Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Multi-soliton solutions for the three types of nonlocal Hirota equations via Riemann–Hilbert approach

  • Yindong Zhuang ,
  • Yi Zhang , ,
  • Heyan Zhang ,
  • Pei Xia
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Author to whom any correspondence should be addressed.

Received date: 2022-05-27

  Revised date: 2022-08-03

  Accepted date: 2022-08-19

  Online published: 2022-10-28

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The purpose of the paper is to formulate multi-soliton solutions for the nonlocal Hirota equations via the Riemann–Hilbert (RH) approach. The RH problems are constructed and the zero structures are studied via performing spectral analysis of the Lax pair. Then we consider three types of nonlocal Hirota equations by discussing different symmetry reductions of the potential matrix. On the basis of the resulting matrix RH problem under the restriction of the reflectionless case, we successfully obtain the multi-soliton solutions of the nonlocal Hirota equations.

Cite this article

Yindong Zhuang , Yi Zhang , Heyan Zhang , Pei Xia . Multi-soliton solutions for the three types of nonlocal Hirota equations via Riemann–Hilbert approach[J]. Communications in Theoretical Physics, 2022 , 74(11) : 115004 . DOI: 10.1088/1572-9494/ac8afc

1. Introduction

As is well known, lots of efficient methods have been available for seeking soliton solutions, including inverse scattering transform [1, 2], the RH approach [37], Darboux transform [810], ${\rm{B}}\ddot{{\rm{a}}}$cklund transform [11] and Hirota bilinear method [12]. Among the various methods, the RH approach has proved very powerful in deriving soliton solutions for many completely integrable equations. In fact, the RH approach is a special nonlinear mapping between the group of potentials and the relevant spectral dates. In recent years, a variety of excellent works have been achieved by RH approach, such as generalized Sasa-Satsuma equation [13], matrix modified Korteweg-de Vries equation [14], nonlinear Schrödinger equation [15] and nonlocal reverse-time nonlinear Schrödinger equation [16] etc.
At present, we consider the coupled Hirota equations [17]:
$\begin{eqnarray}{\rm{i}}{q}_{t}+a(-2{q}^{2}r+{q}_{{xx}})+{\rm{i}}b({q}_{{xxx}}-6{{qrq}}_{x})=0,\end{eqnarray}$
$\begin{eqnarray}{\rm{i}}{r}_{t}+a(2{r}^{2}q-{r}_{{xx}})+{\rm{i}}b({r}_{{xxx}}-6{{qrr}}_{x})=0,\end{eqnarray}$
where q(x, t) and r(x, t) are both the complex valued functions associated with the real variables x and t. Then a = a1 + ia2 and b = b1 + ib2, a1, a2, b1, b2 are real constants. It leads to the Hirota equation [18] which Hirota introduced for the first time in 1973
$\begin{eqnarray}{\rm{i}}{q}_{t}+a(2| q{| }^{2}q+{q}_{{xx}})+{\rm{i}}b({q}_{{xxx}}+6| q{| }^{2}{q}_{x})=0,\end{eqnarray}$
by the reduction r(x, t) = −q*(x, t), and * is the complex conjugate. When a = 1, b = 0, equation (2) is reduced to the nonlinear Schrödinger equation [19], which describes soliton propagation in nonlinear dispersive science. When a = 0, b = 1, equation (2) is reduced to the modified Korteweg-de Vries equation [20] which is also very representative. As we all know, equation (2) is a well studied nonlinear integrable system and serves as a classical model to describe a variety of nonlinear phenomena in many fields, such as optical fibers, electric communication and engineering fields. Zhang et al investigated the soliton solutions with nonzero boundary conditions [21], and Ankiewicz et al discussed the rogue waves and rational solutions of equation (2) in [22]. On the other hand, Guo et al studied the long-time asymptotic behavior of the solution of the Hirota equation by means of the nonlinear steepest descent method [23]. Recently, Xu et al obtained the explicit formulas of arbitrary-order multi-pole solutions of the Hirota equation via Darboux transformation and some limit techniques, at the same time, they studied the asymptotic behavior and the soliton interactions of the double- and triple-pole solutions [24]. In addition, other important results of the Hirota equation have been obtained in [2528].
In recent years, the nonlocal nonlinear integrable evolution equations [2931] have been proposed and investigated by many researchers. In our present work, we are concerned with the nonlocal Hirota equations which have been studied in various methods [32, 33]. Furthermore, it is also meaningful to find the symmetries and analytic properties of the nonlocal Hirota equations. Now let us consider the following reductions r(x, t) = q*(ε1x, ε2t), where real constants ${\epsilon }_{1}^{2}={\epsilon }_{2}^{2}=1,$ special cases of equations (1) can be shown

If a1 = b1 = 0, ε1 = 1 and ε2 = −1, equation (1) reduces to the reverse-time nonlocal Hirota equation:

$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+a(-2{q}^{2}{q}^{* }(x,-t)+{q}_{{xx}})\\ \quad +{\rm{i}}b({q}_{{xxx}}-6{{qq}}^{* }(x,-t){q}_{x})=0.\end{array}\end{eqnarray}$

If a2 = b1 = 0, ε1 = − 1 and ε2 = 1, equation (1) is the reverse-space nonlocal Hirota equation:

$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+a(-2{q}^{2}{q}^{* }(-x,t)+{q}_{{xx}})\\ \quad +{\rm{i}}b({q}_{{xxx}}-6{{qq}}^{* }(-x,t){q}_{x})=0.\end{array}\end{eqnarray}$

If a1 = b2 = 0, ε1 = −1 and ε2 = −1, one obtains the reverse-spacetime nonlocal Hirota equation:

$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+a(-2{q}^{2}{q}^{* }(-x,-t)+{q}_{{xx}})\\ \quad +{\rm{i}}b({q}_{{xxx}}-6{{qq}}^{* }(-x,-t){q}_{x})=0.\end{array}\end{eqnarray}$

The rest of this paper is as follows. In section 2, we analyze the analyticity of matrix eigenfunctions by introducing the equivalent spectral problem and establish the RH problem on the real-λ line. In section 3, three cases of the nonlocal Hirota equations are discussed, respectively, then the multi-soliton solutions of the nonlocal Hirota equations are derived from a specific RH problem. Finally, a concise summary of this paper will be presented in section 4.

2. The Riemann–Hilbert problem

The Lax pair for the equation (1) can be written as follows
$\begin{eqnarray}{{\rm{\Phi }}}_{x}=M{\rm{\Phi }}=(-{\rm{i}}\lambda {\sigma }_{3}+U){\rm{\Phi }},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Phi }}}_{t}=N{\rm{\Phi }}=[-(4b{\rm{i}}{\lambda }^{3}+2a{\rm{i}}{\lambda }^{2}){\sigma }_{3}+V]{\rm{\Phi }},\end{eqnarray}$
with
$\begin{eqnarray*}{\sigma }_{3}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right),U=\left(\begin{array}{cc}0 & q(x,t)\\ r(x,t) & 0\end{array}\right),\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}V & = & {\lambda }^{3}\left(\begin{array}{cc}-4b{\rm{i}} & 0\\ 0 & 4b{\rm{i}}\end{array}\right)+{\lambda }^{2}\left(\begin{array}{cc}-2a{\rm{i}} & 4{bq}\\ 4{br} & 2a{\rm{i}}\end{array}\right)\\ & & +\,\lambda \left(\begin{array}{cc}-2b{\rm{i}}{qr} & 2b{\rm{i}}{q}_{x}+2{aq}\\ -2b{\rm{i}}{r}_{x}+2{ar} & 2b{\rm{i}}{qr}\end{array}\right)\\ & & +\,\left(\begin{array}{cc}-a{\rm{i}}{qr}+b({{rq}}_{x}-{{qr}}_{x}) & {\rm{i}}{{aq}}_{x}-b({q}_{{xx}}-2{q}^{2}r)\\ -{\rm{i}}{{ar}}_{x}+b(-{r}_{{xx}}+2{{qr}}^{2}) & {\rm{i}}{aqr}-b({{rq}}_{x}-{{qr}}_{x})\end{array}\right),\end{array}\end{eqnarray*}$
where ${\rm{\Phi }}(x,t,\lambda )={\left({\phi }_{1}(x,t,\lambda ),{\phi }_{2}(x,t,\lambda )\right)}^{{\rm{T}}}$ is the spectral function. M and N satisfy the zero curvature equation MtNx + [M, N] = 0.
In order to proceed to the later research work, one can introduce the Jost solution from reading as
$\begin{eqnarray}{\rm{\Phi }}(x,t,\lambda )\sim {{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x-(4b{\rm{i}}{\lambda }^{3}+2a{\rm{i}}{\lambda }^{2}){\sigma }_{3}t},\quad | x| \to \infty .\end{eqnarray}$
Hence, let $\kappa (x,t,\lambda )={\rm{\Phi }}(x,t,k){{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}x+(4b{\rm{i}}{\lambda }^{3}+2a{\rm{i}}{\lambda }^{2}){\sigma }_{3}t}$ be a new matrix-valued spectral function, and
$\begin{eqnarray}\kappa (x,t,\lambda )\to {\mathbb{I}},\quad | x| \to \infty ,\end{eqnarray}$
where ${\mathbb{I}}$ is the 2 × 2 identity matrix. Therefore, we obtain the equivalent spectral problem in the following form
$\begin{eqnarray}{\kappa }_{x}+{\rm{i}}\lambda [{\sigma }_{3},\kappa ]=U\kappa ,\end{eqnarray}$
$\begin{eqnarray}{\kappa }_{t}+(4b{\rm{i}}{\lambda }^{3}+2a{\rm{i}}{\lambda }^{2})[{\sigma }_{3},\kappa ]=V\kappa ,\end{eqnarray}$
where [σ3, κ] = σ3κκσ3. In order to perform spectral analysis conveniently, the eigenfunctions κ± are accurately expressed via the Volterra integral equations
$\begin{eqnarray}{\kappa }_{-}(x,\lambda )={\mathbb{I}}+{\int }_{-\infty }^{x}{{\rm{e}}}^{-{\rm{i}}\lambda (x-y){\sigma }_{3}}U{\kappa }_{-}(y,\lambda ){{\rm{e}}}^{{\rm{i}}\lambda (x-y){\sigma }_{3}}{\rm{d}}{y},\end{eqnarray}$
$\begin{eqnarray}{\kappa }_{+}(x,\lambda )={\mathbb{I}}-{\int }_{x}^{+\infty }{{\rm{e}}}^{-{\rm{i}}\lambda (x-y){\sigma }_{3}}U{\kappa }_{+}(y,\lambda ){{\rm{e}}}^{{\rm{i}}\lambda (x-y){\sigma }_{3}}{\rm{d}}{y}.\end{eqnarray}$
The matrix Jost solutions can be expressed in a collection of the following columns,
$\begin{eqnarray}{\kappa }_{-}=({[{\kappa }_{-}]}_{1},{[{\kappa }_{-}]}_{2}),\quad {\kappa }_{+}=({[{\kappa }_{+}]}_{1},{[{\kappa }_{+}]}_{2}).\end{eqnarray}$
Therefore, it can be proved that ${[{\kappa }_{-}]}_{1}$ and ${[{\kappa }_{+}]}_{2}$ are analytic in ${{\mathbb{C}}}^{+}$, ${[{\kappa }_{+}]}_{1}$ and ${[{\kappa }_{-}]}_{2}$ are analytic in ${{\mathbb{C}}}^{-}$, where
$\begin{eqnarray*}\begin{array}{rcl}{{\mathbb{C}}}^{-} & = & \{\lambda \in {\mathbb{C}}| \mathrm{Im}(\lambda )\lt 0\},\\ {{\mathbb{C}}}^{+} & = & \{\lambda \in {\mathbb{C}}| \mathrm{Im}(\lambda )\gt 0\}.\end{array}\end{eqnarray*}$
Considering the spectral problem of equations (9), there exists two different matrix solutions
$\begin{eqnarray}{{\rm{\Phi }}}_{-}={\kappa }_{-}{{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x},\quad {{\rm{\Phi }}}_{+}={\kappa }_{+}{{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x},\end{eqnarray}$
linearly associated with a 2 × 2 scattering matrix S(λ)
$\begin{eqnarray}{\kappa }_{-}={\kappa }_{+}{{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}S(\lambda ){{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}x}.\end{eqnarray}$
Based on Abel’s formula and ${tr}(U)=0$, it can be derived that κ and κ+ are independent of x. Then, it yields
$\begin{eqnarray}\det \,{\kappa }_{-}=1,\quad \det \,{\kappa }_{+}=1.\end{eqnarray}$
According to the above results, combined with the asymptotic results: ${\kappa }_{\pm }\to {\mathbb{I}}$, as ∣x∣ → ∞ . We obtain the following result from equation (13)
$\begin{eqnarray}\det \,S(\lambda )=1.\end{eqnarray}$
To develop associated RH problems, we adopt the spectral problem of adjoint matrix eigenfunctions. Notice that the inverse matrices ${\tilde{\kappa }}_{\pm }={\left({\kappa }_{\pm }\right)}^{-1}$, therefore, upon writing ${\left({\kappa }_{\pm }\right)}^{-1}$ as
$\begin{eqnarray}{\kappa }_{-}^{-1}=\left(\begin{array}{c}{\left[{\kappa }_{-}^{-1}\right]}_{1}\\ {\left[{\kappa }_{-}^{-1}\right]}_{2}\end{array}\right),\quad {\kappa }_{+}^{-1}=\left(\begin{array}{c}{\left[{\kappa }_{+}^{-1}\right]}_{1}\\ {\left[{\kappa }_{+}^{-1}\right]}_{2}\end{array}\right).\end{eqnarray}$
Furthermore, we know that ${[{\kappa }_{-}^{-1}]}_{2}$ and ${[{\kappa }_{+}^{-1}]}_{1}$ are analytic in ${{\mathbb{C}}}^{+}$, ${[{\kappa }_{-}^{-1}]}_{1}$ and ${[{\kappa }_{+}^{-1}]}_{2}$ are analytic in ${{\mathbb{C}}}^{-}$. From equation (13), the elements of S(λ) can be expressed
$\begin{eqnarray}\begin{array}{rcl}S(\lambda ) & = & {{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}x}{\kappa }_{+}^{-1}{\kappa }_{-}{{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}\\ & = & {{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}x}\left(\begin{array}{cc}{[{\kappa }_{+}^{-1}]}_{1}{[{\kappa }_{-}]}_{1} & {[{\kappa }_{+}^{-1}]}_{1}{[{\kappa }_{-}]}_{2}\\ {\left[{\kappa }_{+}^{-1}\right]}_{2}{[{\kappa }_{-}]}_{1} & {\left[{\kappa }_{+}^{-1}\right]}_{2}{[{\kappa }_{-}]}_{2}\end{array}\right){{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}\\ & = & \left(\begin{array}{cc}{s}_{11} & {s}_{12}\\ {s}_{21} & {s}_{22}\end{array}\right).\end{array}\end{eqnarray}$
It is obvious to infer that s11 is analytic in ${{\mathbb{C}}}^{+}$, and s22 is analytic in ${{\mathbb{C}}}^{-}$.
In order to construct the RH problem, we define the matrix solutions P+ and P as follows
$\begin{eqnarray}{P}_{+}=({[{\kappa }_{-}]}_{1},{[{\kappa }_{+}]}_{2})={\kappa }_{-}{A}_{1}+{\kappa }_{+}{A}_{2},\end{eqnarray}$
$\begin{eqnarray}{P}_{-}=\left(\begin{array}{c}{\left[{\kappa }_{-}^{-1}\right]}_{1}\\ {\left[{\kappa }_{+}^{-1}\right]}_{2}\end{array}\right)={A}_{1}{\kappa }_{-}^{-1}+{A}_{2}{\kappa }_{+}^{-1},\end{eqnarray}$
where ${A}_{1}=\left(\begin{array}{cc}1 & 0\\ 0 & 0\end{array}\right)$ and ${A}_{2}=\left(\begin{array}{cc}0 & 0\\ 0 & 1\end{array}\right)$. Therefore, we easily obtain that ${P}_{+},{P}_{-}\to {\mathbb{I}}$ , as λ → ∞ .
Based on the above facts, the RH problem is established:

P+ is analytic in ${{\mathbb{C}}}^{+}$, P is analytic in ${{\mathbb{C}}}^{-}$,

${P}_{-}(x,t,\lambda ){P}_{+}(x,t,\lambda )=J(x,t,\lambda ),\quad \lambda \in {\mathbb{R}}$,

${P}_{\pm }(x,t,\lambda )\to {\mathbb{I}}$ , as λ → ∞ .

The jump matrix can be calculated as
$\begin{eqnarray}J(x,t,\lambda )={{\rm{e}}}^{-{\rm{i}}\lambda {\sigma }_{3}x}\left(\begin{array}{cc}1 & {r}_{12}\\ {s}_{21} & 1\end{array}\right){{\rm{e}}}^{{\rm{i}}\lambda {\sigma }_{3}x},\end{eqnarray}$
and
$R(\lambda )=\left(\begin{array}{cc}{r}_{11} & {r}_{12}\\ {r}_{21} & {r}_{22}\end{array}\right)={S}^{-1}(\lambda )$, r11s11 + r12s21 = 1.

3. Multi-soliton solutions for the nonlocal Hirota equations

In this section, considering three nonlocal reductions, we solve the RH problem which corresponds to the reflectionless case and obtain multi-soliton solutions of the nonlocal Hirota equations.

3.1. Multi-soliton solutions of reverse-time nonlocal Hirota equation

According to the definition of P+, P and the scattering relationship between κ+ and κ, it yields
$\begin{eqnarray}\det \,{P}_{+}(x,\lambda )={s}_{11},\quad \lambda \in {{\mathbb{C}}}^{+},\end{eqnarray}$
$\begin{eqnarray}\det \,{P}_{-}(x,\lambda )={r}_{11},\quad \lambda \in {{\mathbb{C}}}^{-},\end{eqnarray}$
which shows that the zero structure of r11, s11 are the same as ${\rm{\det }}\,{P}_{-}(x,\lambda )$, ${\rm{\det }}\,{P}_{+}(x,\lambda )$. Because of the symmetry nonlocal relation U(x, −t) = −σ3U(x, t)σ3, we have
$\begin{eqnarray}{\kappa }_{\pm }^{\dagger }(x,-t,{\lambda }^{* })={\sigma }_{3}{\kappa }_{\pm }^{-1}(x,t,\lambda ){\sigma }_{3}.\end{eqnarray}$
Here † denotes conjugate transpose, it can be obtained from equations (18) and (19) that
$\begin{eqnarray}{P}_{+}(x,-t,{\lambda }^{* })={\sigma }_{3}{P}_{-}(x,t,\lambda ){\sigma }_{3}.\end{eqnarray}$
According to equation (17), it yields
$\begin{eqnarray}{S}^{\dagger }({\lambda }^{* })={\sigma }_{3}{S}^{-1}(\lambda ){\sigma }_{3},\end{eqnarray}$
which implies the relationship
$\begin{eqnarray}{r}_{11}^{* }({\lambda }^{* })={s}_{11}(\lambda ).\end{eqnarray}$
This reveals that each zero ±λk of s11 corresponding to each zero $\pm {\lambda }_{k}^{* }$ of r11. Therefore, now we assume that there exists N simple zeros {λk}(1 ≤ kN) of s11 in ${{\mathbb{C}}}^{+}$, and exists N simple zeros $\{{\lambda }_{k}^{* }\}$ of r11 in ${{\mathbb{C}}}^{-}$, where
$\begin{eqnarray}{\lambda }_{k}^{* }={\lambda }_{k},\quad 1\leqslant k\leqslant N.\end{eqnarray}$
We define vk and ${v}_{k}^{* }$ to be nonzero column vectors and row vectors, respectively, which satisfy
$\begin{eqnarray}{P}_{+}({\lambda }_{k}){v}_{k}({\lambda }_{k})=0,\end{eqnarray}$
$\begin{eqnarray}{v}_{k}^{* }({\lambda }_{k}^{* }){P}_{-}({\lambda }_{k}^{* })=0.\end{eqnarray}$
Comparing the equations and taking the Hermitian conjugate of P+(λk)vk(λk) = 0, one can obtain
$\begin{eqnarray}{v}_{k}^{* }({\lambda }_{k}^{* })={v}_{k}^{\dagger }(\lambda ){\sigma }_{3}.\end{eqnarray}$
Solving equations (27) and utilizing Lax pair (9), we have
$\begin{eqnarray}{v}_{k}={{\rm{e}}}^{-{\theta }_{k}{\sigma }_{3}}{v}_{k,0},\end{eqnarray}$
$\begin{eqnarray}{v}_{k}^{* }={v}_{k,0}^{\dagger }{{\rm{e}}}^{-{\theta }_{k}^{* }(x,-t){\sigma }_{3}}{\sigma }_{3},\end{eqnarray}$
where ${v}_{k,0}={\left({\alpha }_{k},{\beta }_{k}\right)}^{{\rm{T}}}$ is a constant column vector and ${\theta }_{k}={\rm{i}}{\lambda }_{k}x+(4b{\rm{i}}{\lambda }_{k}^{3}+2a{\rm{i}}{\lambda }_{k}^{2})t\,(1\leqslant k\leqslant N)$.
As a matter of fact, J is a 2 × 2 identity matrix when the scattering coefficients s21 = s12 = 0. Then we can solve the RH problem, and the solutions to the RH problem are described by
$\begin{eqnarray}{P}_{+}(\lambda )={\mathbb{I}}-\sum _{k,j=1}^{N}\displaystyle \frac{{v}_{k}{v}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}}{\lambda -{\lambda }_{j}^{* }},\end{eqnarray}$
$\begin{eqnarray}{P}_{-}(\lambda )={\mathbb{I}}+\sum _{k,j=1}^{N}\displaystyle \frac{{v}_{k}{v}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}}{\lambda -{\lambda }_{k}^{* }},\end{eqnarray}$
where matrix $M={\left({m}_{{kj}}\right)}_{N\,\times \,N}$, we define its (k, j) element as follows
$\begin{eqnarray}{m}_{{kj}}=\displaystyle \frac{{v}_{k}^{* }{v}_{j}}{{\lambda }_{j}-{\lambda }_{k}^{* }},\quad 1\leqslant k,j\leqslant N.\end{eqnarray}$
At present, we are in a position to derive the multi-soliton solutions of the nonlocal Hirota equation. To this end, one can investigate P+ in (30) to Laurent expansion as
$\begin{eqnarray}{P}_{+}(\lambda )={\mathbb{I}}+{\lambda }^{-1}{P}_{+}^{(1)}+{\lambda }^{-2}{P}_{+}^{(2)}+o({\lambda }^{-3}),\quad \lambda \to \infty .\end{eqnarray}$
Then substituting equation (31) into P+,x + iλ[σ3, P+] = UP+ and equating the corresponding coefficients of the O(1) terms, we have
$\begin{eqnarray}U={\rm{i}}[{\sigma }_{3},{P}_{+}^{(1)}],\end{eqnarray}$
which reveals that
$\begin{eqnarray}q(x,t)=2{\rm{i}}{\left({P}_{+}^{(1)}\right)}_{12},\end{eqnarray}$
$\begin{eqnarray}{q}^{* }(x,-t)=-2{\rm{i}}{\left({P}_{+}^{(1)}\right)}_{21},\end{eqnarray}$
where ${\left({P}_{+}^{(1)}\right)}_{12}$ is the (1, 2)-element of the matrix function ${P}_{+}^{(1)}$. Therefore, ${P}_{+}^{(1)}$ can be obtained by comparing corresponding elements
$\begin{eqnarray}{P}_{+}^{(1)}=-\sum _{k,j=1}^{N}{v}_{k}{v}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}.\end{eqnarray}$
As a result, the multi-soliton solutions to the nonlocal Hirota equation can be expressed explicitly as
$\begin{eqnarray}q(x,t)=2{\rm{i}}\sum _{k,j=1}^{N}{\alpha }_{k}{\beta }_{j}^{* }{{\rm{e}}}^{-{\theta }_{k}-{\theta }_{j}^{* }(x,-t)}{\left({M}^{-1}\right)}_{{kj}},\end{eqnarray}$
where
${m}_{{kj}}=\tfrac{{\alpha }_{k}^{* }{\alpha }_{j}{{\rm{e}}}^{-{\theta }_{k}^{* }(x,-t)-{\theta }_{j}}-{\beta }_{k}^{* }{\beta }_{j}{{\rm{e}}}^{{\theta }_{k}^{* }(x,-t)+{\theta }_{j}}}{{\lambda }_{j}-{\lambda }_{k}^{* }}$ , 1 ≤ k, jN.

3.2. Multi-soliton solutions of reverse-space nonlocal Hirota equation

Compared with equation (3), there will be different symmetry relation to equation (4). Notice that U = U(x, t) satisfies the symmetry relation
$\begin{eqnarray}{U}^{* }(-x,t)=-{\sigma }_{1}^{-1}U(x,t){\sigma }_{1},\end{eqnarray}$
where ${\sigma }_{1}=\left(\begin{array}{cc}0 & 1\\ -1 & 0\end{array}\right)$. Under the circumstance, the relation of the matrix spectral functions κ± can be obtained
$\begin{eqnarray}{\kappa }_{\pm }(x,\lambda )={\sigma }_{1}^{-1}{\kappa }_{\mp }^{* }(-x,-{\lambda }^{* }){\sigma }_{1}.\end{eqnarray}$
According to the above relation and the definition of P±, then P and P+ satisfy the following relations:
$\begin{eqnarray}{P}_{+}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{+}(x,\lambda ){\sigma }_{1}^{-1},\quad \lambda \in {{\mathbb{C}}}^{+},\end{eqnarray}$
$\begin{eqnarray}{P}_{-}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{-}(x,\lambda ){\sigma }_{1}^{-1},\quad \lambda \in {{\mathbb{C}}}^{-}.\end{eqnarray}$
Furthermore, the relationship of the scattering matrix and scattering data can be obtained:
$\begin{eqnarray}S(-{\lambda }^{* })={\sigma }_{1}{S}^{-1}(\lambda ){\sigma }_{1},\end{eqnarray}$
$\begin{eqnarray}{s}_{11}^{* }(-{\lambda }^{* })={r}_{22}(\lambda ),\quad {s}_{22}^{* }(-{\lambda }^{* })={r}_{11}(\lambda ).\end{eqnarray}$
Through the above results, the zero structure of the nonlocal Hirota equation can be given. Actually, from equations (39) we know that $\det \,{P}_{+}* (-x,-{\lambda }^{* })=\det \,{P}_{+}(x,\lambda )$, $\det \,{P}_{-}* (-x,-{\lambda }^{* })=\det \,{P}_{-}(x,\lambda )$. Thus, if λk is the zero of $\det \,{P}_{+}(x,\lambda )$, so is $-{\lambda }_{k}^{* }$. If ${\hat{\lambda }}_{k}$ is the zero of $\det \,{P}_{-}(x,\lambda )$, so is $-{\hat{\lambda }}_{k}^{* }$. Then, the zero structure of the nonlocal Hirota equation involves pairwise zeros $({\lambda }_{k},-{\lambda }_{k}^{* })$ and $({\hat{\lambda }}_{k},-{\hat{\lambda }}_{k}^{* })$.
The scattering data is needed to solve the RH problem including the continuous scattering dates {s12, s21} as well as the discrete scattering dates $\{{\lambda }_{k},{\hat{\lambda }}_{k},{v}_{k},{\hat{v}}_{k}\}$, in which vk and ${\hat{v}}_{k}$ are nonzero column vectors and row vectors, respectively, they satisfy
$\begin{eqnarray}{P}_{+}({\lambda }_{k}){v}_{k}({\lambda }_{k})=0,\end{eqnarray}$
$\begin{eqnarray}{\hat{v}}_{k}({\lambda }_{k}){P}_{-}({\hat{\lambda }}_{k})=0.\end{eqnarray}$
For the purpose of obtaining the explicit form of the vectors vk and ${\hat{v}}_{k}$, we calculate the derivatives of equations (42) with respect to x and t and find
$\begin{eqnarray}{v}_{k}=\left\{\begin{array}{ll}{{\rm{e}}}^{-{\theta }_{k}{\sigma }_{3}}{v}_{k,0},\quad & 1\leqslant k\leqslant N,\\ {\sigma }_{1}{{\rm{e}}}^{-{\theta }_{k-N}^{* }(-x,t){\sigma }_{3}}{v}_{k-N,0}^{* },\quad & N+1\leqslant k\leqslant 2N,\end{array}\right.\end{eqnarray}$
$\begin{eqnarray}{\hat{v}}_{k}=\left\{\begin{array}{ll}{\hat{v}}_{k,0}{{\rm{e}}}^{{\hat{\theta }}_{k}{\sigma }_{3}},\quad & 1\leqslant k\leqslant N,\\ {\hat{v}}_{k-N,0}^{* }{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,t){\sigma }_{3}}{\sigma }_{1},\quad & N+1\leqslant k\leqslant 2N,\end{array}\right.\end{eqnarray}$
with ${\theta }_{k}={\rm{i}}{\lambda }_{k}x+(4b{\rm{i}}{\lambda }_{k}^{3}+2a{\rm{i}}{\lambda }_{k}^{2})t$, ${\hat{\theta }}_{k}={\rm{i}}\hat{{\lambda }_{k}}x+(4b{\rm{i}}{\hat{\lambda }}_{k}^{3}\,+2a{\rm{i}}{\hat{\lambda }}_{k}^{2})t$, ${v}_{k,0}={\left({\alpha }_{k},{\beta }_{k}\right)}^{T}$ and ${\hat{v}}_{k,0}=({\hat{\alpha }}_{k},{\hat{\beta }}_{k})$ are nonzero vectors.
Similar to section 3.1, one can also introduce a 2N × 2N matrix M with entries ${m}_{{kj}}=\tfrac{{\hat{v}}_{k}{v}_{j}}{{\lambda }_{j}-{\hat{\lambda }}_{k}}\quad (1\leqslant k,j\leqslant 2N)$, and assuming that the inverse matrix of M exists, then the solution for the RH problem can be given by
$\begin{eqnarray}{P}^{+}(\lambda )={\mathbb{I}}-\sum _{k,j=1}^{2N}\displaystyle \frac{{v}_{k}{\hat{v}}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}}{\lambda -{\hat{\lambda }}_{j}},\end{eqnarray}$
$\begin{eqnarray}{P}^{-}(\lambda )={\mathbb{I}}+\sum _{k,j=1}^{2N}\displaystyle \frac{{v}_{k}{\hat{v}}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}}{\lambda -{\lambda }_{k}}.\end{eqnarray}$
We can also expand P+ as in section 3.1 and get the following formulas:
$\begin{eqnarray}q(x,t)=2i{\left({P}_{+}^{(1)}\right)}_{12},\end{eqnarray}$
$\begin{eqnarray}{q}^{* }(-x,t)=-2i{\left({P}_{+}^{(1)}\right)}_{21}.\end{eqnarray}$
Furthermore, from equations (44) we directly obtain
$\begin{eqnarray}{P}_{+}^{(1)}=-\sum _{k,j=1}^{2N}{v}_{k}{v}_{j}^{* }{\left({M}^{-1}\right)}_{{kj}}.\end{eqnarray}$
Therefore, the expression of 2N-soliton solutions to the nonlocal Hirota equation reads
$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & -2{\rm{i}}\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=1}^{N}{\alpha }_{k}{\hat{\beta }}_{j}{{\rm{e}}}^{-{\theta }_{k}-{\hat{\theta }}_{j}}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=N+1}^{2N}{\alpha }_{k}{\hat{\alpha }}_{j-N}^{* }{{\rm{e}}}^{-{\theta }_{k}+{\hat{\theta }}_{j-N}^{* }(-x,t)}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=N+1}^{2N}\displaystyle \sum _{j=1}^{N}{\beta }_{k-N}^{* }{\hat{\beta }}_{j}{{\rm{e}}}^{{\theta }_{k-N}^{* }(-x,t)-{\hat{\theta }}_{j}}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=N+1}^{2N}\displaystyle \sum _{j=N+1}^{2N}{\beta }_{k-N}^{* }{\hat{\alpha }}_{j-N}^{* }{{\rm{e}}}^{{\theta }_{k-N}^{* }(-x,t)+{\hat{\theta }}_{j-N}^{* }(-x,t)}\\ & & \times \,{\left({M}^{-1}\right)}_{{kj}},\end{array}\end{eqnarray}$
with the matrix entries
$\begin{eqnarray*}{m}_{{kj}}=\left\{\begin{array}{ll}\displaystyle \frac{\alpha k{\hat{\alpha }}_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j}}+{\hat{\beta }}_{k}{\beta }_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k}+{\theta }_{j}}}{{\lambda }_{j}-{\hat{\lambda }}_{k}},\quad & 1\leqslant k,j\leqslant N,\\ \displaystyle \frac{{\hat{\alpha }}_{k}{\beta }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j-N}^{* }(-x,t)}-{\hat{\beta }}_{k}{\alpha }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j-N}^{* }(-x,t)}}{-{\lambda }_{j-N}^{* }-{\hat{\lambda }}_{k}},\quad & 1\leqslant k\leqslant N,N+1\leqslant j\leqslant 2N,\\ \displaystyle \frac{-{\hat{\beta }}_{k-N}^{* }{\alpha }_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k-N}^{* }(-x,t)-{\theta }_{j}}+{\hat{\beta }}_{k-N}^{* }{\beta }_{j}{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,t)+{\theta }_{j}}}{{\lambda }_{j}+{\hat{\lambda }}_{k-N}^{* }},\quad & N+1\leqslant k\leqslant 2N,1\leqslant j\leqslant N,\\ \displaystyle \frac{-{\hat{\beta }}_{k-N}^{* }{\beta }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k-N}^{* }(-x,t)+{\theta }_{j-N}^{* }(-x,t)}-{\hat{\alpha }}_{k-N}^{* }{\alpha }_{j-N}^{* }{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,t)+{\theta }_{j-N}^{* }(-x,t)}}{-{\lambda }_{j-N}^{* }+{\hat{\lambda }}_{k-N}^{* }},\quad & N+1\leqslant k\leqslant 2N,N+1\leqslant j\leqslant 2N.\end{array}\right.\end{eqnarray*}$

3.3. Multi-soliton solutions of reverse-spacetime nonlocal Hirota equation

We assume that $\det \,{P}_{+}(x,\lambda )$ and $\det \,{P}_{-}(x,\lambda )$ possess certain zeros ${\lambda }_{k}\in {{\mathbb{C}}}^{+}$ and ${\lambda }_{k}\in {{\mathbb{C}}}^{-}(1\leqslant k\leqslant 2N$) when this RH problem is non-regular, where 2N is the number of these zeros. According to the expressions of P+ and P mentioned above, one can easily find that
$\begin{eqnarray}\det \,{P}_{+}(x,\lambda )={s}_{11},\quad \lambda \in {{\mathbb{C}}}^{+},\end{eqnarray}$
$\begin{eqnarray}\det \,{P}_{-}(x,\lambda )={r}_{11},\quad \lambda \in {{\mathbb{C}}}^{-}.\end{eqnarray}$
Combining the symmetry relationships ${U}^{* }(-x,-t)\,=-{\sigma }_{1}^{-1}U(x,t){\sigma }_{1}$ and ${\kappa }_{\pm }(x,\lambda )={\sigma }^{-1}{\kappa }_{\mp }^{* }(-x,-{\lambda }^{* })\sigma $, it yields
$\begin{eqnarray}{P}_{+}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{+}(x,\lambda ){\sigma }_{1}^{-1},\quad \lambda \in {{\mathbb{C}}}^{+},\end{eqnarray}$
$\begin{eqnarray}{P}_{-}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{-}(x,\lambda ){\sigma }_{1}^{-1},\quad \lambda \in {{\mathbb{C}}}^{-}.\end{eqnarray}$
At the same time, we can also obtain the relation of scattering matrix and scattering datas S( −λ*) = σ1S−1(λ)σ1, ${s}_{11}^{* }(-{\lambda }^{* })\,={r}_{22}(\lambda ),{s}_{22}^{* }(-{\lambda }^{* })={r}_{11}(\lambda )$.
Therefore, we find that if λk is the zero of $\det \,{P}_{+}(x,\lambda )$, then $-{\lambda }_{k}^{* }$ is also a zero of $\det \,{P}_{+}(x,\lambda )$. Hence we suppose that $\det \,{P}_{+}(x,\lambda )$ has 2N simple zeros ${\{{\lambda }_{k}\}}_{1}^{2N}$ and satisfy ${\lambda }_{N+k}\,=-{\lambda }_{k}^{* }\,(1\leqslant k\leqslant N)$. Similar to the $\det \,{P}_{+}(x,\lambda )$, if ${\hat{\lambda }}_{k}$ is the zero of $\det \,{P}_{-}(x,\hat{\lambda })$, then $-{\hat{\lambda }}_{k}^{* }$ is also a zero of $\det \,{P}_{+}(x,\hat{\lambda })$ and satisfy ${\hat{\lambda }}_{N+k}=-{\hat{\lambda }}_{k}^{* }\,(1\leqslant k\leqslant N)$.
Based on the above analysis, we can successfully solve this RH problem by choosing the discrete scattering dates $\{{\lambda }_{k},{\hat{\lambda }}_{k},{v}_{k},{\hat{v}}_{k}\}$ and the discrete scattering dates $\{{\lambda }_{k},{\hat{\lambda }}_{k},{v}_{k},{\hat{v}}_{k}\}$, which column vectors vk and row vectors ${\hat{v}}_{k}$ satisfying
$\begin{eqnarray}{P}_{+}({\lambda }_{k}){v}_{k}({\lambda }_{k})=0,\end{eqnarray}$
$\begin{eqnarray}{\hat{v}}_{k}({\lambda }_{k}){P}_{-}({\hat{\lambda }}_{k})=0.\end{eqnarray}$
Using the relation ${P}_{+}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{+}(x,\lambda ){\sigma }_{1}^{-1}$ and ${P}_{-}^{* }(-x,-{\lambda }^{* })={\sigma }_{1}{P}_{-}(x,\lambda ){\sigma }_{1}^{-1}$, we have
$\begin{eqnarray}{v}_{k}=\left\{\begin{array}{ll}{{\rm{e}}}^{-{\theta }_{k}{\sigma }_{3}}{v}_{k,0},\quad & 1\leqslant k\leqslant N,\\ {\sigma }_{1}{{\rm{e}}}^{-{\theta }_{k-N}^{* }(-x,-t){\sigma }_{3}}{v}_{k-N,0}^{* },\quad & N+1\leqslant k\leqslant 2N,\end{array}\right.\end{eqnarray}$
$\begin{eqnarray}{\hat{v}}_{k}=\left\{\begin{array}{ll}{\hat{v}}_{k,0}{{\rm{e}}}^{{\hat{\theta }}_{k}{\sigma }_{3}},\quad & 1\leqslant k\leqslant N,\\ {\hat{v}}_{k-N,0}^{* }{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,-t){\sigma }_{3}}{\sigma }_{1},\quad & N+1\leqslant k\leqslant 2N,\end{array}\right.\end{eqnarray}$
where ${\theta }_{k}={\rm{i}}{\lambda }_{k}x+(4b{\rm{i}}{\lambda }_{k}^{3}+2a{\rm{i}}{\lambda }_{k}^{2})t$, ${\hat{\theta }}_{k}={\rm{i}}\hat{{\lambda }_{k}}x\,+(4b{\rm{i}}{\hat{{\lambda }_{k}}}^{3}+2a{\rm{i}}{\hat{{\lambda }_{k}}}^{2})t$, ${v}_{k,0}={\left({\alpha }_{k},{\beta }_{k}\right)}^{{\rm{T}}}$ and ${\hat{v}}_{k,0}=({\hat{\alpha }}_{k},{\hat{\beta }}_{k})$ are nonzero vectors.
After the same calculation process in section 3.2, we can also finally obtain the 2N-soliton solutions of reverse-spacetime nonlocal Hirota equation:
$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & -2{\rm{i}}\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=1}^{N}{\alpha }_{k}{\hat{\beta }}_{j}{{\rm{e}}}^{-{\theta }_{k}-{\hat{\theta }}_{j}}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=1}^{N}\displaystyle \sum _{j=N+1}^{2N}{\alpha }_{k}{\hat{\alpha }}_{j-N}^{* }{{\rm{e}}}^{-{\theta }_{k}+{\hat{\theta }}_{j-N}^{* }(-x,-t)}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=N+1}^{2N}\displaystyle \sum _{j=1}^{N}{\beta }_{k-N}^{* }{\hat{\beta }}_{j}{{\rm{e}}}^{{\theta }_{k-N}^{* }(-x,-t)-{\hat{\theta }}_{j}}{\left({M}^{-1}\right)}_{{kj}}\\ & & -\,2{\rm{i}}\displaystyle \sum _{k=N+1}^{2N}\displaystyle \sum _{j=N+1}^{2N}{\beta }_{k-N}^{* }{\hat{\alpha }}_{j-N}^{* }{{\rm{e}}}^{{\theta }_{k-N}^{* }(-x,-t)+{\hat{\theta }}_{j-N}^{* }(-x,-t)}\\ & & \times \,{\left({M}^{-1}\right)}_{{kj}},\end{array}\end{eqnarray}$
where $M={\left({m}_{{kj}}\right)}_{2N\times 2N}$ with the matrix entries
$\begin{eqnarray*}{m}_{{kj}}=\left\{\begin{array}{ll}\displaystyle \frac{\alpha k{\hat{\alpha }}_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j}}+{\hat{\beta }}_{k}{\beta }_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k}+{\theta }_{j}}}{{\lambda }_{j}-{\hat{\lambda }}_{k}},\quad & 1\leqslant k,j\leqslant N,\\ \displaystyle \frac{{\hat{\alpha }}_{k}{\beta }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j-N}^{* }(-x,-t)}-{\hat{\beta }}_{k}{\alpha }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k}-{\theta }_{j-N}^{* }(-x,-t)}}{-{\lambda }_{j-N}^{* }-{\hat{\lambda }}_{k}},\quad & 1\leqslant k\leqslant N,N+1\leqslant j\leqslant 2N,\\ \displaystyle \frac{-{\hat{\beta }}_{k-N}^{* }{\alpha }_{j}{{\rm{e}}}^{-{\hat{\theta }}_{k-N}^{* }(-x,-t)-{\theta }_{j}}+{\hat{\beta }}_{k-N}^{* }{\beta }_{j}{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,-t)+{\theta }_{j}}}{{\lambda }_{j}+{\hat{\lambda }}_{k-N}^{* }},\quad & N+1\leqslant k\leqslant 2N,1\leqslant j\leqslant N,\\ \displaystyle \frac{-{\hat{\beta }}_{k-N}^{* }{\beta }_{j-N}^{* }{{\rm{e}}}^{-{\hat{\theta }}_{k-N}^{* }(-x,-t)+{\theta }_{j-N}^{* }(-x,-t)}-{\hat{\alpha }}_{k-N}^{* }{\alpha }_{j-N}^{* }{{\rm{e}}}^{{\hat{\theta }}_{k-N}^{* }(-x,-t)+{\theta }_{j-N}^{* }(-x,-t)}}{-{\lambda }_{j-N}^{* }+{\hat{\lambda }}_{k-N}^{* }},\quad & N+1\leqslant k\leqslant 2N,N+1\leqslant j\leqslant 2N.\end{array}\right.\end{eqnarray*}$
Next, corresponding to equations (36), (47) and (52) we shall obtain multi-soliton solutions of the nonlocal Hirota equations. When N = 1, the soliton solutions for the three types of nonlocal Hirota equations are shown in figure 1, respectively. When N = 2, we plot the graphs of the two-soliton solutions for reverse-time nonlocal Hirota equation as shown in figure 2 by selecting appropriate parameters. Due to the different symmetry conditions between the reverse-time nonlocal Hirota equation and the other two nonlocal Hirota equations, we can obtain the different graphs. It is worth noting that when either λ = −λ* or $\hat{\lambda }=-{\hat{\lambda }}^{* }$. In other words, λ and $\hat{\lambda }$ is purely imaginary, the two-soliton solutions of the reverse-spacetime nonlocal Hirota equation in figure 1 degenerate into the single-soliton solution in figure 3.
Figure 1. (a) The single-soliton solution via (36) with a = i, b = 0.5i, λ = 0.01 − 0.05i, α1 = 0.1 + 0.1i, β1 = 0.5 + 0.1i. (b) The two-soliton solutions via (47) with a = 0.5, b = 0.1i, λ = 0.2 + 0.1i, $\hat{\lambda }=0.3+0.2{\rm{i}}$, α1 = 0.1 + 0.5i, β1 = 0.1, ${\hat{\alpha }}_{1}=1-0.4{\rm{i}}$, ${\hat{\beta }}_{1}=0.1$. (c) The two-soliton solutions via (52) with a = 0.4i, b = 0.3, λ = 0.06 + 0.1i, $\hat{\lambda }=0.1+0.1{\rm{i}}$, α1 = 0.3 + 0.4i, β1 = 0.25 + 0.2i, ${\hat{\alpha }}_{1}=0.45+0.4{\rm{i}}$, ${\hat{\beta }}_{1}\,=0.4-0.3{\rm{i}}$.
Figure 2. (e) The two-soliton solutions of reverse-time nonlocal Hirota equation via with a = −0.7i, b = 0.4i, λ1 = 0.2 − 0.05i, λ2 = 0.3 +0.1i, α1 = 0.15 + 0.1i, β1 = 0.35 + 0.1i, α2 = 0.4 + 0.08i, β2 = 0.6 − 0.1i.
Figure 3. Degenerated single-soliton solution of reverse-spacetime nonlocal Hirota equation, where the parameters are chosen as a = 0.4i, b = 0.3, λ = 0.06 + 0.1i, $\hat{\lambda }=0.1{\rm{i}}$, α1 = 0.3 + 0.4i, β1 = 0.25 + 0.2i, ${\hat{\alpha }}_{1}=0.45+0.4{\rm{i}}$, ${\hat{\beta }}_{1}=0.4-0.3{\rm{i}}$.

4. Conclusion

The aim of the current investigation is to derive multi-soliton solutions of the nonlocal Hirota equations by utilizing the RH approach. To this end, starting firstly from the equivalence spectral problem of the coupled Hirota equations, which effectively acquire the relevant analytical properties, then we construct the RH problem of the nonlocal Hirota equations. Secondly, considering different symmetry relationships, the three types of nonlocal Hirota equations are discussed. After solving the RH problem without reflection, we finally obtain the multi-soliton solutions of the nonlocal Hirota equations, Particularly, the single- and two-soliton solutions are displayed.

This work is supported by the National Natural Science Foundation of China (No. 11371326 and No. 11975145).

1
Ji J L Zhu Z N 2017 Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform J. Math. Anal. Appl. 453 973 984

DOI

2
Ablowitz M J 2015 The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249 315

DOI

3
Li J Xia T C Riemann-Hilbert A 2021 approach to the Kundu-nonlinear Schrödinger equation and its multi-component generalization J. Math. Anal. Appl. 500 125109

DOI

4
Shchesnovich V S Yang J 2003 General soliton matrices in the Riemann-Hilbert problem for integrable nonlinear equations J. Math. Phys. 44 4604 4639

DOI

5
Ma W X 2019 Riemann-Hilbert problems of a six-component mKdV system and its soliton solutions Acta. Math. Sci. 39 173 187

DOI

6
Li Y Tian S F Yang J J 2022 Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations Stud. Appl. Math. 148 577 605

DOI

7
Chen X T Zhang Y 2019 Riemann-Hilbert approach of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization Appl. Anal. 2 1 10

8
Ling L M Zhao L C Guo B L 2015 Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations Nonlinearity 28 3243 3261

DOI

9
Zhang S S Xu T Li M 2022 Higher-order algebraic soliton solutions of the Gerdjikov-Ivanov equation: asymptotic analysis and emergence of rogue waves Physica D 432 133128

DOI

10
Lou Y Zhang Y Ye R S Li M 2021 Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation Appl. Math. Comput. 409 126417

DOI

11
Zhang J F 2000 Bäcklund transformation and multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations Commun. Theor. Phys. 33 577 580

DOI

12
Hirota R 2004 The Direct Method in Soliton Theory Cambridge Cambridge University Press

13
Geng X G Wu J P 2016 Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation Wave Motion 60 62 72

DOI

14
Chen X T 2020 The N-soliton solutions for the matrix modified Korteweg-de Vries equation via the Riemann-Hilbert approach Eur. Phys. J. Plus. 135 574

DOI

15
Yang J J Tian S F Li Z Q 2022 Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions Physica D 432 133162

DOI

16
Ma W X 2019 Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations Appl. Math. Lett. 102 106161

DOI

17
Zhang Y Dong K H Jin R J 2013 The Darboux transformation for the coupled Hirota equation AIP Conf. Proc. 1562 249 256

18
Hirota R 1973 Exact envelope-soliton solutions of a nonlinear wave equation J. Math. Phys. 4 805 809

DOI

19
Gang Z Sigal I M 2006 On soliton dynamics in nonlinear Schrödinger equations Geom. Funct. Anal. 16 1377 1390

DOI

20
Wu J P Geng X G 2017 Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation Commun. Nonlinear Sci. 53 83 93

DOI

21
Zhang G Q Chen S Y Yan Z Y 2020 Focusing and defocusing Hirota equations with non-zero boundary conditions: Inverse scattering transforms and soliton solutions Commun. Nonlinear Sci. 80 104927

DOI

22
Ankiewicz A Soto-Crespo J M Akhmediev N 2010 Rogue waves and rational solutions of the Hirota equation Phys. Rev. E 81 046602

DOI

23
Guo B L Liu N Wang Y F 2017 Long-time asymptotics for the Hirota equation on the half-line Nonlinear Anal. 174 118 140

DOI

24
Li M Zhang X F Xu T Li L L 2020 Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation J. Phys. Soc. Jpn. 89 054004

DOI

25
Demontis F Ortenzi G 2015 Exact solutions of the Hirota equation and vortex filaments motion Physica D 313 61 80

DOI

26
Tao Y S He J S 2012 Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation Phys. Rev. E 85 026601

DOI

27
Zhang X F Tian S F Yang J J 2021 The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles Anal. Math. Phys. 11 86

DOI

28
Chen S Y Yan Z Y 2019 The Hirota equation: Darboux transform of the Riemann-Hilbert problem and higher-order rogue waves Appl. Math. Lett. 95 65 71

DOI

29
Zhang Q Y Zhang Y Ye R S 2019 Exact solutions of nonlocal Fokas-Lenells equation Appl. Math. Lett. 98 336 343

DOI

30
Ye R S Zhang Y 2020 General soliton solutions to a reverse-time nonlocal nonlinear Schrödinger equation Stud. Appl. Math. 145 197 216

DOI

31
Xu T Li L L Li M Li C X Zhang X F 2021 Rational solutions of the defocusing nonlocal nonlinear Schrödinger equation: asymptotic analysis and soliton interactions P. Roy. Soc. A 477 20210512

32
Zuo D W Zhang G F 2019 Exact solutions of the nonlocal Hirota equations Appl. Math. Lett. 93 66 71

DOI

33
Cen J Correa F Fring A 2017 Integrable nonlocal Hirota equations J. Math. Phys. 60 81508

DOI

Outlines

/