1. Introduction
Figure 1. Feynman diagrams between ${\bar{D}}^{(* )}$ and ${{\rm{\Sigma }}}_{c}^{(* )}$ corresponding to : (a) the one-meson-exchange interaction ΠM, (b) the double-gluon-exchange interaction ΠG, and c) the light-quark-exchange interaction ΠQ. Here q denotes a light up/down quark. |
Figure 2. Possible binding mechanism induced by shared light quarks, described by the light-quark-exchange term ΠQ. Here q denotes a light up/down quark. |
2. Correlation functions of ${D}^{-}{{\rm{\Sigma }}}_{c}^{++}/{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}/\bar{D}{{\rm{\Sigma }}}_{c}$ molecules
2.1. ${D}^{-}{{\rm{\Sigma }}}_{c}^{++}$ correlation function
Figure 3. Feynman diagrams corresponding to: (a) ${{\rm{\Pi }}}^{{D}^{-}}(x)$, (b) ${{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{++}}(x)$, (c) ${{\rm{\Pi }}}_{0}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)$, and (d) ${{\rm{\Pi }}}_{G}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)$. ${{\rm{\Pi }}}^{{D}^{-}}(x)$ and ${{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{++}}(x)$ are correlation functions of the D− meson and the ${{\rm{\Sigma }}}_{c}^{++}$ baryon, respectively. The correlation function of the ${D}^{-}{{\rm{\Sigma }}}_{c}^{++}$ molecule satisfies ${{\rm{\Pi }}}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)={{\rm{\Pi }}}_{0}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)+{{\rm{\Pi }}}_{G}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)$ with ${{\rm{\Pi }}}_{0}^{{D}^{-}{{\rm{\Sigma }}}_{c}^{++}}(x)={{\rm{\Pi }}}^{{D}^{-}}(x)\times {{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{++}}(x)$. |
2.2. ${\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}$ correlation function
Figure 4. Feynman diagrams corresponding to: (a) ${{\rm{\Pi }}}^{{\bar{D}}^{0}}(x)$, (b) ${{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{+}}(x)$, (c) ${{\rm{\Pi }}}_{0}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)$, (d) ${{\rm{\Pi }}}_{G}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)$, and (e) ${{\rm{\Pi }}}_{Q}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)$. ${{\rm{\Pi }}}^{{\bar{D}}^{0}}(x)$ and ${{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{+}}(x)$ are correlation functions of the ${\bar{D}}^{0}$ meson and the ${{\rm{\Sigma }}}_{c}^{+}$ baryon, respectively. The correlation function of the ${\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}$ molecule satisfies ${{\rm{\Pi }}}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)={{\rm{\Pi }}}_{0}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)+{{\rm{\Pi }}}_{G}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)+{{\rm{\Pi }}}_{Q}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)$ with ${{\rm{\Pi }}}_{0}^{{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}}(x)={{\rm{\Pi }}}^{{\bar{D}}^{0}}(x)\times {{\rm{\Pi }}}^{{{\rm{\Sigma }}}_{c}^{+}}(x)$. |
2.3. I = 1/2 $\bar{D}{{\rm{\Sigma }}}_{c}$ correlation function
2.4. I = 3/2 $\bar{D}{{\rm{\Sigma }}}_{c}$ correlation function
3. QCD sum rule studies of ${D}^{-}{{\rm{\Sigma }}}_{c}^{++}/{\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}/\bar{D}{{\rm{\Sigma }}}_{c}$ molecules
• | Because we are using local currents in QCD sum rule analyses, $\begin{eqnarray}V(| r| =0)={\rm{\Delta }}M.\end{eqnarray}$ |
• | Because the term ΠQ(x) is color-unconfined, its contribution decreases as r increases: $\begin{eqnarray}V(| r| \to \infty )\to 0.\end{eqnarray}$ |
3.1. I = 1/2 $\bar{D}{{\rm{\Sigma }}}_{c}$ sum rules
Figure 5. Relation between the Borel mass MB and the threshold value s0, constrained by equation ( |
Figure 6. Convergence (solid) and Pole-Contribution (dashed) as functions of the Borel mass MB. |
Figure 7. The mass correction ${\rm{\Delta }}{M}_{I=1/2,J=1/2}^{\bar{D}{{\rm{\Sigma }}}_{c}}$ as a function of the Borel mass MB. |
3.2. ${D}^{-}{{\rm{\Sigma }}}_{c}^{++}$ sum rules
3.3. ${\bar{D}}^{0}{{\rm{\Sigma }}}_{c}^{+}$ sum rules
3.4. I = 3/2 $\bar{D}{{\rm{\Sigma }}}_{c}$ sum rules
4. More hadronic molecules
4.1. ${\bar{D}}^{* }{{\rm{\Sigma }}}_{c}/\bar{D}{{\rm{\Sigma }}}_{c}^{* }/{\bar{D}}^{* }{{\rm{\Sigma }}}_{c}^{* }$ molecules
Figure 8. Mass corrections ${\rm{\Delta }}{M}^{{\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}}$ as functions of the Borel mass MB. The curves from top to bottom correspond to ${\rm{\Delta }}{M}_{I=1/2,J=1/2}^{{\bar{D}}^{* }{{\rm{\Sigma }}}_{c}^{* }}$, ${\rm{\Delta }}{M}_{I=1/2,J=3/2}^{{\bar{D}}^{* }{{\rm{\Sigma }}}_{c}^{* }}$, ${\rm{\Delta }}{M}_{I=1/2,J=3/2}^{{\bar{D}}^{* }{{\rm{\Sigma }}}_{c}}$, ${\rm{\Delta }}{M}_{I=1/2,J=3/2}^{\bar{D}{{\rm{\Sigma }}}_{c}^{* }}$, ${\rm{\Delta }}{M}_{I=1/2,J=1/2}^{\bar{D}{{\rm{\Sigma }}}_{c}}$, and ${\rm{\Delta }}{M}_{I=1/2,J=5/2}^{{\bar{D}}^{* }{{\rm{\Sigma }}}_{c}^{* }}$, respectively. |
4.2. ${\bar{D}}^{(* )}{{\rm{\Lambda }}}_{c}$ molecules
4.3. ${D}^{(* )}{\bar{K}}^{* }$ molecules
Figure 9. Mass corrections ${\rm{\Delta }}{M}^{{D}^{(* )}{\bar{K}}^{* }}$ as functions of the Borel mass MB. The curves from top to bottom correspond to ${\rm{\Delta }}{M}_{I=0,J=0}^{{D}^{* }{\bar{K}}^{* }}$ (short-dashed), ${\rm{\Delta }}{M}_{I=0,J=1}^{{D}^{* }{\bar{K}}^{* }}$ (middle-dashed), ${\rm{\Delta }}{M}_{I=0,J=2}^{{D}^{* }{\bar{K}}^{* }}$ (long-dashed), and ${\rm{\Delta }}{M}_{I=0,J=1}^{D{\bar{K}}^{* }}$ (solid), respectively. |
4.4. ${D}^{(* )}{\bar{D}}^{(* )}$ molecules
5. Covalent hadronic molecule
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
u2 ↔ u3 | S | S | S | S | S |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
u2 ↔ u3 | S | S | S | S | S |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q2 ↔ q3 | S | A | S | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q2 ↔ q3 | S | A | S | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
${\bar{q}}_{2}\leftrightarrow {\bar{q}}_{4}$ | S | S | A | S | A |
${\bar{q}}_{2}\leftrightarrow {\bar{q}}_{4}$ | S | A | S | S | A |
1. | 1.In the ${\bar{D}}^{(* )}[{\bar{c}}_{1}{q}_{2}]{K}^{(* )}[{\bar{s}}_{3}{q}_{4}]$ covalent molecule, the two exchanged light quarks q2 and q4 have the same color and so the symmetric color structure; besides, we assume their orbital structure to be S-wave and so also symmetric; consequently, there are two possible configurations satisfying the Pauli principle (S = symmetric and A = antisymmetric):
| |||||||||||||||||||||||||||||||||||||||||||||||||
2. | 2.In the ${\bar{D}}^{(* )}[{\bar{c}}_{1}{q}_{2}]$–${{\rm{\Sigma }}}_{c}^{(* )}[{q}_{3}{q}_{4}{c}_{5}]$ covalent molecule, there is three light up/down quarks. We assume the two exchanged quarks to be q2 and q3 with the same color. There are also two possible configurations:
| |||||||||||||||||||||||||||||||||||||||||||||||||
3. | 3.In the ${{\rm{\Sigma }}}_{c}^{(* )}[{q}_{1}{q}_{2}{c}_{3}]$–${{\rm{\Sigma }}}_{b}^{(* )}[{q}_{4}{q}_{5}{c}_{6}]$ covalent molecule, there is four light up/down quarks. We assume that q1 and q4 can be exchanged with the same color, and q2 and q5 can also be exchanged with the same color. There can be four possible configurations: |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q4 | S | A | S | S | A |
q2 ↔ q5 | S | A | S | S | A |
q1 ↔ q2 | A | S | S | S | A |
q1 ↔ q5 | A | S | S | S | A |
q2 ↔ q4 | A | S | S | S | A |
q4 ↔ q5 | A | S | S | S | A |
| |||||
q1 ↔ q4 | S | S | A | S | A |
q2 ↔ q5 | S | A | S | S | A |
⋯ | |||||
| |||||
q1 ↔ q4 | S | A | S | S | A |
q2 ↔ q5 | S | S | A | S | A |
⋯ | |||||
| |||||
q1 ↔ q4 | S | S | A | S | A |
q2 ↔ q5 | S | S | A | S | A |
⋯ |
• | Induced by shared light up/down quarks, there can be the I = 0 ${\bar{D}}^{(* )}[\bar{c}q]$–${B}^{(* )}[\bar{b}q]$, I = 0 ${\bar{D}}^{(* )}[\bar{c}q]$–${{\rm{\Xi }}}_{c}^{(^{\prime} * )}[{csq}]$, I = 0 ${{\rm{\Sigma }}}_{c}^{(* )}[{cqq}]$–${{\rm{\Sigma }}}_{b}^{(* )}[{bqq}]$, and I = 1/2 ${{\rm{\Sigma }}}_{c}^{(* )}[{cqq}]$–${{\rm{\Xi }}}_{b}^{(^{\prime} * )}[{bsq}]$ covalent molecules, etc. We roughly estimate their binding energies to be at the 10 MeV level, considering the Pc/Pcs and X0(2900) [66, 67] as possible covalent hadronic molecules. We list them in table 1, which are still waiting to be carefully analysed. |
• | If the strange quark is also exchangeable, there can be the ${\bar{D}}_{s}^{(* )}[\bar{c}s]$–${B}^{(* )}[\bar{b}q]$ and ${\bar{D}}_{s}^{(* )}[\bar{c}s]$–${{\rm{\Xi }}}_{c}^{(^{\prime} * )}[{csq}]$ covalent molecules, etc. These states are induced by shared light up/down/strange quarks, with the SU(3) light flavor structure being antisymmetric. |
• | If the heavy-quark-exchange interaction is negligible, there might be the I = 0 ${\bar{D}}^{(* )}[\bar{c}q]$–${\bar{D}}^{(* )}[\bar{c}q]$, I = 0 ${{\rm{\Sigma }}}_{c}^{(* )}[{cqq}]$–${{\rm{\Sigma }}}_{c}^{(* )}[{cqq}]$, and I = 1/2 ${{\rm{\Sigma }}}_{c}^{(* )}[{cqq}]$–${{\rm{\Xi }}}_{c}^{(^{\prime} * )}[{csq}]$ covalent molecules, etc. These states are still induced by shared light up/down quarks. |
• | Especially, we propose to search for the ${D}^{* -}[\bar{c}d]$–${K}^{* 0}[\bar{s}d]$, ${D}^{* -}[\bar{c}d]$–${D}^{* -}[\bar{c}d]$, and ${D}^{* -}[\bar{c}d]$–${B}^{* 0}[\bar{b}d]$ covalent molecules of I = 1 and J = 0. These states might exist, when the two light quarks spin in opposite directions and the two antiquarks also spin in opposite directions, just like the para-hydrogen. |
Table 1. Possibly-existing covalent hadronic molecules $\left|(I){J}^{P}\right\rangle $ induced by shared light up/down quarks, derived from the hypothesis that the light-quark-exchange interaction is attractive when the shared light quarks are totally antisymmetric so that they obey the Pauli principle. Here, q and s denote the light up/down and strange quarks, respectively; Q and ${Q}^{{\prime} }$ denote two different heavy quarks; the symbols [AB] = AB − BA and {AB} = AB + BA denote the antisymmetric and symmetric SU(3) light flavor structures, respectively. The states with ✓have been confirmed in QCD sum rule calculations of the present study, but the states with ? and ?? have not. This is because the latter contain relatively-polarized components, while one needs to sum over polarizations of these components within QCD sum rule method and so can not differentiate these hyperfine structures. Moreover, the states with ?? contain light up/down quarks with the symmetric flavor/isospin structure, whose masses are (probably) considerably larger than their partners with the antisymmetric flavor/isospin structure. The states without any identification are still waiting to be carefully analysed in our future QCD sum rule studies. |
$\left|\bar{Q}q,\displaystyle \frac{1}{2}{0}^{-}\right\rangle $ | $\left|\bar{Q}q,\displaystyle \frac{1}{2}{1}^{-}\right\rangle $ | $\left|Q[{qq}],0{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | $\left|Q\{{qq}\},1{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | $\left|Q\{{qq}\},1{\displaystyle \frac{3}{2}}^{+}\right\rangle $ | $\left|Q[{sq}],\displaystyle \frac{1}{2}{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | $\left|Q\{{sq}\},\displaystyle \frac{1}{2}{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | $\left|Q\{{sq}\},\displaystyle \frac{1}{2}{\displaystyle \frac{3}{2}}^{+}\right\rangle $ | |
---|---|---|---|---|---|---|---|---|
$\left|{\bar{Q}}^{{\prime} }q,\displaystyle \frac{1}{2}{0}^{-}\right\rangle $ | $\left|(0){0}^{+}\right\rangle $ | $\left|(0){1}^{+}\right\rangle $ (✓) | — | $\left|(\displaystyle \frac{1}{2}){\displaystyle \frac{1}{2}}^{-}\right\rangle $ (✓) | $\left|(\displaystyle \frac{1}{2}){\displaystyle \frac{3}{2}}^{-}\right\rangle $ (✓) | $\left|(0){\displaystyle \frac{1}{2}}^{-}\right\rangle $ | $\left|(0){\displaystyle \frac{1}{2}}^{-}\right\rangle $ | $\left|(0){\displaystyle \frac{3}{2}}^{-}\right\rangle $ |
$\left|{\bar{Q}}^{{\prime} }q,\displaystyle \frac{1}{2}{1}^{-}\right\rangle $ | $\begin{array}{c}\left|(0){0}^{+}\right\rangle \,(?)\\ \left|(1){0}^{+}\right\rangle \,(??)\\ \left|(0){1}^{+}\right\rangle \,(?)\\ \left|(1){1}^{+}\right\rangle \,(??)\\ \left|(0){2}^{+}\right\rangle \,(\checkmark )\end{array}$ | — | $\begin{array}{c}\left|(\displaystyle \frac{1}{2}){\displaystyle \frac{1}{2}}^{-}\right\rangle \,(?)\\ \left|(\displaystyle \frac{3}{2}){\displaystyle \frac{1}{2}}^{-}\right\rangle \,(??)\\ \left|(\displaystyle \frac{1}{2}){\displaystyle \frac{3}{2}}^{-}\right\rangle \,(\checkmark )\\ \left|(\displaystyle \frac{3}{2}){\displaystyle \frac{3}{2}}^{-}\right\rangle \,(??)\end{array}$ | $\begin{array}{c}\left|(\displaystyle \frac{1}{2}){\displaystyle \frac{1}{2}}^{-}\right\rangle \,(?)\\ \left|(\displaystyle \frac{3}{2}){\displaystyle \frac{1}{2}}^{-}\right\rangle \,(??)\\ \left|(\displaystyle \frac{1}{2}){\displaystyle \frac{3}{2}}^{-}\right\rangle \,(?)\\ \left|(\displaystyle \frac{3}{2}){\displaystyle \frac{3}{2}}^{-}\right\rangle \,(??)\\ \left|(\displaystyle \frac{1}{2}){\displaystyle \frac{5}{2}}^{-}\right\rangle \,(\checkmark )\end{array}$ | $\begin{array}{c}\left|(0){\displaystyle \frac{1}{2}}^{-}\right\rangle \\ \left|(0){\displaystyle \frac{3}{2}}^{-}\right\rangle \end{array}$ | $\begin{array}{c}\left|(0){\displaystyle \frac{1}{2}}^{-}\right\rangle \\ \left|(1){\displaystyle \frac{1}{2}}^{-}\right\rangle \\ \left|(0){\displaystyle \frac{3}{2}}^{-}\right\rangle \\ \left|(1){\displaystyle \frac{3}{2}}^{-}\right\rangle \end{array}$ | $\begin{array}{c}\left|(0){\displaystyle \frac{1}{2}}^{-}\right\rangle \\ \left|(1){\displaystyle \frac{1}{2}}^{-}\right\rangle \\ \left|(0){\displaystyle \frac{3}{2}}^{-}\right\rangle \\ \left|(1){\displaystyle \frac{3}{2}}^{-}\right\rangle \\ \left|(0){\displaystyle \frac{5}{2}}^{-}\right\rangle \end{array}$ | |
| ||||||||
$\left|Q[{qq}],0{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | — | — | — | — | — | — | ||
| ||||||||
$\left|Q\{{qq}\},1{\displaystyle \frac{1}{2}}^{+}\right\rangle $ | $\begin{array}{c}\left|(0){1}^{+}\right\rangle \\ \left|(1)0/{1}^{+}\right\rangle \\ \left|(2)0/{1}^{+}\right\rangle \end{array}$ | $\begin{array}{c}\left|(0)1/{2}^{+}\right\rangle \\ \left|(1)1/{2}^{+}\right\rangle \\ \left|(2){1}^{+}\right\rangle \end{array}$ | $\left|(\displaystyle \frac{1}{2})0/{1}^{+}\right\rangle $ | $\begin{array}{c}\left|(\displaystyle \frac{1}{2})0/{1}^{+}\right\rangle \\ \left|(\displaystyle \frac{3}{2})0/{1}^{+}\right\rangle \end{array}$ | $\begin{array}{c}\left|(\displaystyle \frac{1}{2})1/{2}^{+}\right\rangle \\ \left|(\displaystyle \frac{3}{2})1/{2}^{+}\right\rangle \end{array}$ | |||
| ||||||||
$\left|Q\{{qq}\},1{\displaystyle \frac{3}{2}}^{+}\right\rangle $ | $\begin{array}{c}\left|(0)1/2/{3}^{+}\right\rangle \\ \left|(1)0/1/{2}^{+}\right\rangle \\ \left|(2)0/{1}^{+}\right\rangle \end{array}$ | $\left|(\displaystyle \frac{1}{2})1/{2}^{+}\right\rangle $ | $\begin{array}{c}\left|(\displaystyle \frac{1}{2})1/{2}^{+}\right\rangle \\ \left|(\displaystyle \frac{3}{2})1/{2}^{+}\right\rangle \end{array}$ | $\begin{array}{c}\left|(\displaystyle \frac{1}{2})0/1/2/{3}^{+}\right\rangle \\ \left|(\displaystyle \frac{3}{2})0/1/{2}^{+}\right\rangle \end{array}$ |
6. A toy model to formulize covalent hadronic molecules
6.1. Parameters
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
$q\leftrightarrow {q}^{{\prime} }$ | S | A | S | S | A |
Figure 10. (Weakly-)Attractive and repulsive covalent hadronic bonds as well as their combinations. In the present study we take into account the attractive bond and its combination with the repulsive bond, whose bond energies are estimated to be A ∼ 30 MeV and A − R ∼ 13 MeV, respectively. |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
$q\leftrightarrow {q}^{{\prime} }$ | S | S | A | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | A | A | A | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | A | A | A | S | A |
q2 ↔ q3 | A | A | A | S | A |
q1 ↔ q3 | S | S | S | S | S |
6.2. Nucleus
Figure 11. Illustration of the 2H, 3H, 3He, and 4He in our model. The shape of 4He is a tetrahedron other than a square. |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | S | A | S | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | S | A | S | S | A |
q1 ↔ q3 | S | A | S | S | A |
q2 ↔ q3 | S | S | A | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | S | S | A | S | A |
q1 ↔ q3 | S | A | S | S | A |
q1 ↔ q4 | S | A | S | S | A |
q2 ↔ q3 | S | A | S | S | A |
q2 ↔ q4 | S | A | S | S | A |
q3 ↔ q4 | S | S | A | S | A |
6.3. ${D}^{(* )}{D}^{(* )}/{D}^{(* )}{\bar{B}}^{(* )}/{\bar{B}}^{(* )}{\bar{B}}^{(* )}$ molecules
• | The term ${{\rm{\Pi }}}_{{qc}}^{{{DD}}^{* }}(x)$ exchanging both light and heavy quarks simply vanishes, i.e. ${{\rm{\Pi }}}_{{qc}}^{{{DD}}^{* }}(x)=0$. |
• | The term ${{\rm{\Pi }}}_{q}^{{{DD}}^{* }}(x)$ exchanging light quarks is positive, so its induced interaction is attractive. |
• | The term ${{\rm{\Pi }}}_{c}^{{{DD}}^{* }}(x)$ exchanging heavy charm quarks is negative, so its induced interaction is repulsive. |
• | The terms ${{\rm{\Pi }}}_{c}^{{{DD}}^{* }}(x)$ and ${{\rm{\Pi }}}_{q}^{{{DD}}^{* }}(x)$ are almost opposite, i.e. ${{\rm{\Pi }}}_{c}^{{{DD}}^{* }}(x)\approx -{{\rm{\Pi }}}_{q}^{{{DD}}^{* }}(x)$. |
Figure 12. Feynman diagrams between two charmed mesons corresponding to: (a) the leading term ${{\rm{\Pi }}}_{0}^{{D}^{(* )}{D}^{(* )}}(x)={{\rm{\Pi }}}^{{D}^{(* )}}(x)\times {{\rm{\Pi }}}^{{D}^{(* )}}(x)$ contributed by two non-correlated charmed mesons, (b) the light-quark-exchange interaction ${{\rm{\Pi }}}_{q}^{{D}^{(* )}{D}^{(* )}}$, (c) the heavy-quark-exchange interaction ${{\rm{\Pi }}}_{c}^{{D}^{(* )}{D}^{(* )}}$, and (d) the interaction ${{\rm{\Pi }}}_{{qc}}^{{D}^{(* )}{D}^{(* )}}$ exchanging both light and heavy quarks. Here q denotes a light up/down quark. |
Figure 13. Illustration of the hadronic molecules DD* and $D{\bar{B}}^{* }$ of (I)JP = (0)1+, DDD* and ${DD}{\bar{B}}^{* }$ of (I)JP = (1/2)1+, and DDD*D* and ${DD}{\bar{B}}^{* }{\bar{B}}^{* }$ of (I)JP = (0)0+/(0)2+ in our model. |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
${\bar{q}}_{1}\leftrightarrow {\bar{q}}_{2}$ | S | A | S | S | A |
Table 2. Binding energies of some possibly-existing covalent hadronic molecules, estimated in our toy model through the simplified formula B = NAA + NSS − NRR − Nε, with A ∼ 30 MeV, S ∼ 20 MeV, R ∼ 17 MeV, and ε ∼ 6 MeV. We do not take into account the spin splitting effect described by the parameter κ ∼ 13 MeV here. |
Molecules | Binding energies | Molecules | Binding energies |
---|---|---|---|
2H, ${D}^{* }{D}^{(* )}/{\bar{B}}^{* }{\bar{B}}^{(* )}$ | 1 MeV | ${D}^{(* )}{\bar{B}}^{(* )}$ | 18 MeV |
3H/3He, ${D}^{* }{D}^{(* )}{D}^{(* )}/{\bar{B}}^{* }{\bar{B}}^{(* )}{\bar{B}}^{(* )}$ | 8 MeV | ${D}^{(* )}{D}^{(* )}{\bar{B}}^{(* )}/{D}^{(* )}{\bar{B}}^{(* )}{\bar{B}}^{(* )}$ | 42 MeV |
4He, ${D}^{* }{D}^{* }{D}^{(* )}{D}^{(* )}/{\bar{B}}^{* }{\bar{B}}^{* }{\bar{B}}^{(* )}{\bar{B}}^{(* )}$ | 28 MeV | ${D}^{* }{D}^{(* )}{D}^{(* )}{\bar{B}}^{(* )}/{D}^{(* )}{\bar{B}}^{(* )}{\bar{B}}^{(* )}{\bar{B}}^{* }$ | 62 MeV |
${D}^{(* )}{D}^{(* )}{\bar{B}}^{(* )}{\bar{B}}^{(* )}$ | 96 MeV | ||
${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | 31 MeV | ${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | 48 MeV |
${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{\bar{D}}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}/{B}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{B}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ | 18 MeV | ||
${\bar{D}}^{(* )}{\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}$ | 42 MeV | ||
${D}^{(* )}{\bar{B}}_{s}^{(* )}$ | 8 MeV | ||
${}_{{\rm{\Lambda }}}^{3}$H, ${D}^{* }{D}^{(* )}{D}_{s}^{(* )}$ | 1 MeV | ${D}^{(* )}{D}^{(* )}{\bar{B}}_{s}^{(* )}$ | 35 MeV |
${}_{{\rm{\Lambda }}}^{4}$H/${}_{{\rm{\Lambda }}}^{4}$He, ${D}^{* }{D}^{(* )}{D}^{(* )}{D}_{s}^{(* )}$ | 11 MeV | ${D}^{* }{D}^{(* )}{D}^{(* )}{\bar{B}}_{s}^{(* )}$ | 62 MeV |
${}_{{\rm{\Lambda }}}^{5}$He, ${D}^{* }{D}^{* }{D}^{(* )}{D}^{(* )}{D}_{s}^{(* )}$ | 31 MeV | ${D}^{* }{D}^{* }{D}^{(* )}{D}^{(* )}{\bar{B}}_{s}^{(* )}$ | 82 MeV |
${}_{{\rm{\Lambda }}{\rm{\Lambda }}}^{\,\,6}$He, ${D}^{* }{D}^{* }{D}^{(* )}{D}^{(* )}{D}_{s}^{(* )}{D}_{s}^{(* )}$ | 34 MeV | ${D}^{* }{D}^{* }{D}^{(* )}{D}^{(* )}{\bar{B}}_{s}^{(* )}{\bar{B}}_{s}^{(* )}$ | 136 MeV |
${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ | 21 MeV | ${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{b}^{(^{\prime} * )}$ | 38 MeV |
${{\rm{\Xi }}}_{c}^{(^{\prime} * )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ | 11 MeV | ${{\rm{\Xi }}}_{c}^{(^{\prime} * )}{{\rm{\Xi }}}_{b}^{(^{\prime} * )}$ | 28 MeV |
${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ | 71 MeV | ${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}{{\rm{\Xi }}}_{b}^{(^{\prime} * )}$ | 105 MeV |
${\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ | 18 MeV | ||
${\bar{D}}^{(* )}{\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}$ | 35 MeV | ||
${\bar{D}}^{(* )}{\bar{D}}^{(* )}{{\rm{\Xi }}}_{c}^{(^{\prime} * )}{{\rm{\Xi }}}_{b}^{(^{\prime} * )}$ | 116 MeV |
6.4. ${{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{{\rm{\Sigma }}}_{c}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}/{{\rm{\Sigma }}}_{b}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ molecules
Figure 14. Illustration of the hadronic molecules ${{\rm{\Sigma }}}_{c}{{\rm{\Sigma }}}_{c}^{* }$ and ${{\rm{\Sigma }}}_{c}{{\rm{\Sigma }}}_{b}^{* }$ of (I)JP = (0)1+/(0)2+ in our model. |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q3 | S | A | S | S | A |
q2 ↔ q4 | S | A | S | S | A |
q1 ↔ q2 | A | S | S | S | A |
q1 ↔ q4 | A | S | S | S | A |
q2 ↔ q3 | A | S | S | S | A |
q3 ↔ q4 | A | S | S | S | A |
6.5. ${\bar{D}}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{\bar{D}}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}/{B}^{(* )}{{\rm{\Sigma }}}_{c}^{(* )}/{B}^{(* )}{{\rm{\Sigma }}}_{b}^{(* )}$ molecules
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q2 | S | A | S | S | A |
q1 ↔ q3 | A | S | S | S | A |
q2 ↔ q3 | A | S | S | S | A |
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
q1 ↔ q3 | S | A | S | S | A |
q2 ↔ q4 | S | A | S | S | A |
q1 ↔ q2 | A | S | S | S | A |
q1 ↔ q4 | A | S | S | S | A |
q2 ↔ q3 | A | S | S | S | A |
q3 ↔ q4 | A | S | S | S | A |
Figure 15. Illustration of the hadronic molecules $\bar{D}{{\rm{\Sigma }}}_{c}$ of (I)JP = (1/2)1/2− and $\bar{D}\bar{D}{{\rm{\Sigma }}}_{c}$ of (I)JP = (0)1/2+ in our model. |
6.6. Molecules with strangeness
color | flavor | spin | orbital | total | |
---|---|---|---|---|---|
s ↔ q | S | S | A | S | A |
s ↔ q | S | A | S | S | A |
Figure 16. Illustration of the ${}_{{\rm{\Lambda }}}^{3}$H, ${}_{{\rm{\Lambda }}}^{4}$H, ${}_{{\rm{\Lambda }}}^{5}$He, and ${}_{{\rm{\Lambda }}{\rm{\Lambda }}}^{\,\,6}$He in our model. The shape of ppnn in the subfigures (c) and (d) is a tetrahedron other than a square. |
6.7. Discussions on the spin splitting effect
7. Summary and discussions
• | the $\bar{D}{{\rm{\Sigma }}}_{c}$ covalent molecule of I = 1/2 and J = 1/2, |
• | the ${\bar{D}}^{* }{{\rm{\Sigma }}}_{c}$ covalent molecule of I = 1/2 and J = 3/2, |
• | the $\bar{D}{{\rm{\Sigma }}}_{c}^{* }$ covalent molecule of I = 1/2 and J = 3/2, |
• | the ${\bar{D}}^{* }{{\rm{\Sigma }}}_{c}^{* }$ covalent molecule of I = 1/2 and J = 5/2, |
• | the $D{\bar{K}}^{* }$ covalent molecule of I = 0 and J = 1, |
• | the ${D}^{* }{\bar{K}}^{* }$ covalent molecule of I = 0 and J = 2. |