Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

The Cartesian analytical solutions for the N-dimensional compressible Navier–Stokes equations with density-dependent viscosity

  • EnGui Fan , 1 ,
  • Zhijun Qiao , 2 ,
  • ManWai Yuen , 3, 4
Expand
  • 1School of Mathematical Sciences, Shanghai Center for Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai 200433, China
  • 2 School of Mathematical and Statistical Science Univerisity of Texas—Rio Geande Valley, Edinburg, TX 78539, United States of America
  • 3Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China

4Author to whom any correspondence should be addressed.

Received date: 2022-02-18

  Revised date: 2022-05-16

  Accepted date: 2022-07-20

  Online published: 2022-09-26

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we prove the existence of general Cartesian vector solutions u = b(t) + A(t)x for the N-dimensional compressible Navier–Stokes equations with density-dependent viscosity, based on the matrix and curve integration theory. Two exact solutions are obtained by solving the reduced systems.

Cite this article

EnGui Fan , Zhijun Qiao , ManWai Yuen . The Cartesian analytical solutions for the N-dimensional compressible Navier–Stokes equations with density-dependent viscosity[J]. Communications in Theoretical Physics, 2022 , 74(10) : 105005 . DOI: 10.1088/1572-9494/ac82ac

1. Introduction

We consider the initial value problem for a general N-dimensional compressible Navier–Stokes equations with density-dependent viscosity coefficients [111]
$\begin{eqnarray}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\rho [{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}]-\mathrm{div}(h(\rho )\unicode{x025BF}{\boldsymbol{u}})\\ \quad -\unicode{x025BF}(g(\rho )\mathrm{div}({\boldsymbol{u}}))+\unicode{x025BF}p={\bf{0}},\end{array}\end{eqnarray}$
where t ∈ (0, + ∞ ) is the time; ${\boldsymbol{x}}={\left({x}_{1},{x}_{2},\cdots ,{x}_{N}\right)}^{{\rm{T}}}\in {R}^{N}$ is the spatial coordinate; while ${\boldsymbol{u}}={\left({u}_{1},{u}_{2},\cdots ,{u}_{N}\right)}^{{\rm{T}}}$, ρ(x, t), p(x, t) = kργ denote respectively the velocity, density, and pressure of the fluid at a position x. The h(ρ) and g(ρ) are Lame viscosity coefficients fulfilling
$\begin{eqnarray*}h(\rho )\gt 0,\ h(\rho )+{Ng}(\rho )\geqslant 0,\end{eqnarray*}$
and particularly in this paper, we consider the following two functions:
$\begin{eqnarray}h(\rho )={k}_{1}{\rho }^{\gamma },\ g(\rho )={k}_{2}{\rho }^{\gamma }.\end{eqnarray}$
The equations (1.1)–(1.2) with (1.3) contain many physical equations. For example, if k2 = 0, it is reduced to the compressible Navier–Stokes equations with density-dependent [1216]
$\begin{eqnarray}\begin{array}{l}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})=0,\\ \rho [{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}]-\mathrm{div}(h(\rho )\unicode{x025BF}{\boldsymbol{u}})+\unicode{x025BF}p={\bf{0}}.\end{array}\end{eqnarray}$
If k2 = 0 and h(ρ) is constant, the system (1.1)–(1.2) is reduced to the classical compressible Navier–Stokes equations [1719]
$\begin{eqnarray}\begin{array}{l}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})=0,\\ \rho [{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}]+\unicode{x025BF}p-{\tilde{k}}_{1}\bigtriangleup {\boldsymbol{u}}={\bf{0}},\end{array}\end{eqnarray}$
which include the compressible Euler equations as a special case (${\tilde{k}}_{1}=0$) [1922]
$\begin{eqnarray}\begin{array}{l}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})=0,\\ \rho [{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}]+\unicode{x025BF}p={\bf{0}}.\end{array}\end{eqnarray}$
If k2 = 0, ρ is a constant, and the system (1.1)–(1.2) is reduced to the classical incompressible Navier–Stokes equations [2327]
$\begin{eqnarray}\begin{array}{l}\mathrm{div}({\boldsymbol{u}})=0,\\ {{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}+\unicode{x025BF}p-{k}_{1}\bigtriangleup {\boldsymbol{u}}={\bf{0}},\end{array}\end{eqnarray}$
which include incompressible Euler equations as a special case (k1 = 0) [10, 2832]
$\begin{eqnarray}\begin{array}{l}\mathrm{div}({\boldsymbol{u}})=0,\\ {{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}+\unicode{x025BF}p={\bf{0}}.\end{array}\end{eqnarray}$
The Navier–Stokes equations play a very important role in fluids, oceanography and atmospheric dynamics. The system has been investigated extensively and intensively. There are much progress made on the local strong solutions and the global weak solutions, for example [18]. There are interesting papers on analytical solutions of the Navier–Stokes equations for the special functions h(ρ) and g(ρ) [9, 10, 16, 19]. However, these known analytical solutions are not explicit. Based on the new matrix theory and decomposition technique, An, Fan and Yuen proved the existence of the Cartesian solutions for the compressible Euler equations (1.6) [22]. Then Chow, Fan and Yuen further generalized to the damped Euler equations [33].
In section 2, we show that the compressible Navier–Stokes equations with density-dependent viscosity have the Cartesian solutions if A fulfills appropriate matrix equations. By solving the reduced systems, two solvable cases are provided in sections 3 and 4.

2. Existence of the Cartesian solutions

Before we construct exact solutions, we can simplify equation (1.2) into an easy form.
With the γ-law, we may consider the case where the density ρ and pressure p satisfy a relation
$\begin{eqnarray}p(\rho )=k{\rho }^{\gamma },\end{eqnarray}$
with k > 0. We may take k = 1 without loss of generality by using a simple transformation ρk−1/γρ, k1k1k−1/γ, k2k2k−1/γ.
Substituting (1.3) and (2.1) into the equation (1.2), we obtain that
$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}-{k}_{1}\gamma {\rho }^{\gamma -2}\\ \quad \times \,(\unicode{x025BF}\rho \cdot \unicode{x025BF}){\boldsymbol{u}}-{k}_{1}{\rho }^{\gamma -1}{\rm{\Delta }}{\boldsymbol{u}}\\ \quad -\,{k}_{2}\gamma {\rho }^{\gamma -2}\mathrm{div}({\boldsymbol{u}})\unicode{x025BF}\rho -{k}_{2}{\rho }^{\gamma -1}\unicode{x025BF}\\ \quad \times \,(\mathrm{div}({\boldsymbol{u}}))+\gamma {\rho }^{\gamma -2}\unicode{x025BF}\rho ={\bf{0}}.\end{array}\end{eqnarray}$
Making a transformation
$\begin{eqnarray}\begin{array}{rcl}\bar{p} & = & \left\{\begin{array}{lll}\mathrm{ln}\rho ,\ & {\rm{for}}\ \ & \gamma =1,\\ \displaystyle \frac{\gamma }{\gamma -1}{\rho }^{\gamma -1},\ & {\rm{for}}\ \ & \gamma \ne 1,\end{array}\right.\\ & \Longleftrightarrow & \\ \rho & = & \left\{\begin{array}{lll}\exp (\bar{p}),\ & {\rm{for}}\ \ & \gamma =1,\\ \mu {\bar{p}}^{\tfrac{1}{\gamma -1}},\ & {\rm{for}}\ \ & \gamma \ne 1,\end{array}\right.\end{array}\end{eqnarray}$
with $\mu ={\left(\tfrac{\gamma -1}{\gamma }\right)}^{\tfrac{1}{\gamma -1}}$, we can obtain equations (1.1) and (1.2) in the form
$\begin{eqnarray}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}-{k}_{1}(\unicode{x025BF}\bar{p}\cdot \unicode{x025BF}){\boldsymbol{u}}\\ \quad -\,\displaystyle \frac{{k}_{1}(\gamma -1)}{\gamma }\bar{p}{\rm{\Delta }}{\boldsymbol{u}}\\ \quad -\,{k}_{2}\mathrm{div}({\boldsymbol{u}})\unicode{x025BF}\bar{p}-\displaystyle \frac{{k}_{2}(\gamma -1)}{\gamma }\bar{p}\unicode{x025BF}\\ \quad \times \,(\mathrm{div}({\boldsymbol{u}}))+\unicode{x025BF}\bar{p}={\bf{0}}.\end{array}\end{eqnarray}$
Here for an appropriate function $\bar{p}({\boldsymbol{x}})$, we are eager to find a sufficient condition on the existence of the following Cartesian solutions for the compressible Navier–Stokes equations (2.4)–(2.5)
$\begin{eqnarray*}{\boldsymbol{u}}={\boldsymbol{b}}(t)+A{\boldsymbol{x}},\end{eqnarray*}$
where the N-dimensional vector function b(t) and N × N matrix function A are defined by
$\begin{eqnarray*}\begin{array}{rcl}{\boldsymbol{b}}(t) & = & {\left({b}_{1}(t),{b}_{2}(t),\cdots ,{b}_{N}(t)\right)}^{{\rm{T}}},\\ A & = & {\left({a}_{{ij}}(t)\right)}_{N\times N},\end{array}\end{eqnarray*}$
and elements bi(t) and aij(t) (i, j = 1, 2, ⋯ , N) are functions about t. Due to the equivalent relation (2.3) between $\bar{p}$ and ρ, we mainly deal with $\bar{p}$ when solving the compressible equations (2.4)–(2.5).

Let

$\begin{eqnarray}B=I-{k}_{2}\mathrm{tr}(A)I-{k}_{1}A,\end{eqnarray}$
$\begin{eqnarray}C={B}^{-1}({A}_{t}+{A}^{2})/2,\end{eqnarray}$
where I denotes an unitary matrix, ${B}^{-1}$ denotes an inverse matrix of B. If A and C satisfy the following matrix differential equations
$\begin{eqnarray}{C}^{{\rm{T}}}=C,\end{eqnarray}$
$\begin{eqnarray}{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+{CA}+{A}^{{\rm{T}}}C=0,\end{eqnarray}$
then the compressible Navier–Stokes equations (2.4)–(2.5) have explicit solutions in the form
$\begin{eqnarray}{\boldsymbol{u}}={\boldsymbol{b}}(t)+A{\boldsymbol{x}},\end{eqnarray}$
$\begin{eqnarray}\bar{p}=-{{\boldsymbol{x}}}^{{\rm{T}}}({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})-{{\boldsymbol{x}}}^{{\rm{T}}}C{\boldsymbol{x}}+c(t),\end{eqnarray}$
where the vector function ${\boldsymbol{b}}(t)$ and scalar function c(t) satisfy ordinary differential equations
$\begin{eqnarray}\begin{array}{l}{\left({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}}\right)}_{t}+[(\gamma -1)\mathrm{tr}(A)I+{A}^{{\rm{T}}}]\\ \quad \times ({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})+2C{\boldsymbol{b}}={\bf{0}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{c}_{t}+(\gamma -1)\mathrm{tr}(A)c-{{\boldsymbol{b}}}^{{\rm{T}}}\\ ({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})=0.\end{array}\end{eqnarray}$

We first prove how to get the solution (2.11) by solving the equation (2.5). Substituting (2.10) into (2.5) produces

$\begin{eqnarray}\begin{array}{l}{{\boldsymbol{u}}}_{t}+({\boldsymbol{u}}\cdot \unicode{x025BF}){\boldsymbol{u}}-{k}_{1}(\unicode{x025BF}\bar{p}\cdot \unicode{x025BF}){\boldsymbol{u}}\\ \quad -\,\displaystyle \frac{{k}_{1}(\gamma -1)}{\gamma }\bar{p}{\rm{\Delta }}{\boldsymbol{u}}-{k}_{2}\mathrm{div}({\boldsymbol{u}})\unicode{x025BF}\bar{p}\\ \quad -\,{{ck}}_{2}(\gamma -1)\gamma \bar{p}\unicode{x025BF}(\mathrm{div}({\boldsymbol{u}}))+\unicode{x025BF}\bar{p}\\ \quad =\,{{\boldsymbol{b}}}_{t}+{A}_{t}{\boldsymbol{x}}+[({\boldsymbol{b}}+A{\boldsymbol{x}})\cdot \unicode{x025BF}]({\boldsymbol{b}}+A{\boldsymbol{x}})\\ \quad -\,{k}_{1}(\unicode{x025BF}\bar{p}\cdot \unicode{x025BF})({\boldsymbol{b}}+A{\boldsymbol{x}})\\ \quad -\,\displaystyle \frac{{k}_{1}(\gamma -1)}{\gamma }\bar{p}{\rm{\Delta }}({\boldsymbol{b}}+A{\boldsymbol{x}})\\ \quad -\,{k}_{2}\mathrm{div}({\boldsymbol{b}}+A{\boldsymbol{x}})\unicode{x025BF}\bar{p}-\displaystyle \frac{{k}_{2}(\gamma -1)}{\gamma }\bar{p}\unicode{x025BF}\\ \quad \times \,(\mathrm{div}({\boldsymbol{b}}+A{\boldsymbol{x}}))+\unicode{x025BF}\bar{p}\\ \quad =\,\,{{\boldsymbol{b}}}_{t}+A{\boldsymbol{b}}+({A}_{t}+{A}^{2}){\boldsymbol{x}}\\ \quad +\,(I-{k}_{2}\mathrm{tr}(A)I-{k}_{1}A)\unicode{x025BF}\bar{p}={\bf{0}}.\end{array}\end{eqnarray}$
By using (2.6), we get
$\begin{eqnarray*}-{B}^{-1}({{\boldsymbol{b}}}_{t}+A{\boldsymbol{b}})-{B}^{-1}({A}_{t}+{A}^{2}){\boldsymbol{x}}=\unicode{x025BF}\bar{p}.\end{eqnarray*}$
For convenience, we introduce an auxiliary matrix
$\begin{eqnarray}\begin{array}{l}{B}^{-1}={\left({b}_{{ij}}\right)}_{N\times N},\ C=\displaystyle \frac{1}{2}{B}^{-1}({A}_{t}+{A}^{2})\\ \quad =\,{\left({c}_{{ij}}\right)}_{N\times N},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{c}_{{ij}}=\displaystyle \frac{1}{2}\left(\sum _{k=1}^{N}{b}_{{ik}}{a}_{{kj},t}+\sum _{k=1}^{N}\sum _{l=1}^{N}{a}_{{kl}}{a}_{{lj}}{b}_{{ik}}\right),\end{eqnarray}$
and rewrite the equation (2.14) into the form of components
$\begin{eqnarray}\begin{array}{l}{Q}_{i}({x}_{1},\cdots ,{x}_{N})\equiv -\displaystyle \sum _{k=1}^{N}{b}_{{ik}}{b}_{{kt}}\\ \quad -\,\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=1}^{N}{b}_{{ij}}{a}_{{jk}}{b}_{k}-2\displaystyle \sum _{k=1}^{N}{c}_{{ik}}{x}_{k}\\ \quad =\,\displaystyle \frac{\partial p}{\partial {x}_{i}},\ i=1,2,\cdots ,N.\end{array}\end{eqnarray}$
In order to solve $\bar{p}({\boldsymbol{x}})$ from (2.17), these N equations should be compatible with each other, that is, the vector functions $({Q}_{1},{Q}_{2},\cdots ,{Q}_{N})$ should constitute a potential field of $\bar{p}({\boldsymbol{x}})$, whose sufficient and necessary conditions are
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial {Q}_{j}({x}_{1},\cdots ,{x}_{N})}{\partial {x}_{i}} & = & \displaystyle \frac{\partial {Q}_{i}({x}_{1},\cdots ,{x}_{N})}{\partial {x}_{j}},\\ i,j & = & 1,2,\cdots ,N,\end{array}\end{eqnarray}$
which hold if and only if
$\begin{eqnarray*}{c}_{{ji}}={c}_{{ij}},\ i,j=1,2,\cdots ,N,\end{eqnarray*}$
which implies that C is a symmetric matrix, that is, the condition (2.8) is satisfied.

It follows from the condition (2.18), the function $\bar{p}({\boldsymbol{x}})$ is a complete differential, that is,

$\begin{eqnarray}\begin{array}{l}{\rm{d}}\bar{p}({\boldsymbol{x}})=\displaystyle \sum _{i=1}^{N}\displaystyle \frac{\partial \bar{p}({\boldsymbol{x}})}{\partial {x}_{i}}{{\rm{d}}{x}}_{i}\\ \quad =\,\displaystyle \sum _{i=1}^{N}{Q}_{i}({x}_{1},\cdots ,{x}_{N}){{\rm{d}}{x}}_{i}.\end{array}\end{eqnarray}$
Therefore the second kind of curvilinear integral of $p(x)$ is independent of its integration route. In this way, we may take a special integration route and directly obtain
$\begin{eqnarray*}\begin{array}{l}p({\boldsymbol{x}})=\displaystyle \sum _{i=1}^{N}{\displaystyle \int }_{(0,0,\cdots ,0)}^{({x}_{1},{x}_{2},\cdots ,{x}_{N})}{Q}_{i}({x}_{1},{x}_{2},\cdots ,{x}_{N}){{\rm{d}}{x}}_{i}\\ \quad =\,{\displaystyle \int }_{0}^{{x}_{1}}{Q}_{1}({x}_{1},0,\cdots ,0){{\rm{d}}{x}}_{1},\\ \quad +\,{\displaystyle \int }_{0}^{{x}_{2}}{Q}_{2}({x}_{1},{x}_{2},0,\cdots ,0){{\rm{d}}{x}}_{2}\\ \quad +\,\cdots +{\displaystyle \int }_{0}^{{x}_{N}}{Q}_{N}({x}_{1},{x}_{2},\cdots ,{x}_{N}){{\rm{d}}{x}}_{N}\\ \quad =\,-\displaystyle \sum _{i=1}^{N}\left[\displaystyle \sum _{k=1}^{N}{b}_{{ik}}{b}_{{kt}}-\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=1}^{N}{b}_{{ij}}{a}_{{jk}}{b}_{k}\right]{x}_{i}\\ \quad -\displaystyle \sum _{i=1}^{N}{c}_{{ii}}{x}_{i}^{2}-2\displaystyle \sum _{i,k=1,i\lt k}^{N}{c}_{{ik}}{x}_{i}{x}_{k}+c(t)\\ \quad =\,-{{\boldsymbol{x}}}^{{\rm{T}}}({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})-{{\boldsymbol{x}}}^{{\rm{T}}}C{\boldsymbol{x}}+c(t).\end{array}\end{eqnarray*}$
Next, we prove that the functions (2.10)–(2.11) satisfy the equation (2.4) under the conditions (2.12) and (2.13). For $\gamma \gt 1$, by using (2.9), (2.12) and (2.13), we have
$\begin{eqnarray}\begin{array}{l}{\rho }_{t}+\mathrm{div}(\rho {\boldsymbol{u}})={\rho }_{t}+\rho \mathrm{tr}(A)+{\boldsymbol{u}}\cdot \unicode{x025BF}\rho \\ \quad =\,-\displaystyle \frac{\mu }{\gamma -1}{\bar{p}}^{\tfrac{1}{\gamma -1}-1}\{{{\boldsymbol{x}}}^{{\rm{T}}}[{C}_{t}\\ \quad +\,(\gamma -1)\mathrm{tr}(A)C+2{A}^{{\rm{T}}}C]{\boldsymbol{x}}\\ \quad +\,{{\boldsymbol{x}}}^{{\rm{T}}}{\left({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}}\right)}_{t}+[(\gamma -1)\mathrm{tr}(A)I+{A}^{{\rm{T}}}]\\ \quad \times \,({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})+2C{\boldsymbol{b}}]\\ \quad -\,[{c}_{t}+(\gamma -1)\mathrm{tr}(A)c-{{\boldsymbol{b}}}^{{\rm{T}}}\\ \quad \times \,({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})]\}=0,\end{array}\end{eqnarray}$
where we have used the condition
$\begin{eqnarray*}{{\boldsymbol{x}}}^{{\rm{T}}}[{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+2{A}^{{\rm{T}}}C]{\boldsymbol{x}}=0,\end{eqnarray*}$
which is equivalent to
$\begin{eqnarray*}\begin{array}{l}{\left[{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+2{A}^{{\rm{T}}}C\right]}^{{\rm{T}}}\\ \quad =\,-\left[{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+2{A}^{{\rm{T}}}C\right],\end{array}\end{eqnarray*}$
that is,
$\begin{eqnarray*}{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+{CA}+{A}^{{\rm{T}}}C=0.\end{eqnarray*}$
The case with $\gamma =1$ can be proved in a similar way, by replacing $\mu {\bar{p}}^{\tfrac{1}{\gamma -1}}$ by $\exp (\bar{p})$ in the proof procedure of equation (2.20). Thus, we proved the existence of the solutions (2.10)–(2.11) for the N-dimensional Navier–Stokes equations (2.4)–(2.5).

The condition (2.9) is a complicated matrix differential equation with N2 scalar equations. It is very difficult to obtain general solutions of the reduced system. Therefore, some special techniques are needed to solve the reduced systems.

3. First reduction: constant matrix A

We can rewrite (2.9) in the form
$\begin{eqnarray}\begin{array}{l}{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+[C,A]\\ \quad +(A+{A}^{{\rm{T}}})C=0,\end{array}\end{eqnarray}$
where [C, A] = CAAC denotes the Lie bracket between A and C. This form (3.1) makes us easily know how to find conditions on the matrix A.

If ${k}_{1}=0$ and A is an anti-symmetric constant matrix, then the compressible Navier–Stokes equations (1.1)–(1.2) admit a general explicit solution

$\begin{eqnarray}{\boldsymbol{u}}={\boldsymbol{b}}(t)+A{\boldsymbol{x}},\end{eqnarray}$
$\begin{eqnarray}\bar{p}=-{{\boldsymbol{x}}}^{{\rm{T}}}({B}^{-1}{{\boldsymbol{b}}}_{t}+{B}^{-1}A{\boldsymbol{b}})-{{\boldsymbol{x}}}^{{\rm{T}}}C{\boldsymbol{x}}+c(t),\end{eqnarray}$
where the vector function ${\boldsymbol{b}}(t)$ and scalar function $c(t)$ are given by
$\begin{eqnarray}{\boldsymbol{b}}(t)={{\boldsymbol{b}}}_{1}t,\end{eqnarray}$
$\begin{eqnarray}c=\displaystyle \frac{1}{3}{{\boldsymbol{b}}}_{1}^{{\rm{T}}}A{{\boldsymbol{b}}}_{1}{t}^{3}+\displaystyle \frac{1}{2}{{\boldsymbol{b}}}_{1}^{{\rm{T}}}{{\boldsymbol{b}}}_{1}{t}^{2},\end{eqnarray}$
where ${{\boldsymbol{b}}}_{1}$ is an arbitrary constant vector.

We just need to verify that the conditions (2.8), (2.9) are satisfied under theorem 2.

If A is an anti-symmetric constant matrix, then

$\begin{eqnarray}A+{A}^{{\rm{T}}}=0,\ \mathrm{tr}(A)=0.\end{eqnarray}$
Again noting that ${k}_{1}=0$, from (2.6) and (2.7), we have
$\begin{eqnarray}B=I,\ C=\displaystyle \frac{1}{2}{A}^{2},\end{eqnarray}$
which implies that the condition (2.8) is satisfied, that is, C is a symmetric matrix such that
$\begin{eqnarray}{C}^{{\rm{T}}}=\displaystyle \frac{1}{2}{A}^{{\rm{T}}}{A}^{{\rm{T}}}=\displaystyle \frac{1}{2}(-A)(-A)=\displaystyle \frac{1}{2}{A}^{2}=C.\end{eqnarray}$
The direct calculation shows that the Lie bracket between A and C is commutative:
$\begin{eqnarray}[A,C]={AC}-{CA}=0.\end{eqnarray}$
Finally, by using (3.1), (3.6) and (3.9), we have
$\begin{eqnarray*}{C}_{t}+(\gamma -1)\mathrm{tr}(A)C+{CA}+{A}^{{\rm{T}}}C=0,\end{eqnarray*}$
which implies that (2.9) is satisfied.

Making use of (3.6) and (3.7), we reduce equations (2.12) and (2.13) to

$\begin{eqnarray*}{{\boldsymbol{b}}}_{{tt}}={\bf{0}},\ {c}_{t}-{{\boldsymbol{b}}}^{{\rm{T}}}({{\boldsymbol{b}}}_{t}+A{\boldsymbol{b}})=0.\end{eqnarray*}$
These two equations admit the solutions (3.4) and (3.5) respectively.

We can obtain many special solutions for the compressible Navier–Stokes equations by theorem 2 if we can solve the reduced system. Here, we can give an example.

For the 3D compressible Navier–Stokes equations with ${k}_{1}=0$, by taking

$\begin{eqnarray*}\begin{array}{rcl}A & = & \left(\begin{array}{ccc}0 & 1 & -1\\ -1 & 0 & 1\\ 1 & -1 & 0\end{array}\right),\ \ B=\left(\begin{array}{ccc}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right),\\ C & = & \displaystyle \frac{1}{2}{B}^{-1}({A}_{t}+{A}^{2})=\displaystyle \frac{1}{2}\left(\begin{array}{ccc}-2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2\end{array}\right),\end{array}\end{eqnarray*}$
we get a solution
$\begin{eqnarray*}\begin{array}{l}\left(\begin{array}{c}{u}_{1}\\ {u}_{2}\\ {u}_{3}\end{array}\right)\,=\,\left(\begin{array}{ccc}0 & 1 & -1\\ -1 & 0 & 1\\ 1 & -1 & 0\end{array}\right)\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)\,+\,\left(\begin{array}{c}t\\ t\\ t\end{array}\right),\\ \bar{p}=-{{\boldsymbol{x}}}^{{\rm{T}}}({{\boldsymbol{b}}}_{t}+A{\boldsymbol{b}})-{{\boldsymbol{x}}}^{{\rm{T}}}C{\boldsymbol{x}}+c(t)\\ \quad =\,-{\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)}^{{\rm{T}}}\left(\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right)+\left(\begin{array}{ccc}0 & 1 & -1\\ -1 & 0 & 1\\ 1 & -1 & 0\end{array}\right)\left(\begin{array}{c}t\\ t\\ t\end{array}\right)\right)\\ \quad -\,\displaystyle \frac{1}{2}{\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)}_{}^{{\rm{T}}}{\left(\begin{array}{ccc}-2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2\end{array}\right)}_{}\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)+\displaystyle \frac{3}{2}{t}^{2}\\ \quad =\,-{\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)}^{{\rm{T}}}\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right)-\displaystyle \frac{1}{2}\\ \quad \times \,\left(\begin{array}{ccc}-2{x}_{1}+{x}_{2}+{x}_{3} & {x}_{1}-2{x}_{2}+{x}_{3} & {x}_{1}+{x}_{2}-2{x}_{3}\end{array}\right)\\ \quad \times \,\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)+\displaystyle \frac{3}{2}{t}^{2}\\ \quad =\,-{x}_{1}-{x}_{2}-{x}_{3}-\displaystyle \frac{1}{2}\left[(-2{x}_{1}+{x}_{2}+{x}_{3}){x}_{1}\right.\\ \quad +\,({x}_{1}-2{x}_{2}+{x}_{3}){x}_{2}+({x}_{1}\\ \quad \left.+\,{x}_{2}-2{x}_{3}){x}_{3}\right]+\displaystyle \frac{3}{2}{t}^{2}\\ \quad =\,{x}_{1}^{2}+{x}_{2}^{2}+{x}_{3}^{2}-({x}_{1}{x}_{2}+{x}_{1}{x}_{3}+{x}_{2}{x}_{3})\\ \quad -\,({x}_{1}+{x}_{2}+{x}_{3})+\displaystyle \frac{3}{2}{t}^{2}.\end{array}\end{eqnarray*}$

4. Second reduction: time-dependent matrix A

In the following section, we can consider another interesting exact solution of theorem 1.

If

$\begin{eqnarray}A=f(t)I,\end{eqnarray}$
then C is a symmetric matrix and matrix differential equation (2.9) reduces to
$\begin{eqnarray}\begin{array}{l}(1-{{Nk}}_{2}f-{k}_{1}f){f}_{{tt}}+2{{ff}}_{t}+[N(\gamma -1)+2]\\ \quad \times ({{ff}}_{t}+{f}^{3})+({{Nk}}_{2}+{k}_{1})({f}_{t}^{2}-{f}^{2}{f}_{t})\\ \quad -({{Nk}}_{2}+{k}_{1})[N(\gamma -1)+2]({f}^{2}{f}_{t}+{f}^{4})=0.\end{array}\end{eqnarray}$
In this way, we get a general solution
$\begin{eqnarray}{\boldsymbol{u}}={\boldsymbol{b}}(t)+f{\boldsymbol{x}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\bar{p}=-\displaystyle \frac{{f}_{t}+{f}^{2}}{2(1-{{Nk}}_{2}f-{k}_{1}f)}({x}_{1}^{2}+\cdots +{x}_{N}^{2})\\ \quad -\,\displaystyle \frac{{{\boldsymbol{x}}}^{{\rm{T}}}({{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}})}{1-{{Nk}}_{2}f-{k}_{1}f}+c(t),\end{array}\end{eqnarray}$
where ${\boldsymbol{b}}(t)$ and c(t) satisfy
$\begin{eqnarray}\begin{array}{l}{\left(\displaystyle \frac{{{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}}}{1-{{Nk}}_{2}f-{k}_{1}f}\right)}_{t}+[N(\gamma -1)+1]f\\ \quad \times \,\displaystyle \frac{{{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}}}{1-{{Nk}}_{2}f-{k}_{1}f}+\displaystyle \frac{{f}_{t}+{f}^{2}}{1-{{Nk}}_{2}f-{k}_{1}f}{\boldsymbol{b}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}{c}_{t}+N(\gamma -1){fc}-{{\boldsymbol{b}}}^{{\rm{T}}}\displaystyle \frac{{{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}}}{1-{{Nk}}_{2}f-{k}_{1}f}=0,\end{eqnarray}$
while f satisfies the equation (4.2).

From (2.6), (2.7) and (4.1), we have

$\begin{eqnarray}\begin{array}{rcl}B & = & (1-{{Nk}}_{2}f-{k}_{1}f)I,\\ C & = & \displaystyle \frac{1}{2}{B}^{-1}({A}_{t}+{A}^{2})=\displaystyle \frac{{f}_{t}+{f}^{2}}{2(1-{{Nk}}_{2}f-{k}_{1}f)}I.\end{array}\end{eqnarray}$
Substituting (4.1) and (4.7) into (2.9), we get (4.2).

The original solutions (2.10) and (2.11) become (4.3) and (4.4). The original equations (2.12) and (2.13) reduce to (4.5) and (4.6).

The differential equations (4.2) are still complicated and hard to solve. We continue to discuss its solvability.
In the case Nk2 + k1 = 0, the system (4.2) can be reduced to
$\begin{eqnarray*}{f}_{{tt}}+[N(\gamma -1)+4]{{ff}}_{t}+[N(\gamma -1)+2]{f}^{3}=0,\end{eqnarray*}$
which has an explicit solution
$\begin{eqnarray}f=\alpha {t}^{-1},\end{eqnarray}$
where
$\begin{eqnarray*}\alpha =\displaystyle \frac{2}{N(\gamma -1)+2}.\end{eqnarray*}$
These kinds of exact solutions have no limit on the dimensional number N and the density power γ.
We obtain from (4.5) that
$\begin{eqnarray}\begin{array}{l}{\left({{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}}\right)}_{t}+[N(\gamma -1)+1]f\\ \quad \times \,({{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}})+({f}_{t}+{f}^{2}){\boldsymbol{b}}={\bf{0}}.\end{array}\end{eqnarray}$
We have
$\begin{eqnarray}{\boldsymbol{b}}(t)={\boldsymbol{p}}{t}^{-1},\end{eqnarray}$
where p is a vector constant.
Solving (4.6) gives
$\begin{eqnarray*}\begin{array}{l}c(t)={{\rm{e}}}^{-\displaystyle \int N(\gamma -1){f}{\rm{d}}{t}}\\ \quad \times \,\left(\displaystyle \int {{\boldsymbol{b}}}^{{\rm{T}}}({{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}}){{\rm{e}}}^{\displaystyle \int N(\gamma -1){f}{\rm{d}}{t}}{\rm{d}}{t}+\beta \right).\end{array}\end{eqnarray*}$
Let us see an illustrative example.

For the 3D compressible Navier–Stokes equations, by taking k1 and k2 satisfying ${k}_{1}+3{k}_{2}=0$,

$\begin{eqnarray*}\begin{array}{rcl}A & = & \displaystyle \frac{2{t}^{-1}}{3(\gamma -1)+2}I,\ B=I,\\ C & = & \displaystyle \frac{-3(\gamma -1){t}^{-2}}{{\left(3(\gamma -1)+2\right)}^{2}}I,\end{array}\end{eqnarray*}$
by (4.10), we can take
$\begin{eqnarray}{\boldsymbol{b}}(t)=\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right){t}^{-1}.\end{eqnarray}$
The equation (4.6) becomes
$\begin{eqnarray}\begin{array}{l}{c}_{t}+\displaystyle \frac{6(\gamma -1){t}^{-1}}{3(\gamma -1)+2}c=\displaystyle \frac{-9(\gamma -1){t}^{-3}}{3(\gamma -1)+2}\\ \quad =\,\displaystyle \frac{-9(\gamma -1){t}^{-3}}{3\gamma -1},\end{array}\end{eqnarray}$
which has a solution
$\begin{eqnarray*}c=\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}\end{eqnarray*}$
via checking
$\begin{eqnarray*}\begin{array}{l}{c}_{t}+\displaystyle \frac{6(\gamma -1)}{3(\gamma -1)+2}{t}^{-1}c\\ \quad =\,{\left(\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}\right)}_{t}+\displaystyle \frac{6(\gamma -1){t}^{-1}}{3(\gamma -1)+2}\cdot \Space{0ex}{1.0ex}{0ex}(\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}\Space{0ex}{1.0ex}{0ex})\\ \quad =\,-\displaystyle \frac{9(\gamma -1)}{2}{t}^{-3}+\displaystyle \frac{6(\gamma -1)}{3\gamma -1}\displaystyle \frac{9(\gamma -1)}{4}{t}^{-3}\\ \quad =\,-\displaystyle \frac{9(\gamma -1)}{2}{t}^{-3}+\displaystyle \frac{27{\left(\gamma -1\right)}^{2}}{2(3\gamma -1)}{t}^{-3}\\ \quad =\,-\displaystyle \frac{9(\gamma -1)}{2}\displaystyle \frac{(3\gamma -1)}{3\gamma -1}{t}^{-3}+\displaystyle \frac{27{\left(\gamma -1\right)}^{2}}{2(3\gamma -1)}{t}^{-3}\\ \quad =\,\displaystyle \frac{-9(3{\gamma }^{2}-\gamma -3\gamma +1)}{2(3\gamma -1)}{t}^{-3}+\displaystyle \frac{27({\gamma }^{2}-2\gamma +1)}{2(3\gamma -1)}{t}^{-3}\\ \quad =\,\displaystyle \frac{-27{\gamma }^{2}+36\gamma -9+27{\gamma }^{2}-54\gamma +27}{2(3\gamma -1)}{t}^{-3}\\ \quad =\,\displaystyle \frac{-18\gamma +18}{2(3\gamma -1)}{t}^{-3}\\ \quad =\,\displaystyle \frac{-9(\gamma -1)}{3\gamma -1}{t}^{-3}.\end{array}\end{eqnarray*}$
Finally, according to (4.3) and (4.4), we can directly obtain a solution
$\begin{eqnarray*}\begin{array}{l}\left(\begin{array}{c}{u}_{1}\\ {u}_{2}\\ {u}_{3}\end{array}\right)=\displaystyle \frac{2{t}^{-1}}{3(\gamma -1)+2}\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)+\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right){t}^{-1},\\ \quad \bar{p}=-\displaystyle \frac{{f}_{t}+{f}^{2}}{2(1-3{k}_{2}f-{k}_{1}f)}({x}_{1}^{2}+{x}_{2}^{2}\\ \quad +\,{x}_{3}^{2})-{{\boldsymbol{x}}}^{{\rm{T}}}({{\boldsymbol{b}}}_{t}+f{\boldsymbol{b}})+c(t)\\ \quad =\,-\displaystyle \frac{1}{2}\left(-\displaystyle \frac{2}{3(\gamma -1)+2}{t}^{-2}\right.\\ \quad \left.+\,{\left(\displaystyle \frac{2}{3(\gamma -1)+2}\right)}^{2}{t}^{-2}\right)({x}_{1}^{2}+{x}_{2}^{2}+{x}_{3}^{2})\\ \quad -\,{\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)}^{{\rm{T}}}\left(-\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right){t}^{-2}+\displaystyle \frac{2}{3(\gamma -1)+2}{t}^{-1}\left(\begin{array}{c}1\\ 1\\ 1\end{array}\right){t}^{-1}\right)\\ \quad +\,\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}\\ \quad =\,\displaystyle \frac{(3\gamma -1)-2}{{\left(3\gamma -1\right)}^{2}}{t}^{-2}({x}_{1}^{2}+{x}_{2}^{2}+{x}_{3}^{2})\\ \quad -\,{\left(\begin{array}{c}{x}_{1}\\ {x}_{2}\\ {x}_{3}\end{array}\right)}^{{\rm{T}}}\left(\begin{array}{c}\displaystyle \frac{-(3\gamma -1)+2}{3\gamma -1}\\ \displaystyle \frac{-(3\gamma -1)+2}{3\gamma -1}\\ \displaystyle \frac{-(3\gamma -1)+2}{3\gamma -1}\end{array}\right){t}^{-2}\\ \quad +\,\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}\\ =\displaystyle \frac{3\gamma -3}{{\left(3\gamma -1\right)}^{2}}{t}^{-2}({x}_{1}^{2}+{x}_{2}^{2}+{x}_{3}^{2})\\ \quad +\,\left(\displaystyle \frac{3\gamma -3}{3\gamma -1}\right)({x}_{1}+{x}_{2}+{x}_{3}){t}^{-2}\\ \quad +\,\displaystyle \frac{9(\gamma -1)}{4}{t}^{-2}.\end{array}\end{eqnarray*}$

This research is partially supported by the National Science Foundation of China (Grant No. 11 271 079; 10 671 095) and RG 11/2015-2016R from the Education University of Hong Kong.

1
Bresch D Desjardins B 2003 Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model Commun. Math. Phys. 238 211 223

DOI

2
Bresch D Desjardins B 2007 On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids J. Pure Appl. Math. 87 57 90

DOI

3
Feireisl E Novotny A Petzeltova H 2001 On the existence of globally defined weak solutions to the Navier-Stokes equations J. Math. Fluid Mech. 3 358 392

DOI

4
Yang T Yao Z Zhu C J 2001 Compressible Navier-Stokes equations with density-dependent viscosity and vacuum Commun. Partial Differ. Equ. 26 965 981

DOI

5
Jiang S Zhang P 2001 Global spherically symmetric solutions of the compressible isentropic Navier-Stokes equations Commun. Math. Phys. 215 559 581

DOI

6
Hoff D Jenssen H K 2004 Symmetric nonbarotropic flows with large data and forces Arch. Ration. Mech. Anal. 173 297 343

DOI

7
Gerbeau J F Perthame B 2001 Derivation of viscous Saint-Venant system for laminar shallow water, numerical validation Discrete Contin. Dyn. Syst. B 1 89 102

DOI

8
Choe H J Kim H 2003 Strong solutions of the Navier-Stokes equations for isentropic compressible fluids J. Differ. Equ. 190 504 523

DOI

9
Guo Z H Xin Z P 2012 Analytical solutions to the compressible Navier-Stokes equations with density-dependent viscosity coefficients and free boundaries J. Differ. Equ. 253 1 19

DOI

10
An H L Yuen M W 2014 Drifting solutions with elliptic symmetry for the compressible Navier-Stokes equations with density-dependent viscosity J. Math. Phys. 55 053506

DOI

11
Mellet A Vasseur A 2007 On the barotropic compressible Navier-Stokes equations Commun. Partial Differ. Equ. 32 431 452

DOI

12
Makino T 1992 Blowing up solutions of the Euler-Poission Equation for the evolution of gaseous stars Transp. Theory Stat. Phys. 21 615 624

DOI

13
Sideris T C 1985 Formation of singularities in three-dimensional compressible fluids Commun. Math. Phys. 101 475 485

DOI

14
Nishida T 1986 Equations of fluid dynamics-free surface problems Commun. Pure Appl. Math. 39 221 238

DOI

15
Yuen M W 2008 Analytical solutions to the Navier-Stokes equations J. Math. Phys. 49 113102

DOI

16
Yeung L H Yuen M W 2009 Analytical solutions to the Navier-Stokes with density-dependent viscosity and with pressure J. Math. Phys. 50 083101

DOI

17
Bassi F Rebay S 1997 A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations J. Comput. Phys. 131 267 279

DOI

18
Xin Z P 1998 Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density Commun. Pure Appl. Math. 51 0229 0240

DOI

19
Yuen M W 2012 Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in RN Commun. Nonlinear Sci. Numer. Simul. 17 4524 4528

DOI

20
Makino T 1993 Exact solutions for the compressible Euler equation J. Osaka Sangyo Univ. Nat. Sci. 95 21 35

21
Zhang T Zheng Y X 1997 Exact spiral solutions of the two-dimensional Euler equations Discrete Continuous Dyn. Syst. 3 117 133

DOI

22
An H L Fan E G Yuen M W 2015 The Cartesian vector solutions for the N-dimensional compressible Euler equations Stud. Appl. Math. 134 101 119

DOI

23
Dorrepaal J M 1986 An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions J. Fluid. Mech. 163 141 147

DOI

24
Wang G Y 1990 Exact solutions of the Navier-Stokes equations-the generalized Beltrami flows, review and extension Acta Mech. 81 69 74

DOI

25
Hui W H 1987 Exact solutions of the unsteady two-dimensional Navier-Stokes equations J. Appl. Math. Phys. 38 689 702

DOI

26
Zelik S 2007 Spatially nondecaying solutions of 2D Navier-Stokes equations in a strip Glasgow Math. J. 49 525 588

DOI

27
Zelik S 2008 Weak spatially non-decaying solutions for the 3D Navier-Stokes equations in cylindrical domains Instability in Models Connected with Fluid Flows International Math. Series Bardos C Fursikov A Berlin Springer 5 6

28
Arnold V I 1965 Sur la topologie des ecoulements stationnaires des fluides parfaits (French) C. R. Acad. Sci. 261 17 20

DOI

29
Li Y G Yurov A V 2003 Lax pairs and Darboux transformations for Euler equations Stud. Appl. Math. 111 101 113

DOI

30
Lou S Y Jia M Tang X Y Huang F 2007 Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation Phys. Rev. E 75 056318

DOI

31
Lou S Y Jia M Huang F Tang X Y 2007 Backlund transformations, solitary waves, conoid wave and Bessel waves of the (2+1)-dimensional Euler equation Int. J. Theor. Phys. 46 2082 2095

DOI

32
Yuen M W 2011 Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations Phys. Lett. A 375 3107 3113

DOI

33
Chow K W Fan E G Yuen M W 2017 The analytical solutions for the N-dimensional damped compressible Euler equations Stud. Appl. Math. 138 294 316

DOI

Outlines

/