1. Introduction
2. No-masking theorem conditions
3. Masking of two-qubit quantum states
3.1. Masking of non-orthogonal quantum states
Table 1. ∣ψ0〉 consists of one term (The duplicate parts have been deleted). |
∣ψ0〉 = ∣i1i2〉 | ∣ψ1〉 = b∣i1i2〉 + c∣j1j2〉 | |
---|---|---|
∣i1i2〉 | ∣i1i2〉 | ∣j1j2〉 |
∣00〉 | ∣00〉 | ∣00〉 |
∣01〉 | ∣01〉 | ∣01〉 |
∣10〉 | ∣10〉 | ∣10〉 |
∣11〉 | ∣11〉 | ∣11〉 |
Table 2. ∣ψ0〉 consists of two terms (The duplicate parts have been deleted). |
∣ψ0〉 = a0∣i1i2〉 + a1∣j1j2〉 | ∣ψ1〉 = b0∣i1i2〉 + b1∣k1k2〉 + b2∣l1l2〉 | |||
---|---|---|---|---|
∣i1i2〉 | ∣j1j2〉 | ∣i1i2〉 | ∣k1k2〉 | ∣l1l2〉 |
∣00〉 | ∣01〉 | ∣00〉 | ∣00〉 | ∣01〉 |
∣00〉 | ∣10〉 | ∣00〉 | ∣00〉 | ∣10〉 |
∣00〉 | ∣11〉 | ∣00〉 | ∣00〉 | ∣11〉 |
∣01〉 | ∣10〉 | ∣01〉 | ∣01〉 | ∣10〉 |
∣01〉 | ∣11〉 | ∣01〉 | ∣01〉 | ∣11〉 |
∣10〉 | ∣11〉 | ∣10〉 | ∣10〉 | ∣11〉 |
Table 3. ∣ψ0〉 consists of three terms (The duplicate parts have been deleted). |
∣ψ0〉 = a0∣i1i2〉 + a1∣j1j2〉 + a2∣k1k2〉 | ∣ψ1〉 = b0∣i1i2〉 + b1∣l1l2〉 + b2∣m1m2〉 + b3∣n1n2〉 | |||||
---|---|---|---|---|---|---|
∣i1i2〉 | ∣j1j2〉 | ∣k1k2〉 | ∣i1i2〉 | ∣l1l2〉 | ∣m1m2〉 | ∣n1n2〉 |
∣00〉 | ∣01〉 | ∣10〉 | ∣00〉 | ∣00〉 | ∣01〉 | ∣10〉 |
∣00〉 | ∣01〉 | ∣11〉 | ∣00〉 | ∣00〉 | ∣01〉 | ∣11〉 |
∣00〉 | ∣10〉 | ∣11〉 | ∣00〉 | ∣00〉 | ∣10〉 | ∣11〉 |
∣01〉 | ∣10〉 | ∣11〉 | ∣01〉 | ∣01〉 | ∣10〉 | ∣11〉 |
3.2. Masking of orthogonal quantum states
Figure 1. (a) $| {{\rm{\Psi }}}_{0}\rangle =\tfrac{1}{\sqrt{2}}| 00\rangle +\tfrac{{\rm{i}}}{\sqrt{2}}| 11\rangle $ and $| {{\rm{\Psi }}}_{1}\rangle =\tfrac{1}{\sqrt{2}}(| 01\rangle +| 10\rangle )$ can mask information in ∣b〉 = α0∣0〉 + α1∣1〉, if and only if α0 = x0 + y0i and ${\alpha }_{1}={x}_{1}+\sqrt{1-({x}_{0}^{2}+{y}_{0}^{2}+{x}_{1}^{2})}{\rm{i}}$ satisfy this figure. (b) $| {{\rm{\Psi }}}_{0}\rangle =\tfrac{1}{\sqrt{2}}| 00\rangle +\tfrac{{\rm{i}}}{\sqrt{2}}| 11\rangle $ and $| {{\rm{\Psi }}}_{1}\rangle =\tfrac{1}{\sqrt{2}}(| 01\rangle +| 10\rangle )$ can mask information in ∣b〉 = α0∣0〉 + α1∣1〉, if and only if α0 = x0 + y0i and ${\alpha }_{1}={x}_{1}-\sqrt{1-({x}_{0}^{2}+{y}_{0}^{2}+{x}_{1}^{2})}{\rm{i}}$ satisfy this figure. |
Figure 2. $| b\rangle =(\tfrac{1}{\sqrt{1+{\lambda }^{2}}})| 0\rangle +(\tfrac{\lambda {\rm{i}}}{\sqrt{1+{\lambda }^{2}}})| 1\rangle $ can be masked by $| {{\rm{\Psi }}}_{0}\rangle \,=({x}_{0}+{y}_{0}{\rm{i}})| 00\rangle +\tfrac{\sqrt{2}}{2}| 11\rangle $ and $| {{\rm{\Psi }}}_{1}\rangle =({x}_{0}+{y}_{0}{\rm{i}})| 01\rangle +\tfrac{\sqrt{2}}{2}| 10\rangle $ or $| {{\rm{\Psi }}}_{0}\rangle =({x}_{0}+{y}_{0}{\rm{i}})| 00\rangle -\tfrac{\sqrt{2}}{2}| 11\rangle $ and $| {{\rm{\Psi }}}_{1}\rangle =({x}_{0}+{y}_{0}{\rm{i}})| 01\rangle -\tfrac{\sqrt{2}}{2}| 10\rangle $, if and only if their coefficients λ, x0, y0 satisfy the relationship represented in this image. |