross section times branching ratio for the channels of H and A searches at the LHC.
Channel Experiment Mass range [GeV] Luminosity
${gg}/b\bar{b}\to H/A\to {\tau }^{+}{\tau }^{-}$ CMS 13 TeV [113] 200–2250 36.1 fb−1
${gg}/b\bar{b}\to H/A\to {\tau }^{+}{\tau }^{-}$ ATLAS 13 TeV [114] 200–2500 139 fb−1
${gg}\to H/A\to t\bar{t}$ CMS 13 TeV [115] 400–750 35.9 fb−1
ggH/Aγγ + $t\bar{t}H/A\,(H/A\to \gamma \gamma )$ CMS 13 TeV [116] 70–110 35.9 fb−1
VVHγγ + VH(Hγγ) CMS 13 TeV [116] 70–110 35.9 fb−1
gg/VVHW+W(νqq) ATLAS 13 TeV [117] 200–3000 36.1 fb−1
gg/VVHW+W(eνμν) ATLAS 13 TeV [118] 200–3000 36.1 fb−1
gg/VVHW+W CMS 13 TeV [119] 200–3000 35.9 fb−1
gg/VVHZZ ATLAS 13 TeV [120] 200–2000 36.1 fb−1
gg/VVHZZ ATLAS 13 TeV [121] 300–5000 36.1 fb−1
gg/VVHZZ ATLAS 13 TeV [122] 200–2000 139 fb−1
${gg}\to H\to {hh}\to b\bar{b}b\bar{b}$ CMS 13 TeV [123] 750–3000 35.9 fb−1
${gg}\to H\to {hh}\to (b\bar{b})({\tau }^{+}{\tau }^{-})$ CMS 13 TeV [124] 250–900 35.9 fb−1
ppHhh CMS 13 TeV [125] 250–3000 35.9 fb−1
${gg}\to H\to {hh}\to b\bar{b}{ZZ}$ CMS 13 TeV [126] 260–1000 35.9 fb−1
${gg}\to H\to {hh}\to b\bar{b}{\tau }^{+}{\tau }^{-}$ CMS 13 TeV [127] 1000–3000 139 fb−1
${gg}/b\bar{b}\to A\to {hZ}\to (b\bar{b})Z$ ATLAS 13 TeV [128] 200–2000 36.1 fb−1
${gg}/b\bar{b}\to A\to {hZ}\to (b\bar{b})Z$ CMS 13 TeV [129] 225–1000 35.9 fb−1
ggAhZ → (τ+τ)() CMS 13 TeV [130] 220–400 35.9 fb−1
${gg}/b\bar{b}\to A(H)\to H(A)Z\to (b\bar{b})({\ell }{\ell })$ ATLAS 13 TeV [131] 130–800 36.1 fb−1
${gg}\to A(H)\to H(A)Z\to (b\bar{b})({\ell }{\ell })$ CMS 13 TeV [132] 30–1000 35.9 fb−1
The surviving samples with the wrong-sign Yukawa couplings of the type-II model are shown in figure 4. For the case of the wrong-sign Yukawa couplings, the signal data of the 125 GeV Higgs requires $\tan \beta \gt 5$ and allows $\sin (\beta -\alpha )$ to be as low as 0.94, as shown in figure 2. As a result, the cross sections of H and A in the gluon fusion productions are sizably suppressed, and only $b\bar{b}\to A\to {\tau }^{+}{\tau }^{-}$ and AhZ channels can be used to constrain the parameter space. Especially for mH = 600 GeV, the constraints are very stringent, and the allowed samples are mainly distributed in several corners. Many samples with mA in the ranges of 30–120 GeV, 240–300 GeV, 380–430 GeV, and 480–550 GeV are allowed for appropriate $\tan \beta $ and $\sin (\beta -\alpha )$. Also the samples in the regions of mA < 20 GeV and 80 GeV <mA < 90 GeV are allowed since there is no experimental data of Aτ+τ channel in these ranges.
Figure 4. The surviving samples with the wrong-sign Yukawa couplings of the type-II model, taken from [87]. The triangles (sky blue) and pluses (red) are respectively excluded by the A/Hτ+τ and AhZ channels at the LHC. The bullets (green) are allowed by various LHC direct searches.
For the case of mA = 600 GeV, the constraints of the $b\bar{b}\to A\to {\tau }^{+}{\tau }^{-}$ and AhZ channels can be relatively relaxed. Many samples of 150 GeV < mH < 470 GeV are allowed and mH > 470 GeV is excluded. For a small mH, the AHZ decay will open and increase the total width of A. As a result, the branching ratio of AhZ can be sizably suppressed, and weaken the constraints of the AhZ channel.
Compared to the type-II 2HDM, all the Yukawa couplings of H, A and H± in the type-I model can be suppressed by a large $\tan \beta $, which leads that the searches for additional scalars at the LHC and measurements of the flavor observables are easily satisfied. Thus, H, A and H± are allowed to have broad mass ranges. There are some recent studies on the status of type-I and type-II 2HDMs confronted with the direct searches at the LHC, see, e.g. [133143].

5. Dark matter observables

5.1. Inert 2HDM and dark matter

Because of the exact Z2 symmetry, the lightest neutral component H or A is stable and may be considered as a DM candidate. If taking H as the DM, it requires
$\begin{eqnarray}{\lambda }_{5}\lt 0,\quad {\lambda }_{4}-| {\lambda }_{5}| \lt 0.\end{eqnarray}$
Flipping the sign of λ5, A will be the DM candidate. The parameter λ345 = λ3 + λ4 + λ5 controls the hHH coupling, which will affect the signal strengths of the 125 GeV Higgs and the DM observables.
The main possible annihilation channels include ${HH}\to f\bar{f},\,{{VV}}^{(* )},\,{hh}$ and various co-annihilations of the inert scalars. In addition to the constraints from theory and the oblique parameters as well as the signal data of the 125 GeV Higgs, the model should also satisfy the precise measurements of the W and Z widths, which requires
$\begin{eqnarray}\begin{array}{l}{m}_{A}+{m}_{H}\gt {m}_{Z},\,\,2{m}_{{H}^{\pm }}\gt {m}_{Z},\\ {m}_{A}+{m}_{{H}^{\pm }}\gt {m}_{W},\,\,{m}_{H}+{m}_{{H}^{\pm }}\gt {m}_{W}.\end{array}\end{eqnarray}$
The null searches at the LEP exclude two regions [144, 145],
$\begin{eqnarray}\begin{array}{l}{m}_{{H}^{\pm }}\lt 70\,\mathrm{GeV},\\ {m}_{H}\lt 80\,\mathrm{GeV},\,\,{m}_{A}\lt 100\,\mathrm{GeV},\\ \mathrm{and}\,{m}_{A}-{m}_{H}\gt 8\,\mathrm{GeV}.\end{array}\end{eqnarray}$
Considering various relevant theoretical and experimental constraints, the allowed DM mass ranges have been discussed, see e.g. [146157]. Because of the tension between the signal strength of the 125 GeV Higgs and the relic density, mH < 55 GeV is disfavored. In the resonance region of ${m}_{H}\simeq \tfrac{{m}_{h}}{2}$, the main annihilation channels are h-mediated, primarily into $b\bar{b}$ and WW final states. The correct relic density can be obtained and the relevant constraints can be satisfied. In the region up to around 75 GeV, the HH pair mainly annihilates to WW* via the processes mediated by h or via the quartic couplings. Under the relevant constraints, the correct relic density can be rendered for 73 GeV < mH < 75 GeV. For 75 GeV <mH < 160 GeV, the correct relic density requires λ345 to be large enough to lead to an appropriate cancelation between diagrams of VV*. However, such a large λ345 is excluded by the DM direct detections. In the region between 160 GeV and 500 GeV, the annihilation cross section of HHW+W is too large to produce the exact relic density. In the region of mH > 500 GeV, the exact relic density favors small mass splittings among the three inert Higgs bosons, roughly ≤ 10 GeV. The large mass splittings tend to enhance the cross section of HH annihilation into longitudinal Z and W bosons.

5.2. Wrong-sign Yukawa couplings and isospin-violating interactions between dark matter and nucleons.

Although the inert 2HDM may provide a DM candidate, its mass range is stringently constrained. Alternatively, a real singlet scalar DM can be added to the 2HDM, and this DM has different properties from the DM in inert 2HDM. Especially for the type-II 2HDM, the 125 GeV Higgs may have wrong-sign Yukawa couplings with down-type quarks. If such a Higgs acts as the portal between the DM and SM sectors, the model can give the isospin-violating interactions between DM and nucleons, which can relax the constraints from the DM direct detections.
A real singlet scalar S is introduced to the type-II 2HDM under a $Z{{\prime} }_{2}$ symmetry in which S → −S. The potential containing the S field is written as [35]
$\begin{eqnarray}\begin{array}{rcl}{{ \mathcal V }}_{S} & = & \displaystyle \frac{1}{2}{S}^{2}({\kappa }_{1}{{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}+{\kappa }_{2}{{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})+\displaystyle \frac{{m}_{0}^{2}}{2}{S}^{2}\\ & & +\displaystyle \frac{{\lambda }_{S}}{4!}{S}^{4}.\end{array}\end{eqnarray}$
The S field has no vev and may serve as a DM candidate. The DM mass and the cubic interactions with the neutral Higgs bosons are obtained from equation (5.4),
$\begin{eqnarray}{m}_{S}^{2}={m}_{0}^{2}+\displaystyle \frac{1}{2}{\kappa }_{1}{v}^{2}{\cos }^{2}\beta +\displaystyle \frac{1}{2}{\kappa }_{2}{v}^{2}{\sin }^{2}\beta ,\end{eqnarray}$
$\begin{eqnarray}-{\lambda }_{h}{{vS}}^{2}h/2\equiv -(-{\kappa }_{1}\sin \alpha \cos \beta +{\kappa }_{2}\cos \alpha \sin \beta ){{vS}}^{2}h/2,\end{eqnarray}$
$\begin{eqnarray}-{\lambda }_{H}{{vS}}^{2}H/2\equiv -({\kappa }_{1}\cos \alpha \cos \beta +{\kappa }_{2}\sin \alpha \sin \beta ){{vS}}^{2}H/2.\end{eqnarray}$
In this model, the elastic scattering of S on a nucleon receives the contributions from the process with a t-channel exchange of h and H. The spin-independent cross section is written as [158],
$\begin{eqnarray}{\sigma }_{p(n)}=\displaystyle \frac{{\mu }_{p(n)}^{2}}{4\pi {m}_{S}^{2}}{\left[{f}^{p(n)}\right]}^{2},\end{eqnarray}$
where ${\mu }_{p(n)}=\tfrac{{m}_{S}{m}_{p(n)}}{{m}_{S}+{m}_{p(n)}}$ and
$\begin{eqnarray}\begin{array}{rcl}{f}^{p(n)} & = & \displaystyle \sum _{q=u,d,s}{f}_{q}^{p(n)}{{ \mathcal C }}_{{Sq}}\displaystyle \frac{{m}_{p(n)}}{{m}_{q}}\\ & & +\displaystyle \frac{2}{27}{f}_{g}^{p(n)}\displaystyle \sum _{q=c,b,t}{{ \mathcal C }}_{{Sq}}\displaystyle \frac{{m}_{p(n)}}{{m}_{q}},\end{array}\end{eqnarray}$
with ${{ \mathcal C }}_{{Sq}}=\tfrac{{\lambda }_{h}}{{m}_{h}^{2}}{m}_{q}{y}_{q}^{h}+\tfrac{{\lambda }_{H}}{{m}_{H}^{2}}{m}_{q}{y}_{q}^{H}$. Here ${f}_{q}^{p}$ (${f}_{q}^{n}$) is the form factor at the proton (neutron) for a light quark q, and ${f}_{g}^{p}$ (${f}_{g}^{n}$) is the form factor at the proton (neutron) for gluon [159],
$\begin{eqnarray}\begin{array}{l}{f}_{u}^{p}\approx 0.0208,\quad {f}_{d}^{p}\approx 0.0399,\quad {f}_{s}^{p}\approx 0.0430,\\ {f}_{g}^{p}\approx 0.8963,\quad {f}_{u}^{n}\approx 0.0188,\quad {f}_{d}^{n}\approx 0.0440,\\ {f}_{s}^{n}\approx 0.0430,\quad {f}_{g}^{n}\approx 0.8942.\end{array}\end{eqnarray}$
A simple scenario is to take the 125 GeV Higgs (h) as the only portal between the DM and SM sectors. If ${f}_{q}^{p}\ne {f}_{q}^{n}$, the S-nucleon scattering may be isospin-violating for the appropriate values of ${y}_{h}^{d}$ and ${y}_{h}^{u}$.
The left panel of figure 5 shows that fn/fp approaches to 1 with yd/yu. Namely, the S-nucleon scattering is isospin-conserving for yd = yu and significantly isospin-violating when yd/yu deviates from 1 sizably, especially since there is an opposite sign between yd and yu. The right panel shows that the bounds of the direct detection experiments can be satisfied in the region −1 < fn/fp < 0.8. The DM scattering rate with Xe target can be sizably suppressed for fn/fp ∼ −0.7, which can weaken the constraints from the spin-independent DM-nucleon cross section.
Figure 5. Left: fn/fp versus yd/yu with yd (yu) denoting the Yukawa coupling of ${hd}\bar{d}$ (${hu}\bar{u}$) normalized to the SM value [42]. Right: All the samples are allowed by the constraints of the LHC searches and the DM relic density. The pluses (red) are excluded by the constraints of the spin-independent DM-proton cross section from XENON1T (2017), and the triangles (royal blue) are excluded by the Fermi-LAT search for DM annihilation from dSphs [42].
There are other DM extensions of 2HDM which accommodate the DM direct detection limits. In the general 2HDM with a DM, when both h and H are portals between the SM sector and DM, and have appropriate couplings, the model can achieve the blind spots at DM direct detection, which originates from cancellations between interfering diagrams with h and H exchanges [47, 48]. Besides, in the L2HDM with a DM, the quark Yukawa couplings of H can be significantly suppressed for a very large $\tan \beta $. If such a H field is taken as the portal between the SM sector and DM, the model can easily weaken the bound of the DM direct detection and explain the muon g − 2 [49, 50].

6. Muon anomalous magnetic moment

6.1. L2HDM and muon g − 2

The muon g − 2 is a very precisely measured observable and serves as a sensitive probe of new physics (for a pedagogical review, see, e.g. [160]). The new Fermilab measurement [161] combined with E821 data [162] shows a 4.2σ deviation from the SM prediction [163166]. Such a discrepancy has been explained in various new physics models like minimal supersymmetry (see, e.g. [167170]). Among the 2HDMs, the L2HDM can offer an explanation.
In the L2HDM, the lepton (quark) Yukawa couplings to H, A and H± can be sizably enhanced (suppressed) by a large $\tan \beta $. The model has been extensively studied to explain the muon g − 2, and the searches at the LHC and low energy precision measurements can exclude a large part of parameter space for the explanation of muon g − 2. The study in [19] considered the signal data of the 125 GeV Higgs, and found that the muon g − 2 explanation favors the 125 GeV Higgs to have wrong-sign Yukawa couplings to the leptons. The experimental results of Br (Bsμ+μ) can exclude some parameter regions with a very light A [19]. Besides, the measurements of lepton flavor universality (LFU) of the Z decays and τ decays give stringent constraints on $\tan \beta $ and the mass splittings among H, A and H± [20, 24], and a more precise study was performed in [23]. The muon g − 2 explanation makes the additional Higgs bosons to have τ-rich signatures at the LHC, and the study in [21] first used the chargino/neutralino searches at the 8 TeV LHC to constrain the model. The analysis in [27] used the constraints of the multi-lepton analyses at the 13 TeV, and found that the L2HDM may explain the muon g − 2 anomaly and produce a strong first order electroweak phase transition (SFOEWPT) simultaneously.
In the L2HDM, the additional contributions to the muon g − 2 are mainly from the one-loop diagrams and the two-loop Barr–Zee diagrams mediated by A, H and H±. The one-loop contributions is given by [171173]
$\begin{eqnarray}{\rm{\Delta }}{a}_{\mu }^{2\mathrm{HDM}}(1-\mathrm{loop})=\displaystyle \frac{{G}_{F}\,{m}_{\mu }^{2}}{4{\pi }^{2}\sqrt{2}}\,\sum _{j}{\left({y}_{\mu }^{j}\right)}^{2}{r}_{\mu }^{j}\,{f}_{j}({r}_{\mu }^{j}),\end{eqnarray}$
where j = H, A, H±, ${r}_{\mu }^{j}={m}_{\mu }^{2}/{M}_{j}^{2}$. For ${r}_{\mu }^{j}\ll $ 1 we have
$\begin{eqnarray}\begin{array}{l}{f}_{H}(r)\simeq -\mathrm{ln}r-7/6,\,\,{f}_{A}(r)\simeq \mathrm{ln}r+11/6,\\ {f}_{{H}^{\pm }}(r)\simeq -1/6.\end{array}\end{eqnarray}$
For the main two-loop contributions, we have
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Delta }}{a}_{\mu }^{2\mathrm{HDM}}(2-\mathrm{loop}) & = & \displaystyle \frac{{G}_{F}\,{m}_{\mu }^{2}}{4{\pi }^{2}\sqrt{2}}\,\displaystyle \frac{{\alpha }_{\mathrm{em}}}{\pi }\\ & & \times \,\displaystyle \sum _{i,f}{N}_{f}^{c}\,{Q}_{f}^{2}\,{y}_{\mu }^{i}\,{y}_{f}^{i}\,{r}_{f}^{i}\,{g}_{i}({r}_{f}^{i}),\end{array}\end{eqnarray}$
where i = H, A, and mf, Qf and ${N}_{f}^{c}$ are the mass, electric charge and the number of color degrees of freedom of the fermion f in the loop. The functions gi(r) are given by [174176]
$\begin{eqnarray}{g}_{h,H}(r)={\int }_{0}^{1}{\rm{d}}{x}\,\displaystyle \frac{2x(1-x)-1}{x(1-x)-r}\mathrm{ln}\displaystyle \frac{x(1-x)}{r},\end{eqnarray}$
$\begin{eqnarray}{g}_{A}(r)={\int }_{0}^{1}{\rm{d}}{x}\,\displaystyle \frac{1}{x(1-x)-r}\mathrm{ln}\displaystyle \frac{x(1-x)}{r}.\end{eqnarray}$
The contributions of H and A to Δaμ are positive (negative) at the one-loop level and negative (positive) at the two-loop level. Since ${m}_{f}^{2}/{m}_{\mu }^{2}$ easily overcomes the loop suppression factor α/π, the two-loop contributions can be larger than one-loop ones. As a result, the L2HDM can enhance the value of Δaμ for mA < mH. In [177] the authors presented an extension of the GM2Calc software to calculate the muon g − 2 of 2HDM precisely.
Because of the large lepton Yukawa couplings, the L2HDM can give sizable corrections to the Z and τ decays, and thus be constrained by the measured values of LFU of the Z-boson [178]
$\begin{eqnarray}\displaystyle \frac{{{\rm{\Gamma }}}_{Z\to {\mu }^{+}{\mu }^{-}}}{{{\rm{\Gamma }}}_{Z\to {e}^{+}{e}^{-}}}=1.0009\pm 0.0028,\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{{\rm{\Gamma }}}_{Z\to {\tau }^{+}{\tau }^{-}}}{{{\rm{\Gamma }}}_{Z\to {e}^{+}{e}^{-}}}=1.0019\pm 0.0032,\end{eqnarray}$
and τ decays [179],
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)=1.0011\pm 0.0015,\,\,\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)=1.0029\pm 0.0015,\\ \left(\displaystyle \frac{{g}_{\mu }}{{g}_{e}}\right)=1.0018\pm 0.0014,\,\,{\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)}_{\pi }=0.9963\pm 0.0027,\\ {\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)}_{K}=0.9858\pm 0.0071.\end{array}\end{eqnarray}$
Here the first three ratios are defined as
$\begin{eqnarray}{\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)}^{2}\equiv \bar{{\rm{\Gamma }}}(\tau \to e\nu \bar{\nu })/\bar{{\rm{\Gamma }}}(\mu \to e\nu \bar{\nu }),\end{eqnarray}$
$\begin{eqnarray}{\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)}^{2}\equiv \bar{{\rm{\Gamma }}}(\tau \to \mu \nu \bar{\nu })/\bar{{\rm{\Gamma }}}(\mu \to e\nu \bar{\nu }),\end{eqnarray}$
$\begin{eqnarray}{\left(\displaystyle \frac{{g}_{\mu }}{{g}_{e}}\right)}^{2}\equiv \bar{{\rm{\Gamma }}}(\tau \to \mu \nu \bar{\nu })/\bar{{\rm{\Gamma }}}(\tau \to e\nu \bar{\nu })\end{eqnarray}$
and the last two ratios are from semi-hadronic processes τπ/Kν and π/Kμν. $\bar{{\rm{\Gamma }}}$ denotes the partial width normalized to its SM value. The correlation matrix for the above five observables is
$\begin{eqnarray}\left(\begin{array}{ccccc}1 & +0.53 & -0.49 & +0.24 & +0.12\\ +0.53 & 1 & +0.48 & +0.26 & +0.10\\ -0.49 & +0.48 & 1 & +0.02 & -0.02\\ +0.24 & +0.26 & +0.02 & 1 & +0.05\\ +0.12 & +0.10 & -0.02 & +0.05 & 1\end{array}\right).\end{eqnarray}$
The theoretical values of the ratios in the L2HDM are given as
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)\approx 1+{\delta }_{\mathrm{loop}},\quad \left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)\approx 1+{\delta }_{\mathrm{tree}}+{\delta }_{\mathrm{loop}},\\ \left(\displaystyle \frac{{g}_{\mu }}{{g}_{e}}\right)\approx 1+{\delta }_{\mathrm{tree}},\quad {\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)}_{\pi }\approx 1+{\delta }_{\mathrm{loop}},\\ {\left(\displaystyle \frac{{g}_{\tau }}{{g}_{\mu }}\right)}_{K}\approx 1+{\delta }_{\mathrm{loop}}.\end{array}\end{eqnarray}$
Here δtree and δloop are respectively corrections from the tree-level diagrams mediated by H± and the one-loop diagrams involved H, A and H± [20, 23]
$\begin{eqnarray}{\delta }_{\mathrm{tree}}=\displaystyle \frac{{m}_{\tau }^{2}{m}_{\mu }^{2}}{8{m}_{{H}^{\pm }}^{4}}{t}_{\beta }^{4}-\displaystyle \frac{{m}_{\mu }^{2}}{{m}_{{H}^{\pm }}^{2}}{t}_{\beta }^{2}\displaystyle \frac{g({m}_{\mu }^{2}/{m}_{\tau }^{2})}{f({m}_{\mu }^{2}/{m}_{\tau }^{2})},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\delta }_{\mathrm{loop}} & = & \displaystyle \frac{1}{16{\pi }^{2}}\displaystyle \frac{{m}_{\tau }^{2}}{{v}^{2}}{t}_{\beta }^{2}\left[1+\displaystyle \frac{1}{4}\left(H({x}_{A})\right.\right.\\ & & \left.\left.+{s}_{\beta -\alpha }^{2}H({x}_{H})+{c}_{\beta -\alpha }^{2}H({x}_{h}\right)\Space{0ex}{2.75ex}{0ex}\right],\end{array}\end{eqnarray}$
where $f(x)\equiv 1-8x+8{x}^{3}-{x}^{4}-12{x}^{2}\mathrm{ln}(x)$, $g(x)\equiv 1\,+9x-9{x}^{2}-{x}^{3}+6x(1+x)\mathrm{ln}(x)$ and $H({x}_{\phi })\equiv \mathrm{ln}({x}_{\phi })(1\,+{x}_{\phi })/(1-{x}_{\phi })$ with ${x}_{\phi }={m}_{\phi }^{2}/{m}_{{H}^{\pm }}^{2}$.
The experimental value of $\left(\tfrac{{g}_{\tau }}{{g}_{e}}\right)$ has an approximately 2σ positive deviation from the SM. In the L2HDM, the tree-level diagram mediated by H± gives a negative contribution to the decay $\tau \to \mu \nu \bar{\nu }$, as shown in equation (6.14), which tends to raise the discrepancy in the LFU in τ decays. In [27], a global fit to the LFU data from τ decays and the 125 GeV Higgs signal data was performed, requiring ${\chi }^{2}-{\chi }_{\min }^{2}\,\leqslant 6.18$ with ${\chi }_{\min }^{2}$ denoting the minimum of χ2. Figure 6 shows the surviving samples satisfying the constraints of ‘pre-muon g − 2' (denoting the theory, the oblique parameters, the exclusion limits from the searches for Higgs at LEP, the signal data of the 125 GeV Higgs, LFU in τ decays, and the exclusion limits from hAA channels at LHC). The LFU in Z decays can exclude most of the samples in the region of large ${m}_{H}^{\pm }$ (mH) and $\tan \beta $. In addition to a large $\tan \beta $, one-loop diagrams can give a sizable correction to the LFU in Z decays for ${m}_{A}\lt {m}_{{H}^{\pm }}\,({m}_{H})$. The oblique parameters favor H and H± to have a small splitting mass for a light A. Many samples in the regions of mA around 10 GeV and ${m}_{{H}^{\pm }}\,\lt $ 300 GeV are excluded by the measurement of Br (Bsμ+μ). This is because the decay Bsμ+μ can get sizable corrections from the A-exchange diagrams for a very small mA.
Figure 6. All the samples are allowed by the constraints of ‘pre-muon g − 2', taken from [27]. The triangles (pink) are excluded by the Br (Bsμ+μ) data, and the light bullets (sky blue) and dark bullets (royal blue) are excluded by LFU in Z decay. The light (dark) bullets can (cannot) explain the muon g − 2 anomaly. The circles (black) are allowed by the constraints from the muon g − 2, ‘pre-muon g − 2', the LFU in Z decay, and Br (Bsμ+μ).
Under various theoretical and experimental constraints, the L2HDM can explain the muon g − 2 anomaly in the regions of 32 $\lt \tan \beta \,\lt $ 80, 10 GeV < mA < 65 GeV, 260 GeV < mH < 620 GeV, and 180 GeV $\lt {m}_{{H}^{\pm }}\,\lt $ 620 GeV. Because the contributions of A and H to the muon g − 2 anomaly are respectively positive and negative, the mass splitting between A and H is required to be large to explain the muon g − 2 anomaly, as shown in the lower-middle panel of figure 6.
The muon g − 2 explanation requires a large $\tan \beta $ which will sizably suppress the quark Yukawa couplings of H, A and H±. Therefore, these extra Higgs bosons are dominantly produced at the LHC via the following electroweak processes:
$\begin{eqnarray}{pp}\to {W}^{\pm * }\to {H}^{\pm }A,\end{eqnarray}$
$\begin{eqnarray}{pp}\to {Z}^{* }/{\gamma }^{* }\to {HA},\end{eqnarray}$
$\begin{eqnarray}{pp}\to {W}^{\pm * }\to {H}^{\pm }H,\end{eqnarray}$
$\begin{eqnarray}{pp}\to {Z}^{* }/{\gamma }^{* }\to {H}^{+}{H}^{-}.\end{eqnarray}$
The main decay modes of the Higgs bosons are
$\begin{eqnarray}A\to {\tau }^{+}{\tau }^{-},\,{\mu }^{+}{\mu }^{-},\cdots \cdots ,\end{eqnarray}$
$\begin{eqnarray}H\to {\tau }^{+}{\tau }^{-},\,{ZA},\cdots \cdots ,\end{eqnarray}$
$\begin{eqnarray}{H}^{\pm }\to {\tau }^{\pm }\nu ,\,{W}^{\pm }A,\cdots \cdots .\end{eqnarray}$
Therefore, in the parameter space favored by the muon g − 2 explanation, the L2HDM will mainly produce a multi-lepton signature at the LHC, especially the multi-τ signature.
The study in [27] used all the analyses for the 13 TeV LHC in CheckMATE 2.0.7 [180] and the multi-lepton searches for electroweakino [181185] to constrain the parameter space. The surviving samples are shown in figure 7 in which R > 1 denotes that the corresponding samples are excluded at 95% confidence level. The searches for multi-leptons at the 13 TeV LHC shrink mA from [10, 65] GeV to [10, 44] GeV and $\tan \beta $ from [32, 80] to [32, 60]. The main constraint is given by the search for electroweak production of charginos and neutralinos in multi-lepton final states [182].
Figure 7. All the samples are allowed by the constraints from the muon g − 2, ‘pre-muon g − 2', the LFU in Z decay, and Br (Bsμ+μ), taken from [27]. The orange stars and green dots are excluded and allowed by the LHC Run-2 data at 95% confidence level, respectively.
For relatively large mH and mH±, the production cross sections of extra Higgs bosons are small enough to escape the limits of direct searches at the LHC. For a light A, the τ leptons from the decays of A produced in equations (6.16) and (6.17) are too soft to be distinguished at detectors, and the τ leptons from A produced in H/H± decays are collinear because of the large mass splitting between A and H/H±. Thus, in the very low mA region, the acceptance of the above signal region quickly decreases and the limits of direct searches can be easily satisfied.

6.2. Solution of muon g − 2 and τ decays

The L2HDM can give a simple explanation for the muon g − 2, but raise the discrepancy in the LFU in τ decays. Therefore, to explain the muon g − 2 and LFU of τ decays simultaneously, other models need to be considered.

6.2.1. Lepton-specific inert 2HDM

In this model the Z2 symmetry-breaking lepton Yukawa interactions of Φ2 are added to the inert 2HDM [186, 187]
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & \frac{\sqrt{2}{m}_{e}}{v}\,{\kappa }_{e}\,{\bar{L}}_{1L}\,{{\rm{\Phi }}}_{2}\,{e}_{R}\,+\frac{\sqrt{2}{m}_{\mu }}{v}\,{\kappa }_{\mu }\,{\bar{L}}_{2L}\,{{\rm{\Phi }}}_{2}\,{\mu }_{R}\\ & & +\frac{\sqrt{2}{m}_{\tau }}{v}\,{\kappa }_{\tau }\,{\bar{L}}_{3L}\,{{\rm{\Phi }}}_{2}\,{\tau }_{R}\,+\,{\rm{h}}.{\rm{c}}.\end{array}\end{eqnarray}$
In this way the extra Higgs bosons (H, A, and H±) acquire couplings to the leptons while having no couplings to the quarks.
In this model, ${\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)}^{2}$ is given by
$\begin{eqnarray}{\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)}^{2}\approx \displaystyle \frac{1+2{\delta }_{\mathrm{tree}}+2{\delta }_{\mathrm{loop}}^{\tau }}{1+2{\delta }_{\mathrm{loop}}^{\mu }}.\end{eqnarray}$
Here δtree and ${\delta }_{\mathrm{loop}}^{\tau ,\mu }$ are respectively corrections from the tree-level diagrams mediated by H± and the one-loop diagrams involving H, A and H±, given by [20, 23, 27]
$\begin{eqnarray}{\delta }_{\mathrm{tree}}=\displaystyle \frac{{m}_{\tau }^{2}{m}_{\mu }^{2}}{8{m}_{{H}^{\pm }}^{4}}{\kappa }_{\tau }^{2}{\kappa }_{\mu }^{2}-\displaystyle \frac{{m}_{\mu }^{2}}{{m}_{{H}^{\pm }}^{2}}{\kappa }_{\tau }{\kappa }_{\mu }\displaystyle \frac{g({m}_{\mu }^{2}/{m}_{\tau }^{2})}{f({m}_{\mu }^{2}/{m}_{\tau }^{2})},\end{eqnarray}$
$\begin{eqnarray}{\delta }_{\mathrm{loop}}^{\tau ,\mu }=\displaystyle \frac{1}{16{\pi }^{2}}\displaystyle \frac{{m}_{\tau ,\mu }^{2}}{{v}^{2}}{\kappa }_{\tau ,\mu }^{2}\left[1+\displaystyle \frac{1}{4}\left(H({x}_{A})+H({x}_{H})\right)\right].\end{eqnarray}$
The model gives the one-loop contributions to muon g − 2 [171173]
$\begin{eqnarray}{\rm{\Delta }}{a}_{\mu }^{2\mathrm{HDM}}(1\mathrm{loop})=\displaystyle \frac{{m}_{\mu }^{2}}{8{\pi }^{2}{v}^{2}}\,\sum _{i}{\kappa }_{\mu }^{2}\,{r}_{\mu }^{i}\,{F}_{j}({r}_{\mu }^{i}),\end{eqnarray}$
where i = H, A, H± and ${r}_{\mu }^{i}={m}_{\mu }^{2}/{M}_{j}^{2}$.
The contributions of the two-loop diagrams are
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Delta }}{a}_{\mu }^{2\mathrm{HDM}}(2\mathrm{loop}) & = & \displaystyle \frac{{m}_{\mu }^{2}}{8{\pi }^{2}{v}^{2}}\,\displaystyle \frac{{\alpha }_{\mathrm{em}}}{\pi }\\ & & \times \,\sum _{i,{\ell }}\,{Q}_{{\ell }}^{2}\,{\kappa }_{\mu }\,{\kappa }_{{\ell }}\,{r}_{{\ell }}^{i}\,{G}_{i}({r}_{{\ell }}^{i}),\end{array}\end{eqnarray}$
where i = H, A, = τ, and m and Q are the mass and electric charge of the lepton in the loop.
This model was also used to discuss the electron g − 2 anomaly, and the calculations are similar to the muon g − 2. The value from the measurement of the fine-structure constant using 133Cs atoms at Berkeley [188] makes the electron g − 2 to have 2.4σ deviation from the SM prediction [189, 190],
$\begin{eqnarray}{\rm{\Delta }}{a}_{e}={a}_{e}^{\exp }-{a}_{e}^{\mathrm{SM}}=(-87\pm 36)\times {10}^{-14}.\end{eqnarray}$
However, the newest experimental result of the fine-structure constant using 87Rb atoms at Laboratoire Kastler Brossel gives a value of ae which agrees well with the SM value [191]. So far, the discrepancy between these two experimental results is not clear. If the Berkeley 133Cs experiment result turns out to be the real story, it will be challenging to explain muon and electron g − 2 simultaneously since the two effects have opposite signs. In [186], the Berkeley 133Cs experiment data was used and this model was found to give an explanation for the muon and electron g − 2 (for the explanation in other popular models like the minimal supersymmetry, see, e.g. [192]).
Taking
$\begin{eqnarray}{\kappa }_{\mu }\lt 0,\,\,\,{\kappa }_{\tau }\gt 0,\,\,\,{\kappa }_{e}\gt 0,\end{eqnarray}$
then δtree has a positive value because of the opposite signs of κμ and κτ. Thus, the model can enhance $\left(\tfrac{{g}_{\tau }}{{g}_{e}}\right)$ and give a better fit to the data of the LFU in the τ decays. The contributions of H (A) to the muon g − 2 are positive (negative) at the two-loop level and positive (negative) at the one-loop level. For the electron g − 2, the contributions of H (A) are negative (positive) at the two-loop level and positive (negative) at the one-loop level. Figure 8 shows the surviving samples with ${\chi }_{\tau }^{2}\lt $ 9.72, which means to fit the data of LFU in τ decays within the 2σ range. Figure 8 shows that ${\chi }_{\tau }^{2}$ can be as low as 7.4, which is much smaller than the SM prediction (12.25). Figure 9 shows that after imposing the constraints of theory, the oblique parameters, the Z decay, and the direct searches at LHC, the model can simultaneously explain the anomalies of Δaμ, Δae and LFU in the τ decay within the 2σ range in a large parameter space of 200 GeV < mH < 320 GeV, 500 GeV $\lt {m}_{A}={m}_{{H}^{\pm }}\lt 680\,\mathrm{GeV}$, 0.0066 < κe < 0.01, −0.25 < κμ < −0.147, and 0.53 < κτ < 1.0.
Figure 8. In the lepton-specific inert 2HDM, the surviving samples fit the data of LFU in τ decay within the 2σ range, taken from [186].
Figure 9. All the samples are allowed by the constraints of theory, the oblique parameters, Δaμ, Δae, the data of LFU in τ decays, and Z decay, taken from [186]. The bullets and crosses are respectively allowed and excluded by the direct search limits from the LHC at 95% confidence level. The colors denote κτ, mA and mH in left, middle, and right panel, respectively.

6.2.2. μτ-philic Higgs doublet model

In this model an exact discrete Z4 symmetry is imposed, and the Z4 charge assignment is shown in table 4 [193]. The scalar potential is given as
$\begin{eqnarray}\begin{array}{rcl}{\rm{V}} & = & {Y}_{1}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})+{Y}_{2}({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})+\displaystyle \frac{{\lambda }_{1}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1}\right)}^{2}\\ & & +\displaystyle \frac{{\lambda }_{2}}{2}{\left({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\lambda }_{3}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{1})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{2})+{\lambda }_{4}({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2})({{\rm{\Phi }}}_{2}^{\dagger }{{\rm{\Phi }}}_{1})\\ & & +\left[\displaystyle \frac{{\lambda }_{5}}{2}{\left({{\rm{\Phi }}}_{1}^{\dagger }{{\rm{\Phi }}}_{2}\right)}^{2}+{\rm{h}}.{\rm{c}}.\right].\end{array}\end{eqnarray}$
The vev of the Φ1 field is v = 246 GeV, while the Φ2 field has zero VeV. The fermions obtain masses via the Yukawa interactions with Φ1
$\begin{eqnarray}\begin{array}{rcl}-{ \mathcal L } & = & {y}_{u}{\bar{Q}}_{L}{\tilde{\phi }}_{1}{U}_{R}+{y}_{d}{\bar{Q}}_{L}\,{\phi }_{1}\,{D}_{R}\\ & & +{y}_{\ell }{\bar{L}}_{L}\,{\phi }_{1}{E}_{R}+{\rm{h}}.{\rm{c}}.\end{array}\end{eqnarray}$
Table 4. The Z4 charge assignment of μτ-philic 2HDM.
Φ1 Φ2 ${Q}_{L}^{i}$ ${U}_{R}^{i}$ ${D}_{R}^{i}$ ${L}_{L}^{e}$ ${L}_{L}^{\mu }$ ${L}_{L}^{\tau }$ eR μR τR
Z4 1 −1 1 1 1 1 i −i 1 i −i
The Z4 symmetry allows Φ2 to have μτ interactions [193]
$\begin{eqnarray}\begin{array}{rcl}-{{ \mathcal L }}_{\mathrm{LFV}} & = & \sqrt{2}\,{\rho }_{\mu \tau }\,\bar{{L}_{L}^{\mu }}\,{\phi }_{2}\,{\tau }_{R}\,+\sqrt{2}\,{\rho }_{\tau \mu }\,\bar{{L}_{L}^{\tau }}\,{\phi }_{2}\,{\mu }_{R}\\ & & +\,{\rm{h}}.{\rm{c}}.\end{array}\end{eqnarray}$
From these interactions we can obtain the μτ lepton flavor violation (LFV) couplings of H, A, and H±.
The model gives a new contribution to Δaμ via the one-loop diagrams containing the μτ LFV coupling of H and A [194196]
$\begin{eqnarray}{\rm{\Delta }}{a}_{\mu }=\displaystyle \frac{{m}_{\mu }{m}_{\tau }{\rho }^{2}}{8{\pi }^{2}}\left[\displaystyle \frac{\left(\mathrm{log}\tfrac{{m}_{H}^{2}}{{m}_{\tau }^{2}}-\tfrac{3}{2}\right)}{{m}_{H}^{2}}-\displaystyle \frac{\mathrm{log}\left(\tfrac{{m}_{A}^{2}}{{m}_{\tau }^{2}}-\tfrac{3}{2}\right)}{{m}_{A}^{2}}\right],\end{eqnarray}$
which shows that the contributions of H and A are respectively positive and negative.
In this model, ${\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)}^{2}$ is given as [193, 197]
$\begin{eqnarray}{\left(\displaystyle \frac{{g}_{\tau }}{{g}_{e}}\right)}^{2}={\left(1+{\delta }_{\mathrm{loop}}^{\tau }\right)}^{2}+\displaystyle \frac{{\delta }_{\mathrm{tree}}}{{\left(1+{\delta }_{\mathrm{loop}}^{\mu }\right)}^{2}},\end{eqnarray}$
where the flavor of final neutrino and anti-neutrino states is summed up, and δtree is from the tree-level diagram mediated by the charged Higgs
$\begin{eqnarray}{\delta }_{\mathrm{tree}}=4\displaystyle \frac{{m}_{W}^{4}{\rho }^{4}}{{g}^{4}{m}_{{H}^{\pm }}^{4}},\end{eqnarray}$
with ρμτ = ρτμ = ρ, and ${\delta }_{\mathrm{loop}}^{\mu }$ and ${\delta }_{\mathrm{loop}}^{\tau }$ are the corrections to vertices $W\bar{{\nu }_{\mu }}\mu $ and $W\bar{{\nu }_{\tau }}\tau $ from the one-loop diagrams involving A, H, and H±
$\begin{eqnarray}{\delta }_{\mathrm{loop}}^{\tau }={\delta }_{\mathrm{loop}}^{\mu }=\displaystyle \frac{1}{16{\pi }^{2}}{\rho }^{2}\left[1+\displaystyle \frac{1}{4}\left(H({x}_{A})+H({x}_{H})\right)\right].\end{eqnarray}$
Since δtree is positive, the model can enhance $\left(\tfrac{{g}_{\tau }}{{g}_{e}}\right)$ and give a better fit to the data of the LFU in the τ decays.
Figure 10 shows that after considering the constraints from theory, the oblique parameters and the Z decay, the model can simultaneously explain Δaμ and LFU in the τ decays in the parameter space with 300 GeV < mH <800 GeV and Δm < 50 GeV. For such small mass splitting between mA (${m}_{H}^{\pm }$) and mH, H, A and H± will mainly decay into τμ, τνμ, and μντ. The limits of direct searches at the LHC exclude the region mH < 560 GeV and require ρ > 0.68. Also [198, 199] discussed the implications of the muon g − 2 anomaly on the model.
Figure 10. The surviving samples of the μτ-philic 2HDM allowed by the constraints of the theory, the oblique parameters, and the Z decays, taken from [197]. The bullets (green) samples are within the 2σ range of muon g − 2 and the circles (blue) are within the 2σ range of LFU in the τ decays. The triangles (purple) and pluses (black) are within the 2σ ranges of both muon g − 2 and LFU in the τ decays, and the former are allowed by the limits of the direct searches at the LHC, while the latter are excluded. Here ΔmmAmH with ${m}_{A}={m}_{{H}^{\pm }}$.
In the discussions above, mA and ${m}_{H}^{\pm }$ are chosen to have degenerate mass, which is disfavored by the CDF W-mass. The study in [59] found that combined with relevant theoretical and experimental constraints, the mass splittings among H, A and H± of the model are stringently constrained in the region simultaneously explaining the W-mass, muon g − 2 and LFU in τ decays, i.e. 10 GeV < mAmH < 75 GeV, 65 GeV $\lt {m}_{{H}^{\pm }}-{m}_{A}\,\lt $ 100 GeV, 85 GeV $\lt {m}_{{H}^{\pm }}\,-{m}_{H}\,\lt $ 125 GeV (−150 GeV $\lt {m}_{{H}^{\pm }}-{m}_{A}\,\lt $ −85 GeV, −105 GeV $\lt {m}_{{H}^{\pm }}-{m}_{H}\,\lt $ −55 GeV).

6.3. Other 2HDMs and muon g − 2

In [200] the authors proposed a muon-specific 2HDM in which extra Higgs boson couplings to muon are enhanced by a factor of $\tan \beta $, while their couplings to the other fermions are suppressed by $\cot \beta $. Thus, the model can explain the muon g − 2 anomaly by the contributions of the one-loop diagram for a very large $\tan \beta $, and weaken the constraints of the τ decays because of the cancellation of $\tan \beta $ between the tau and the muon Yukawa couplings to the charged Higgs. The study in [24] considered a perturbed lepton-specific 2HDM in which the sign of extra Higgs boson couplings to tau are flipped. Similar to the lepton-specific inert 2HDM, the model can accommodate the muon g − 2 anomaly and the τ decays, but the electron g − 2 anomaly is not simultaneously explained. The muon and electron g − 2 anomalies can be both explained in general 2HDM. For recent studies see e.g. [201203].
The L2HDM can be derived from the aligned 2HDM by taking the specific parameter space [14]. Therefore, the aligned 2HDM may explain the muon g − 2 anomaly in a broader parameter space, and the large lepton Yukawa couplings of A still play the main role in most of the parameter space [204]. Some recent studies have been done in [205209]. In addition to the 2HDM with a Z4 symmetry, the extra Higgs doublet with the μτ LFV interactions can be obtained in general 2HDM. For recent studies see e.g. [210216].

7. Summary

From the above review we summarize the following points for the 2HDMs: (i) for the popular type-II 2HDM, the current direct searches at the LHC excluded a large part of parameter space, while still allowing the 125 GeV Higgs to have wrong-sign Yukawa couplings to the down-type quarks and leptons. If a real singlet scalar DM is added to the type-II 2HDM and the 125 GeV Higgs with wrong-sign Yukawa couplings is taken as the portal between the SM sector and DM, this model can have isospin-violating interactions between DM and nucleons, which can relax the constraints from the DM direct detections; (ii) as a simpler DM model, in several DM mass ranges the inert 2HDM can produce the correct relic density and satisfy the bounds of DM direct detections and direct searches at the LHC; (iii) the muon g − 2 anomaly can be explained in the lepton-specific 2HDM with a light A and heavy H/H±, but it will raise the discrepancy in the LFU in τ decays. Such a tension may be solved in the 2HDM with some specific muon and tau Yukawa couplings. So, compared with low energy supersymmetry (for recent reviews see, e.g. [217, 218]), the 2HDMs can also do the job of explaining dark matter and muon g − 2, albeit cannot address the naturalness problem.

This work was supported by the National Natural Science Foundation of China (NNSFC) under grant Nos. 11 975 013, 11 821 505, 12 075 300 and 12 105 248, by Peng-Huan-Wu Theoretical Physics Innovation Center (12047503), by the CAS Center for Excellence in Particle Physics (CCEPP), and by the Key Research Program of the Chinese Academy of Sciences, Grant NO. XDPB15.

1
Lee T D 1973 A theory of spontaneous violation Phys. Rev. D 8 1226

DOI

2
Haber H E Kane G L Sterling T 1979 The fermion mass scale and possible effects of Higgs Bosons on experimental observables Nucl. Phys. B 161 493

DOI

3
Hall L J Wise M B 1981 Flavor changing Higgs boson couplings Nucl. Phys. B 187 397

DOI

4
Donoghue J F Li L F 1979 Properties of charged Higgs Bosons Phys. Rev. D 19 945

DOI

5
Barger V D Hewett J L Phillips R J N 1990 New constraints on the charged Higgs sector in two higgs doublet models Phys. Rev. D 41 3421

DOI

6
Grossman Y 1994 Phenomenology of models with more than two Higgs doublets Nucl. Phys. B 426 355

DOI

7
Akeroyd A G Stirling W J 1995 Light charged Higgs scalars at high-energy e+e colliders Nucl. Phys. B 447 3

DOI

8
Akeroyd A G 1996 Nonminimal neutral Higgs bosons at LEP-2 Phys. Lett. B 377 95

DOI

9
Akeroyd A G 1998 Fermiophobic and other nonminimal neutral Higgs bosons at the LHC J. Phys. G 24 1983

DOI

10
Aoki M Kanemura S Tsumura K Yagyu K 2009 Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology Phys. Rev. D 80 015017

DOI

11
Deshpande N G Ma E 1978 Pattern of symmetry breaking with two Higgs doublets Phys. Rev. D 18 2574

DOI

12
Barbieri R Hall L J Rychkov V S 2006 Improved naturalness with a heavy Higgs: an alternative road to LHC physics Phys. Rev. D 74 015007

DOI

13
Lopez Honorez L 2007 The inert doublet model: an archetype for dark matter JCAP 02 028

DOI

14
Pich A Tuzon P 2009 Yukawa alignment in the Two-Higgs-doublet model Phys. Rev. D 80 091702

DOI

15
Branco G C Grimus W Lavoura L 1996 Relating the scalar flavor changing neutral couplings to the CKM matrix Phys. Lett. B 380 119 126

DOI

16
Cao J Wan P Wu L Yang J M 2009 Lepton-Specific Two-Higgs doublet model: experimental constraints and implication on Higgs phenomenology Phys. Rev. D 80 071701

DOI

17
Lee J S Pilaftsis A 2012 Radiative corrections to scalar masses and mixing in a scale invariant two Higgs doublet model Phys. Rev. D 86 035004

DOI

18
Broggio A Chun E J Passera M Patel K M Vempati S K 2014 Limiting two-Higgs-doublet models J. High Energy Phys. 1411 058

DOI

19
Wang L Han X F 2015 A light pseudoscalar of 2HDM confronted with muon g-2 and experimental constraints J. High Energy Phys. 05 039

DOI

20
Abe T Sato R Yagyu K 2015 Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly J. High Energy Phys. 1507 064

DOI

21
Chun E J Kang Z Takeuchi M Tsai Y-L 2015 LHC τ-rich tests of lepton-specific 2HDM for (g − 2)μ J. High Energy Phys. 1511 099

DOI

22
Liu X Bian L Li X-Q Shu J 2016 Type-III two Higgs doublet model plus a pseudoscalar confronted with hμτ, muon g − 2 and dark matter Nucl. Phys. B 909 507 524

DOI

23
Chun E J Kim J 2016 Leptonic precision test of leptophilic two-Higgs-doublet model J. High Energy Phys. 1607 110

DOI

24
Crivellin A Heeck J Stoffer P 2016 Perturbed lepton-specific Two-Higgs-doublet model facing experimental hints for physics beyond the standard model Phys. Rev. Lett. 116 081801

DOI

25
Batell B Lange N McKeen D Pospelov M Ritz A 2017 Muon anomalous magnetic moment through the leptonic Higgs portal Phys. Rev. D 95 075003

DOI

26
Wang L Yang J M Zhang Y 2017 Probing a pseudoscalar at the LHC in light of R(D(*)) and muon g − 2 excesses Nucl. Phys. B 924 47 62

DOI

27
Wang L Yang J M Zhang M Zhang Y 2019 Revisiting lepton-specific 2HDM in light of muon g − 2 anomaly Phys. Lett. B 788 519 529

DOI

28
Jueid A Kim J Lee S Song J 2021 Type-X two-Higgs-doublet model in light of the muon g − 2: Confronting Higgs boson and collider data Phys. Rev. D 104 095008

DOI

29
Cherchiglia A Kneschke P Stockinger D Stöckinger-Kim H 2017 The muon magnetic moment in the 2HDM: complete two-loop result J. High Energy Phys. 1701 007

DOI

30
Cherchiglia A Stöckinger D Stöckinger-Kim H 2018 Muon g − 2 in the 2HDM: maximum results and detailed phenomenology Phys. Rev. D 98 035001

DOI

31
Sabatta D Cornell A S Goyal A Kumar M Mellado B 2020 Connecting muon anomalous magnetic moment and multi-lepton anomalies at LHC Chin. Phys. C 44 063103

DOI

32
Chun E J Dwivedi S Mondal T Mukhopadhyaya B Rai S K 2018 Reconstructing heavy Higgs boson masses in a type X two-Higgs-doublet model with a light pseudoscalar particle Phys. Rev. D 98 075008

DOI

33
Dey A Lahiri J Mukhopadhyaya B Muon g − 2 and a type-X two Higgs doublet scenario: some studies in high-scale validity arXiv:2106.01449

34
He X-G Li T Li X-Q Tandean J Tsai H-C 2009 Constraints on scalar dark matter from direct experimental searches Phys. Rev. D 79 023521

DOI

35
He X-G Tandean J 2013 Low-Mass Dark-Matter Hint from CDMS II, Higgs Boson at the LHC, and Darkon Models Phys. Rev. D 88 013020

DOI

36
Cai Y Li T 2013 Singlet dark matter in a type II two Higgs doublet model Phys. Rev. D 88 115004

DOI

37
Wang L Han X-F 2014 A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess Phys. Lett. B 739 416 420

DOI

38
Drozd A Grzadkowski B Gunion J F Jiang Y 2014 Extending two-Higgs-doublet models by a singlet scalar field—the Case for Dark Matter J. High Energy Phys. 1411 105

DOI

39
Drozd A Grzadkowski B Gunion J F Jiang Y 2016 Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals JCAP 1610 040

DOI

40
He X-G Tandean J 2016 New LUX and PandaX-II results illuminating the simplest Higgs-portal dark matter models J. High Energy Phys. 1612 074

DOI

41
Alanne T Kainulainen K Tuominen K Vaskonen V 2016 Baryogenesis in the two doublet and inert singlet extension of the standard model JCAP 1608 057

DOI

42
Wang L Shi R Han X-F 2017 Wrong sign Yukawa coupling of the 2HDM with a singlet scalar as dark matter confronted with dark matter and Higgs data Phys. Rev. D 96 115025

DOI

43
Chen N Kang Z Li J 2017 Missing particle associated with two bottom quarks at the LHC: Mono-bb versus 2bb with razor variables Phys. Rev. D 95 015003

DOI

44
Wang L Shi R Han X-F Zhu B 2018 Light scalar dark matter extension of the type-II two-Higgs-doublet model Phys. Rev. D 98 035024

DOI

45
Baum S Shah N R 2018 Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology J. High Energy Phys. 12 044

DOI

46
Zhang Z Cai C Jiang X-M Tang Y-L Yu Z-H 2021 Phase transition gravitational waves from pseudo-Nambu-Goldstone dark matter and two Higgs doublets J. High Energy Phys. 05 160

DOI

47
Altmannshofer W Maddock B Profumo S 2019 Doubly blind spots in scalar dark matter models Phys. Rev. D 100 055033

DOI

48
Cabrera M E Casas J A Delgado A Robles S 2020 Generalized blind spots for dark matter direct detection in the 2HDM J. High Energy Phys. 02 166

DOI

49
Bandyopadhyay P Chun E J Mandal R 2018 Scalar dark matter in leptophilic Two-Higgs-doublet model Phys. Lett. B 779 201 205

DOI

50
Dey A Lahiri J Collider signatures of type-X 2HDM + scalar singlet dark matter at HL-LHC arXiv:2112.15536

51
CMS Collaboration Chatrchyan S 2012 Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC Phys. Lett. B 716 30

DOI

52
ATLAS Collaboration Aad G 2012 Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC Phys. Lett. B 716 1

DOI

53
CMS Collaboration Sirunyan A M 2019 Search for a standard model-like Higgsboson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at $\sqrt{s}=8$ and 13 TeV Phys. Lett. B 793 320 347

DOI

54
ATLAS Collaboration 2021 Search for a light charged Higgs boson in tH+b decays, with H+cb, in the lepton+jets final state in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector ATLAS-CONF-2021-037

55
CDF Collaboration 2022 High-precision measurement of the W boson mass with the CDF II detector Science 376 170

DOI

56
Fan Y-Z Tang T-P Tsai Y-L S Wu L Inert Higgs dark matter for new CDF W-boson mass and detection prospects arXiv:2204.03693

57
Song H Su W Zhang M Electroweak phase transition in 2HDM under Higgs, Z-pole, and W precision measurements arXiv:2204.05085

58
Babu K S Jana S Vishnu P K Correlating W-Boson Mass Shift with Muon g − 2 in the 2HDM arXiv:2204.05303

59
Han X-F Wang F Wang L Yang J Zhang Y A joint explanation of W-mass and muon g − 2 in 2HDM arXiv:2204.06505

60
Lee S Cheung K Kim J Lu C-T Song J Status of the two-Higgs-doublet model in light of the CDF mW measurement arXiv:2204.10338

61
Benbrik R Boukidi M Manaut B W-mass and 96 GeV excess in type-III 2HDM arXiv:2204.11755

62
Abouabid H Arhrib A Benbrik R Krab M Ouchemhou M Is the new CDF MW measurement consistent with the two Higgs doublet model? arXiv:2204.12018

63
Ghorbani K Ghorbani P W-Boson Mass Anomaly from Scale Invariant 2HDM arXiv:2204.09001

64
Arcadi G Djouadi A The 2HD+a model for a combined explanation of the possible excesses in the CDF MW measurement and (g − 2)μ with Dark Matter arXiv:2204.08406

65
Benbrik R Boukidi M Moretti S Semlali S Explaining the 96 GeV Di-photon Anomaly in a Generic 2HDM Type-III arXiv:2204.07470

66
Biekötter T Heinemeyer S Weiglein G Excesses in the low-mass Higgs-boson search and the WW-boson mass measurement arXiv:2204.05975

67
Bahl H Braathen J Weiglein G New physics effects on the WW-boson mass from a doublet extension of the SM Higgs sector arXiv:2204.05269

68
Botella F J Cornet-Gomez F Miro C Nebot M Muon and electron g − 2 anomalies in a flavor conserving 2HDM with an oblique view on the CDF MW value arXiv:2205.01115

69
Kim J Compatibility of muon g − 2, WW mass anomaly in type-X 2HDM arXiv:2205.01437

70
Branco G C Ferreira P M Lavoura L Rebelo M N Sher M 2012 Theory and phenomenology of two-Higgs-doublet models Phys. Rep. 516 1 102

DOI

71
Bhattacharyya G Das D 2016 Scalar sector of two-Higgs-doublet models: a minireview Pramana 87 40

DOI

72
Aggleton R Barducci D Bomark N-E Moretti S Shepherd-Themistocleous C 2017 Review of LHC experimental results on low mass bosons in multi Higgs models J. High Energy Phys. 02 035

DOI

73
Davoudiasl H Lewis I M Sullivan M Good things to do with extra Higgs doublets arXiv:2203.01396

74
Ivanov I P 2017 Building and testing models with extended Higgs sectors Prog. Part. Nucl. Phys. 95 160 208

DOI

75
Robens T 2021 The THDMa revisited Symmetry 13 2341

DOI

76
Ma E 2006 Verifiable radiative seesaw mechanism of neutrino mass and dark matter Phys. Rev. D 73 077301

DOI

77
Barroso A Ferreira P M Ivanov I P Santos R 2013 Metastability bounds on the two Higgs doublet model J. High Energy Phys. 06 045

DOI

78
Lee B W Quigg C Thacker H B 1977 Weak interactions at very high-energies: the role of the Higgs boson mass Phys. Rev. D 16 1519

DOI

79
Goodsell M D Staub F 2018 Unitarity constraints on general scalar couplings with SARAH Eur. Phys. J. C 78 649

DOI

80
Kanemura S Kubota T TAkasugi E 1993 Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model Phys. Lett. B 313 155

DOI

81
Akeroyd A G Arhrib A Naimi E 2000 Note on tree-level unitarity in the general two Higgs doublet model Phys. Lett. B 490 119

DOI

82
Goodsell M D Staub F 2019 Improved unitarity constraints in Two-Higgs-Doublet-Models Phys. Lett. B 788 206 212

DOI

83
He H-J Polonsky N Su S 2001 Extra families, Higgs spectrum and oblique corrections Phys. Rev. D 64 053004

DOI

84
Haber H E ONeil D 2011 Basis-independent methods for the two-Higgs-doublet model. III. The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U Phys. Rev. D 83 055017

DOI

85
Celis A Ilisie V Pich A 2013 LHC constraints on two-Higgs doublet models J. High Energy Phys. 07 053

DOI

86
Tanabashi M 2018 Review of Particle Physics, [Particle Data Group] Phys. Rev. D 98 030001

DOI

87
Wang L Han X-F Wang H-X 2020 Revisiting wrong sign Yukawa coupling of type II two-Higgs-doublet model in light of recent LHC data Chin. Phys. C 44 073101

DOI

88
Misiak M Steinhauser M 2017 Weak radiative decays of the B meson and bounds on ${M}_{H}^{\pm }$ in the Two-Higgs-Doublet Model Eur. Phys. J. C 77 201

DOI

89
Zyla P A 2020 Review of particle physics PTEP 2020 083C01

90
Lu C-T Wu L Wu Y Zhu B Electroweak precision fit and new physics in light of WW boson mass arXiv:2204.03796

91
Peskin M E Takeuchi T 1992 Estimation of oblique electroweak corrections Phys. Rev. D 46 381 409

DOI

92
Bernon J Gunion J F Haber H E Jiang Y Kraml S 2015 Scrutinizing the alignment limit in two-Higgs-doublet model: mh = 125 GeV Phys. Rev. D 92 075004

DOI

93
Bhupal Dev P S Pilaftsis A 2014 Maximally symmetric two Higgs doublet model with natural standard model alignment J. High Energy Phys. 12 024

DOI

94
Ginzburg I F Krawczyk M Osland P Resolving SM like scenarios via Higgs boson production at a photon collider. 1. 2HDM versus SM arXiv:hep-ph/0101208

95
Ferreira P M Gunion J F Haber H E Santos R 2014 Probing wrong-sign Yukawa couplings at the LHC and a future linear collider Phys. Rev. D 89 115003

DOI

96
Dumont B Gunion J F Jiang Y Kraml S 2014 Constraints on and future prospects for Two-Higgs-Doublet Models in light of the LHC Higgs signal Phys. Rev. D 90 035021

DOI

97
Fontes D Romão J C Silva J P 2014 A reappraisal of the wrong-sign hb $\overline{b}$ coupling and the study of hZγ Phys. Rev. D 90 015021

DOI

98
Wang L Han X-F 2014 Status of the aligned two-Higgs-doublet model confronted with the Higgs data J. High Energy Phys. 1404 128

DOI

99
Ferreira P M Guedes R Sampaio M O P Santos R 2014 Wrong sign and symmetric limits and non-decoupling in 2HDMs J. High Energy Phys. 1412 067

DOI

100
Wang L Han X-F 2015 A light pseudoscalar of 2HDM confronted with muon g − 2 and experimental constraints J. High Energy Phys. 1505 039

DOI

Study of the heavy CP-even Higgs with mass 125 GeV in two-Higgs-doublet models at the LHC and ILC J. High Energy Phys. 1411 085

101
Dorsch G C Huber S J Mimasu K No J M 2016 Hierarchical versus degenerate 2HDM: The LHC run 1 legacy at the onset of run 2 Phys. Rev. D 93 115033

DOI

102
Kling F No J M Su S 2016 Anatomy of exotic Higgs decays in 2HDM J. High Energy Phys. 1609 093

DOI

103
Biswas A Lahiri A 2016 Alignment, reverse alignment, and wrong sign Yukawa couplings in two Higgs doublet models Phys. Rev. D 93 115017

DOI

104
Modak T Romao J C Sadhukhan S Silva J P Srivastava R 2016 Constraining wrong-sign hbbhbb couplings with h → ϒγ Phys. Rev. D 94 075017

DOI

105
Ferreira P M Liebler S Wittbrodt J 2018 ppAZh and the wrong-sign limit of the two-Higgs-doublet model Phys. Rev. D 97 055008

DOI

106
Wang L Zhang F Han X-F 2017 Two-Higgs-doublet model of type-II confronted with the LHC run-I and run-II data Phys. Rev. D 95 115014

DOI

107
Ghosh N Lahiri J 2021 Generalized 2HDM with wrong-sign lepton-Yukawa coupling, in light of gμ − 2 and lepton flavor violation at the future LHC Eur. Phys. J. C 81 1074

DOI

108
Su W 2021 Probing loop effects in wrong-sign Yukawa coupling region of Type-II 2HDM Eur. Phys. J. C 81 404

DOI

109
Ghosh N Lahiri J 2021 Generalized 2HDM with wrong-sign lepton-Yukawa coupling, in light of gμ − 2 and lepton flavor violation at the future LHC Eur. Phys. J. C 81 1074

DOI

110
Harlander R V Liebler S Mantler H 2013 SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM Comput. Phys. Commun. 184 1605

DOI

111
Eriksson D Rathsman J StÅl O 2010 2HDMC: two-Higgs-doublet model calculator physics and manual Comput. Phys. Commun. 181 189

DOI

112
Han X-F Wang L Zhang Y 2021 Dark matter, electroweak phase transition, and gravitational waves in the type II two-Higgs-doublet model with a singlet scalar field Phys. Rev. D 103 035012

DOI

113
ATLAS Collaboration 2018 Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at $\sqrt{s}$=13 TeV with the ATLAS detector J. High Energy Phys. 2018 55

DOI

114
ATLAS Collaboration Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at at $\sqrt{s}$=13 TeV arXiv:2002.12223

115
CMS Collaboration 2020 Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV J. High Energy Phys. 2004 171

116
CMS Collaboration Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at $\sqrt{s}$ = 8 and 13 TeV CMS-PAS-HIG-17-013

117
ATLAS Collaboration Search for WW/WZ resonance production in νqq final states in pp collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector arXiv:1710.07235

118
ATLAS Collaboration 2018 Search for heavy resonances decaying into WW in the eνμν final state in pp collisions $\sqrt{s}$ = 13 TeV with the ATLAS detector Eur. Phys. J. C 78 24

DOI

119
CMS Collaboration Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV arXiv:1912.01594

120
ATLAS Collaboration Search for heavy ZZ resonances in the ℓ+ℓ−ℓ+ℓ− and ℓ+ℓ−νν final states using proton proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector arXiv:1712.06386

121
ATLAS Collaboration 2018 Searches for heavy ZZ and ZW resonances in the qq and ννqq final states in pp collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector J. High Energy Phys. 2018 9

DOI

122
ATLAS Collaboration 2021 Search for heavy resonances decaying into a pair of Z bosons in the ${{\ell }}^{+}{{\ell }}^{-}{{\ell }}^{{\prime} +}{{\ell }}^{{\prime} -}$ and ${{\ell }}^{+}{{\ell }}^{-}\nu \bar{\nu }$ final states using 139 fb−1 of proton-proton collisions at $\sqrt{s}$ TeV with the ATLAS detector Eur. Phys. J. C 81 332

DOI

123
CMS Collaboration 2018 Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at $\sqrt{s}=13$ TeV Phys. Lett. B 781 244 269

DOI

124
CMS Collaboration 2018 Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s}=13$ TeV Phys. Lett. B 778 101 127

DOI

125
CMS Collaboration 2019 Combination of searches for Higgs boson pair production in proton-proton collisions at at $\sqrt{s}=13$ TeV Phys. Rev. Lett. 122 121803

DOI

126
CMS Collaboration 2020 Search for resonant pair production of Higgs bosons in the bbZZ channel in proton-proton collisions at $\sqrt{s}=13$ TeV Phys. Rev. D 102 032003

DOI

127
ATLAS Collaboration 2020 Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS J. High Energy Phys. 2020 163

DOI

128
ATLAS Collaboration 2018 Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb−1 of $\sqrt{s}$ = 13 pp collisions with the ATLAS detector J. High Energy Phys. 2018 174

DOI

129
CMS Collaboration 2019 Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\sqrt{s}$ = 13 TeV Eur. Phys. J. C 79 564

130
CMS Collaboration 2020 Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\sqrt{s}$ = 13 TeV J. High Energy Phys. 2020 65

DOI

131
ATLAS Collaboration 2018 Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the bb final state in p p collisions $\sqrt{s}$ = 13 TeV with the ATLAS detector Phys. Lett. B 783 392

DOI

132
CMS Collaboration 2020 Search for new neutral Higgs bosons through the $H\to {ZA}\to {{\ell }}^{+}{{\ell }}^{-}b\bar{b}$ process in pp collisions at $\sqrt{s}$ = 13 TeV J. High Energy Phys. 2020 55

DOI

133
Chen N Han T Li S Su S Su W 2020 Type-I 2HDM under the Higgs and electroweak precision measurements J. High Energy Phys. 08 131

DOI

134
Cheung K Jueid A Kim J Lee S Lu C-T 2022 Comprehensive study of the light charged Higgs boson in the type-I two-Higgs-doublet model Phys. Rev. D 105 095044

DOI

135
Wang L 2022 Inflation, electroweak phase transition, and Higgs searches at the LHC in the two-Higgs-doublet model J. High Energy Phys. 2022 55

DOI

136
Atkinson O Black M Englert C Lenz A Rusov A The flavourful present and future of 2HDMs at the Collider energy frontier arXiv:2202.08807

137
Atkinson O Black M Lenz A Rusov A Wynne J 2022 Cornering the two Higgs doublet model type II J. High Energy Phys. 04 172

DOI

138
Kling F Su S Su W 2020 2HDM neutral scalars under the LHC J. High Energy Phys. 06 163

DOI

139
Haber H E Silva J P 2021 Exceptional regions of the 2HDM parameter space Phys. Rev. D 103 115012

DOI

140
Kanemura S Takeuchi M Yagyu K 2022 Probing double-aligned two Higgs doublet models at LHC Phys. Rev. D 105 115001

DOI

141
Aiko M Kanemura S Kikuchi M Mawatari K Sakurai K Yagyu K 2021 Probing extended Higgs sectors by the synergy between direct searches at the LHC and precision tests at future lepton colliders Nucl. Phys. B 966 115375

DOI

142
Banerjee A Bhattacharyya G 2020 Probing the Higgs boson through Yukawa force Nucl. Phys. B 961 115261

DOI

143
Arco F Heinemeyer S Herrero M J 2020 Exploring sizable triple Higgs couplings in the 2HDM Eur. Phys. J. C 80 884

DOI

144
Lundstrom E Gustafsson M Edsjo J 2009 The inert doublet model and LEP II limits Phys. Rev. D 79 035013

DOI

145
Pierce A Thaler J 2007 Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV Scale J. High Energy Phys. 08 026

DOI

146
Majumdar D Ghosal A 2008 Dark Matter candidate in a heavy Higgs model—direct detection rates Mod. Phys. Lett. A. 23 2011

DOI

147
Gustafsson M Lundstrom E Bergstrom L Edsjo J 2007 Significant gamma lines from inert Higgs dark matter Phys. Rev. Lett. 99 041301

DOI

148
Aoki M Kanemura S Yokoya H 2013 Reconstruction of inert doublet scalars at the international linear collider Phys. Lett. B 725 302

DOI

149
Cao Q-H Ma E Rajasekaran G 2007 Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders Phys. Rev. D 76 095011

DOI

150
Dolle E M Su S 2009 Inert dark matter Phys. Rev. D 80 055012

DOI

151
Lopez Honorez L Yaguna C E 2010 The inert doublet model of dark matter revisited J. High Energy Phys. 09 046

DOI

152
Agrawal P Dolle E M Krenke C A 2009 Signals of inert doublet dark matter in neutrino telescopes Phys. Rev. D 79 015015

DOI

153
Nezri E Tytgat M H G Vertongen G 2009 e+ and anti-p from inert doublet model dark matter JCAP 04 014

DOI

154
Lopez Honorez L Yaguna C E 2011 A new viable region of the inert doublet model JCAP 01 002

DOI

155
Belyaev A Cacciapaglia G Ivanov I P Abatte F R Thomas M 2018 Anatomy of the inert two Higgs doublet model in the light of the LHC and non-LHC dark matter searches Phys. Rev. D 97 035011

DOI

156
Banerjee S Boudjema F Chakrabarty N Sun H 2021 Relic density of dark matter in the inert doublet model beyond leading order for the low mass region: 3. Annihilation in 3-body final state Phys. Rev. D 104 075004

DOI

157
Ilnicka A Krawczyk M Robens T 2016 Inert Doublet Model in light of LHC Run I and astrophysical data Phys. Rev. D 93 055026

DOI

158
Jungman G Kamionkowski M Griest K 1996 Supersymmetric dark matter Phys. Rept. 267 195

DOI

Shifman M A Vainshtein A I Zakharov V I 1978 Remarks on Higgs boson interactions with nucleons Phys. Lett. B 78 443

DOI

159
Crivellin A Hoferichter M Procura M 2014 Phys. Rev. D 89 054021

DOI

160
Li S Xiao Y Yang J M 2021 A pedagogical review on muon g − 2 Physics 4 40

161
Abi B (Muon g-2 Collaboration) 2021 Measurement of the positive muon anomalous magnetic moment to 0.46 ppm Phys. Rev. Lett. 126 141801

DOI

162
Bennett G W (Muon g-2 Collaboration) 2006 Final report of the E821 muon anomalous magnetic moment measurement at BNL Phys. Rev. D 73 072003

163
Aoyama T Hayakawa M Kinoshita T Nio M 2012 Complete tenth-order QED contribution to the Muon g − 2 Phys. Rev. Lett. 109 111808

DOI

164
Czarnecki A Marciano W J Vainshtein A 2003 Refinements in electroweak contributions to the muon anomalous magnetic moment Phys. Rev. D 67 073006

DOI

165
Eichmann G Fischer C S Williams R 2020 Kaon-box contribution to the anomalous magnetic moment of the muon Phys. Rev. D 101 054015

DOI

166
Davier M Hoecker A Malaescu B Zhang Z 2020 A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to ${\boldsymbol{\alpha }}({m}_{Z}^{2})$ Eur. Phys. J. C 80 241

DOI

167
Abdughani M Hikasa K Wu L Yang J M Zhao J 2019 Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond J. High Energy Phys. 11 095

DOI

168
Athron P Balázs C Jacob D H J Kotlarski W Stöckinger D Stöckinger-Kim H 2021 New physics explanations of αμ in light of the FNAL muon g − 2 measurement J. High Energy Phys. 09 080

DOI

169
Wang F Wu L Xiao Y Yang J M Zhang Y 2021 GUT-scale constrained SUSY in light of new muon g − 2 measurement Nucl. Phys. B 970 115486

DOI

170
Endo M Hamaguchi K Iwamoto S Kitahara T 2021 Supersymmetric interpretation of the muon g − 2 anomaly J. High Energy Phys. 07 075

DOI

171
Lautrup B Peterman A de Rafael E 1972 The muon g − 2 precession experiments: past, present and future Phys. Rep. 3 193

DOI

172
Leveille J P 1978 The second order weak correction to g − 2 of the muon in arbitrary gauge models Nucl. Phys. B 137 63

DOI

173
Dedes A Haber H E 2001 Can the Higgs sector contribute significantly to the muon anomalous magnetic moment? J. High Energy Phys. 0105 006

DOI

174
Chang D Chang W-F Chou C-H Keung W-Y 2001 Large two loop contributions to g − 2 from a generic pseudoscalar boson Phys. Rev. D 63 091301

DOI

175
Cheung K-M Chou C-H Kong O C W 2001 Muon anomalous magnetic moment, two Higgs doublet model and supersymmetry Phys. Rev. D 64 111301

DOI

176
Cheung K Kong O C W 2003 Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested? Phys. Rev. D 68 053003

DOI

177
Athron P Balazs C Cherchiglia A Jacob D H J Stockinger D Stockinger-Kim H Voigt A 2022 Eur. Phys. J. C 82 229

DOI

178
Schael S (ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group Collaborations) 2006 Precision electroweak measurements on the Z resonance Phys. Rep. 427 257

179
Amhis Y (Heavy Flavor Averaging Group (HFAG) Collaboration) Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014 arXiv:1412.7515

180
Dercks D Desai N Kim J S Rolbiecki K Tattersall J Weber T 2017 CheckMATE 2: from the model to the limit Comput. Phys. Commun. 221 383

DOI

181
Sirunyan A M (CMS Collaboration) 2018 Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at $\sqrt{s}=$ 13 TeV J. High Energy Phys. 1803 160

182
Sirunyan A M (CMS Collaboration) 2018 Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at $\sqrt{s}=$ 13 TeV J. High Energy Phys. 1803 166

183
Sirunyan A M (CMS Collaboration) 2018 Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s}=13$ TeV J. High Energy Phys. 1803 076

DOI

184
Sirunyan A M (CMS Collaboration) 2017 Search for electroweak production of charginos and neutralinos in WH events in proton-proton collisions at $\sqrt{s}=13$ TeV J. High Energy Phys. 1711 029

185
Aaboud M (ATLAS Collaboration) 2018 Search for the direct production of charginos and neutralinos in final states with tau leptons in $\sqrt{s}=$ 13 TeV pp collisions with the ATLAS detector Eur. Phys. J. C 78 154

DOI

186
Han X-F Li T Wang L Zhang Y 2019 Simple interpretations of lepton anomalies in the lepton-specific inert two-Higgs-doublet model Phys. Rev. D 99 095034

DOI

187
Han X-F Li T Wang H-X Wang L Zhang Y 2021 Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron g − 2 anomalies and multilepton searches at the LHC Phys. Rev. D 104 115001

DOI

188
Parker R H Yu C Zhong W Estey B Mueller H 2018 Measurement of the fine-structure constant as a test of the standard model Science 360 191

DOI

189
Hanneke D Fogwell S Gabrielse G 2008 New measurement of the electron magnetic moment and the fine structure constant Phys. Rev. Lett. 100 120801

DOI

190
Hanneke D Hoogerheide S F Gabrielse G 2011 Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment Phys. Rev. A 83 052122

DOI

191
Morel L Yao Z Cladé P Guellati-Khélifa S 2020 Determination of the fine-structure constant with an accuracy of 81 parts per trillion Nature 588 61 65

DOI

192
Li S Xiao Y Yang J M 2022 Can electron and muon g − 2 anomalies be jointly explained in SUSY? Eur. Phys. J. C 82 276

DOI

193
Abe Y Toma T Tsumura K 2019 A μ-τ-philic scalar doublet under Zn flavor symmetry J. High Energy Phys. 1906 142

DOI

194
Davidson S Grenier G J 2010 Lepton flavour violating Higgs and tau to mu gamma Phys. Rev. D 81 095016

DOI

195
Assamagan K A Deandrea A Delsart P-A 2003 Search for the lepton flavor violating decay A0/H0τ±μ at hadron colliders Phys. Rev. D 67 035001

DOI

196
Zhou Y Wu Y-L 2003 Lepton flavor changing scalar interactions and muon g-2 Eur. Phys. J. C 27 577

DOI

197
Wang L Zhang Y 2019 μ-τ-philic Higgs doublet model confronted with the muon g − 2, τ decays, and LHC data Phys. Rev. D 100 095005

DOI

198
Iguro S Omura Y Takeuchi M 2019 Testing the 2HDM explanation of the muon g − 2 anomaly at the LHC J. High Energy Phys. 11 130

DOI

199
Wang H-X Wang L Zhang Y 2021 Muon g − 2 anomaly and μ-τ-philic Higgs doublet with a light CP-even component Eur. Phys. J. C 81 1007

DOI

200
Abe T Sato R Yagyu K 2017 Muon specific two-Higgs-doublet model J. High Energy Phys. 07 012

DOI

201
Botella F J Cornet-Gomez F Nebot M 2020 Electron and muon g − 2 anomalies in general flavour conserving two Higgs doublets models Phys. Rev. D 102 035023

DOI

202
Jana S Vishnu P K Saad S 2020 Resolving electron and muon g − 2 within the 2HDM Phys. Rev. D 101 115037

DOI

203
Hue L T Hernandez A E C Long H N Hong T T Heavy singly charged Higgs bosons and inverse seesaw neutrinos as origins of large (g − 2)e,μ in two higgs doublet models arXiv:2110.01356

204
Ilisie V 2015 New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models J. High Energy Phys. 1504 077

DOI

205
Li S-P Li X-Q Li Y Yang Y-D Zhang X 2021 Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ J. High Energy Phys. 2101 034

DOI

206
Eberhardt O Martínez A Pich A 2021 Global fits in the aligned two-Higgs-doublet model J. High Energy Phys. 2105 005

DOI

207
Botella F J Cornet-Gomez F Nebot M 2020 Electron and muon g − 2 anomalies in general flavour conserving two Higgs doublets models Phys. Rev. D 102 035023

DOI

208
Ghosh N Lahiri J 2021 Generalized 2HDM with wrong-sign lepton-Yukawa coupling, in light of gμ − 2 and lepton flavor violation at the future LHC Eur. Phys. J. C 81 1074

DOI

209
Rose L D Khalil S Moretti S 2021 Explaining electron and muon g − 2 anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos Phys. Lett. B 816 136216

DOI

210
Athron P Balazs C Gonzalo T E Jacob D Mahmoudi F 2022 Likelihood analysis of the flavour anomalies and g − 2 in the general two Higgs doublet model J. High Energy Phys. 01 037

DOI

211
Hou W Jain R Kao C Kumar G Modak T 2021 Collider prospects for Muon g − 2 in general two Higgs doublet model Phys. Rev. D 104 075036

DOI

212
Ghosh N Lahiri J 2021 Revisiting a generalized two-Higgs-doublet model in light of the muon anomaly and lepton flavor violating decays at the HL-LHC Phys. Rev. D 103 055009

DOI

213
Iguro S Omura Y Takeuchi M 2020 Probing μτ flavor-violating solutions for the muon g − 2 anomaly at Belle II J. High Energy Phys. 09 144

DOI

214
Li T Schmidt M A Yao C-Y Yuan M 2021 Charged lepton flavor violation in light of the muon magnetic moment anomaly and colliders Eur. Phys. J. C 81 811

DOI

215
Lindner M Platscher M Queiroz F S 2018 A call for new physics: the Muon anomalous magnetic moment and lepton flavor violation Phys. Rep. 731 1 82

DOI

216
Dev P S B Mohapatra R N Zhang Y 2018 Lepton flavor violation induced by a neutral scalar at future lepton colliders Phys. Rev. Lett. 120 221804

DOI

217
Wang F Wang W Yang J M Zhang Y Zhu B 2022 Low energy supersymmetry confronted with current experiments: an overview Universe 8 178

DOI

218
Baer H Barger V Salam S Sengupta D Sinha K 2020 Status of weak scale supersymmetry after LHC Run 2 and ton-scale noble liquid WIMP searches Eur. Phys. J. Spec. Top. 229 3085

DOI

Outlines

/