1. Introduction
2. Static SS solutions of the EFEs and their CVFs in f(T) gravity
(i)$a=\mathrm{constant},$ $b=b\left(r\right)$, ${{\rm{e}}}^{-b}b^{\prime} r+2{{\rm{e}}}^{-b}-2=0$ implies $b=\mathrm{ln}\left(\tfrac{1}{1+{k}_{1}{r}^{2}}\right),$ Q = r and $T=\left(\tfrac{2}{{r}^{2}}+2{k}_{1}\right),$ where ${k}_{1}\,\in {\mathfrak{R}}\setminus \{0\}.$ | |
(ii)$a=a\left(r\right)$, $b=\mathrm{constant},$ $2{ra}^{\prime\prime} +{ra}{{\prime} }^{2}-2a^{\prime} =0$ ⇒ $a\,=\mathrm{ln}{r}^{4},$ eb = 1, Q = r and T = 10r−2. | |
(iii)$a=a\left(r\right)$, $b=b\left(r\right)$, a = b−1, ${r}^{2}\left(b^{\prime\prime} -b{{\prime} }^{2}\right)+2\left(1,-,{{\rm{e}}}^{b}\right)\,=0$ implies $b=\mathrm{ln}{\left(1-\tfrac{{k}_{1}}{r}+\tfrac{{k}_{2}{r}^{2}}{3}\right)}^{-1}$, $a=\mathrm{ln}\left(1-\tfrac{{k}_{1}}{r}+\tfrac{{k}_{2}{r}^{2}}{3}\right),$ Q = r and $T=\left(\tfrac{2}{{r}^{2}}+2{k}_{2}\right),$ where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(iv)$a=a\left(r\right)$, $b=b\left(r\right)$, a = b−1, ${{\rm{e}}}^{a}\left(\tfrac{a^{\prime\prime} }{2}+\tfrac{a{{\prime} }^{2}}{2}-\tfrac{1}{{r}^{2}}\right)+\tfrac{1}{{r}^{2}}\,=0$ ⇒ $a=\mathrm{ln}\left(1-\tfrac{2M}{r}\right)$, $b=\mathrm{ln}{\left(1-\tfrac{2M}{r}\right)}^{-1},$ Q = r and $T=\tfrac{2}{{r}^{2}},$ where M represents the Arnowitt–Deser–Misner mass. | |
(v)$a=a\left(r\right)$, $b=b\left(r\right)$, a = b−1, ${r}^{2}\left(a^{\prime\prime} +a{{\prime} }^{2}\right)\,-2\left(1-{{\rm{e}}}^{-a}\right)=0$ implies $a=\mathrm{ln}\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right)$, $b\,=\mathrm{ln}{\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right)}^{-1},$ Q = r and $T=\left(\tfrac{2}{{r}^{2}}-2{\rm{\Lambda }}\right),$ where Λ is the cosmological constant. | |
(vi)$a=a\left(r\right)$, $b=b\left(r\right)$, ${ra}^{\prime} +1=0$ which gives $a=\mathrm{ln}\left(\tfrac{{k}_{1}}{r}\right)$, $4{{\rm{e}}}^{b}-{rb}^{\prime} +1=0$ implies $b=\mathrm{ln}\left(\tfrac{r}{{k}_{2}-4r}\right),$ Q = r and T = 0, where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(vii)$a=a\left(r\right)$, $b=b\left(r\right)$, ${ra}^{\prime} -2=0$ implies $a=\mathrm{ln}\left({k}_{1}{r}^{2}\right)$, ${{\rm{e}}}^{b}-{rb}^{\prime} -2=0$ ⇒ $b=\mathrm{ln}\left(\tfrac{2}{1+2{k}_{2}{r}^{2}}\right),$ Q = r and $T\,=\displaystyle \frac{3\left(1+2{k}_{2}{r}^{2}\right)}{{r}^{2}},$ where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(viii)$a=a\left(r\right)$, $b=b\left(r\right)$, $\left(\tfrac{a^{\prime\prime} }{2}+\tfrac{a{{\prime} }^{2}}{4}\right)=0$ ⇒ $a\,=\mathrm{ln}{\left(\tfrac{{k}_{1}r+{k}_{2}}{2}\right)}^{2}$, $-{k}_{1}b^{\prime} {{\rm{e}}}^{-b}+2\left({k}_{1}r+{k}_{2}\right)=0$ which implies $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{k}_{1}{k}_{3}-{k}_{1}{r}^{2}-2{k}_{2}r}\right),$ Q = 1 and T = 0, where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(ix)$a=a\left(r\right)$, $b=b\left(r\right)$, a = b−1, $a^{\prime\prime} +a{{\prime} }^{2}+2{{\rm{e}}}^{-a}=0$ implies $a=\mathrm{ln}\left({k}_{2}-{k}_{1}r-{r}^{2}\right)$, $b=\mathrm{ln}{\left({k}_{2}-{k}_{1}r-{r}^{2}\right)}^{-1},$ Q = 1 and T = 0, where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(x)$a=\mathrm{constant}\,=\,{k}_{1}\ne 0$, $b=\mathrm{constant}\,=\,{k}_{2}\ne 0$, $a=\mathrm{ln}\left({k}_{1}\right)$, $b=\mathrm{ln}\left({k}_{2}\right)$, ${QQ}^{\prime\prime} -Q{{\prime} }^{2}+{k}_{2}=0$ implies $Q=r\sqrt{{k}_{2}}$ and $T=\tfrac{2}{{k}_{2}{r}^{2}},$ where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\setminus \{0\}$ with k1 ≠ k2. Now, we discuss the second possibility arising from equation ( $\begin{eqnarray}\begin{array}{l}\left[\displaystyle \frac{-a^{\prime} Q^{\prime\prime} }{Q}+\left(a^{\prime} +b^{\prime} \right)\displaystyle \frac{Q{{\prime} }^{2}}{{Q}^{2}}+\displaystyle \frac{2Q{{\prime} }^{3}}{{Q}^{3}}\right.\\ \quad \left.+\displaystyle \frac{Q^{\prime} }{Q}\left(a^{\prime} b^{\prime} -a^{\prime\prime} -\displaystyle \frac{2Q^{\prime\prime} }{Q}\right)\right]=0.\end{array}\end{eqnarray}$ Equation ( | |
(xi)$a=a\left(r\right)$, $b=b\left(r\right)$, ${ra}^{\prime\prime} -a^{\prime} =0$ implies $a\,=\left(\tfrac{{k}_{1}{r}^{2}}{2}+{k}_{2}\right)$, ${rb}^{\prime} \left({ra}^{\prime} +1\right)+2=0$ ⇒ $b=\mathrm{ln}{\left(\tfrac{{k}_{3}\sqrt{{k}_{1}{r}^{2}+1}}{r}\right)}^{2},$ Q = r and $T=\tfrac{2}{{k}_{3}^{2}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{3}\ne 0\right).$ | |
(xii) $a=a\left(r\right)$, $b=b\left(r\right)$, $1+{rb}^{\prime} =0$ implies $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{r}\right)$, ${r}^{2}a^{\prime\prime} -{rb}^{\prime} -2=0$ ⇒ $a=\mathrm{ln}\left(\tfrac{{k}_{3}{{\rm{e}}}^{{k}_{2}r}}{r}\right),$ Q = r and $T=\tfrac{2{k}_{2}}{{k}_{3}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{3}\ne 0\right).$ | |
(xiii)$a=a\left(r\right)$, $b=b\left(r\right)$, $2+{rb}^{\prime} =0$ implies $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$, ${ra}^{\prime\prime} -a^{\prime} \left(1+{rb}^{\prime} \right)=0$ ⇒ $a=\mathrm{ln}\left({k}_{3}{r}^{{k}_{2}}\right),$ Q = r and $T=\tfrac{2\left({k}_{2}+1\right)}{{k}_{1}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{2},{k}_{3}\ne 0\right).$ | |
(xiv)$a=a\left(r\right)$, $b=b\left(r\right)$, $2+{ra}^{\prime} =0$ implies $a=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$, ${ra}^{\prime\prime} -b^{\prime} \left(1+{ra}^{\prime} \right)=0$ ⇒ $b=\mathrm{ln}\left(\tfrac{{k}_{2}}{{r}^{2}}\right),$ Q = r and $T=\tfrac{-2}{{k}_{2}},$ where ${k}_{1},{k}_{2}\in {\mathfrak{R}}\left({k}_{1},{k}_{2}\ne 0\right).$ | |
(xv)$a=a\left(r\right)$, $b=b\left(r\right)$, r2a″ − 2 = 0 implies $a=\mathrm{ln}\left(\tfrac{{{\rm{e}}}^{{k}_{1}r+{k}_{2}}}{{r}^{2}}\right)$, $a^{\prime} +b^{\prime} \left(1+{ra}^{\prime} \right)=0$ ⇒ $b=\mathrm{ln}\left[\tfrac{{k}_{3}\left({k}_{1}r-1\right)}{{r}^{2}}\right],$ Q = r and $T=\tfrac{2}{{k}_{3}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{3}\ne 0\right).$ | |
(xvi)$a=\mathrm{constant}$, $b=b\left(r\right)$, ${rb}^{\prime} +2=0$ ⇒ $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$, ea =1, Q = r and $T=\tfrac{2}{{k}_{1}},$ where ${k}_{1}\in {\mathfrak{R}}\setminus \{0\}.$ | |
(xvii)$a=a\left(r\right)$, $b\,=\,\mathrm{constant}\,=\,{k}_{1}\ne 0$, ${r}^{2}a^{\prime\prime} -{ra}^{\prime} -2=0$ ⇒$a=\left(\tfrac{{k}_{2}{r}^{2}}{2}-\mathrm{ln}r+{k}_{3}\right),$ Q = r and $T=\tfrac{2{k}_{2}}{{{\rm{e}}}^{{k}_{1}}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{2}\ne 0\right).$ | |
(xviii)$a=a\left(r\right)$, $b=b\left(r\right)$, a″ = 0 implies $a=\left({k}_{1}r+{k}_{2}\right)$, ${ra}^{\prime} \left(1+{rb}^{\prime} \right)+{rb}^{\prime} +2\,=\,0$ ⇒ $b=\mathrm{ln}\left[\tfrac{{k}_{3}\left({k}_{1}r+1\right)}{{r}^{2}}\right],$ Q = r and $T=\tfrac{2}{{k}_{3}},$ where ${k}_{1},{k}_{2},{k}_{3}\in {\mathfrak{R}}\left({k}_{1},{k}_{3}\ne 0\right).$ | |
(xix)$a=\mathrm{constant}\,=\,{k}_{1}\ne 0$, $b=b\left(r\right)$, Q″ = 0 implies $Q\,=\left({k}_{2}r+{k}_{3}\right)$, $b^{\prime} Q+2Q^{\prime} =0$ ⇒ $b=\mathrm{ln}\left[\tfrac{{k}_{4}}{{\left({k}_{2}r+{k}_{3}\right)}^{2}}\right]$ and $T\,=\tfrac{2{k}_{2}^{2}}{{k}_{4}},$ where ${k}_{1},{k}_{2},{k}_{3},{k}_{4}\in {\mathfrak{R}}\left({k}_{1},{k}_{2},{k}_{4}\ne 0\right).$ | |
(xx)$a=\mathrm{constant}\,=\,{k}_{1}\ne 0$, $b=\mathrm{constant}\,=\,{k}_{2}\ne 0$, $a\,=\mathrm{ln}({k}_{1})$, $b=\mathrm{ln}({k}_{2})$, ${QQ}^{\prime\prime} -Q{{\prime} }^{2}=0$ implies $Q={{\rm{e}}}^{{k}_{3}r+{k}_{4}}$ and $T=\tfrac{2{k}_{3}^{2}}{{{\rm{e}}}^{{k}_{2}}},$ where ${k}_{1},{k}_{2},{k}_{3},{k}_{4}\in {\mathfrak{R}}\left({k}_{3}\ne 0\right)$ with k1 ≠ k2. |
Table 1. CVFs of obtained static SS metrics. |
Case No. | Metric components | CVFs | Conformal factor | Description |
---|---|---|---|---|
(iv) | $a=\mathrm{ln}\left(1-\tfrac{2M}{r}\right)$, $b=\mathrm{ln}{\left(1-\tfrac{2M}{r}\right)}^{-1}$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(v) | $a=\mathrm{ln}\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right)$, $b=\mathrm{ln}{\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right)}^{-1}$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(vi) | $a=\mathrm{ln}\left(\tfrac{{k}_{1}}{r}\right)$, $b=\mathrm{ln}\left(\tfrac{r}{{k}_{2}-4r}\right)$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(vii) | $a=\mathrm{ln}\left({k}_{1}{r}^{2}\right),$ $b=\mathrm{ln}\left(\tfrac{2}{1+2{k}_{2}{r}^{2}}\right)$ and Q = r. | Y1, Y2, Y3, Y4, ${Y}_{5}^{* * }={rt}\sqrt{1+2{k}_{2}{r}^{2}}\tfrac{\partial }{\partial r}+\tfrac{2}{{k}_{1}}\mathrm{ln}\left(\tfrac{\sqrt{2{k}_{2}}r}{1+\sqrt{1+2{k}_{2}{r}^{2}}}\right)\tfrac{\partial }{\partial t}$ and ${Y}_{6}^{* * }=r\sqrt{1+2{k}_{2}{r}^{2}}\tfrac{\partial }{\partial r}.$ | $\xi =\sqrt{1+2{k}_{2}{r}^{2}}\left({c}_{1}t+{c}_{2}\right),$ where, ${c}_{1},{c}_{2}\in {\mathfrak{R}}\left({c}_{1}\ne 0\right).$ | CVFs |
(viii) | $a=\mathrm{ln}{\left(\tfrac{{k}_{1}r+{k}_{2}}{2}\right)}^{2}$, $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{k}_{1}{k}_{3}-{k}_{1}{r}^{2}-2{k}_{2}r}\right)$ and Q=1. | Y1, Y2, Y3, Y4, ${Y}_{5}=-\left[{{\rm{\Omega }}}_{1}\cos {\rm{\Psi }}\right]\tfrac{\partial }{\partial t}-\left[{{\rm{\Omega }}}_{2}\sin {\rm{\Psi }}\right]\tfrac{\partial }{\partial r}$ and ${Y}_{6}=\left[{{\rm{\Omega }}}_{1}\sin {\rm{\Psi }}\right]\tfrac{\partial }{\partial t}-\left[{{\rm{\Omega }}}_{2}\cos {\rm{\Psi }}\right]\tfrac{\partial }{\partial r}.$ | ξ = 0. | KVFs |
(ix) | $a=\mathrm{ln}\left({k}_{2}-{k}_{1}r-{r}^{2}\right),$ $b=\mathrm{ln}{\left({k}_{2}-{k}_{1}r-{r}^{2}\right)}^{-1}$ and Q=1. | Y1, Y2, Y3, Y4, ${Y}_{5}=-\left[{{\rm{\Omega }}}_{3}\cos {{\rm{\Psi }}}_{1}\right]\tfrac{\partial }{\partial t}-\left[{{\rm{\Omega }}}_{4}\sin {{\rm{\Psi }}}_{1}\right]\tfrac{\partial }{\partial r}$ and ${Y}_{6}=\left[{{\rm{\Omega }}}_{3}\sin {{\rm{\Psi }}}_{1}\right]\tfrac{\partial }{\partial t}-\left[{{\rm{\Omega }}}_{4}\cos {{\rm{\Psi }}}_{1}\right]\tfrac{\partial }{\partial r}.$ | ξ = 0. | KVFs |
(x) | $a=\mathrm{ln}\left({k}_{1}\right)$, $b=\mathrm{ln}\left({k}_{2}\right)$ and $Q=r\sqrt{{k}_{2}}.$ | Y1, Y2, Y3, Y4 and ${Y}_{5}^{* }=t\tfrac{\partial }{\partial t}+r\tfrac{\partial }{\partial r}.$ | ξ = c1, where ${c}_{1}\in {\mathfrak{R}}.$ | HVFs |
(xi) | $a=\left(\tfrac{{k}_{1}{r}^{2}}{2}+{k}_{2}\right)$, $b=\mathrm{ln}{\left(\tfrac{{k}_{3}\sqrt{{k}_{1}{r}^{2}+1}}{r}\right)}^{2}$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xii) | $a=\mathrm{ln}\left(\tfrac{{k}_{3}{e}^{{k}_{2}r}}{r}\right)$, $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{r}\right)$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xiii) | $a=\mathrm{ln}\left({k}_{3}{r}^{{k}_{2}}\right)$, $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xiv) | $a=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$, $b=\mathrm{ln}\left(\tfrac{{k}_{2}}{{r}^{2}}\right)$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xv) | $a=\mathrm{ln}\left(\tfrac{{{\rm{e}}}^{{k}_{1}r+{k}_{2}}}{{r}^{2}}\right)$, $b=\mathrm{ln}\left[\tfrac{{k}_{3}\left({k}_{1}r-1\right)}{{r}^{2}}\right]$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xvi) | $a=\mathrm{constant}$, $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{r}^{2}}\right)$ and Q = r. | Y1, Y2, Y3, Y4, Y5**$={{\rm{e}}}^{\tfrac{t}{\sqrt{{k}_{1}}}}\left(\tfrac{r}{\sqrt{{k}_{1}}}\tfrac{\partial }{\partial t}+\tfrac{{r}^{2}}{{k}_{1}}\tfrac{\partial }{\partial r}\right)$ and Y6**$={{\rm{e}}}^{\tfrac{-t}{\sqrt{{k}_{1}}}}\left(\tfrac{-r}{\sqrt{{k}_{1}}}\tfrac{\partial }{\partial t}+\tfrac{{r}^{2}}{{k}_{1}}\tfrac{\partial }{\partial r}\right).$ | $\xi =\tfrac{r\,\psi }{{k}_{1}},$ where $\psi =\left[\begin{array}{l}{c}_{1}{{\rm{e}}}^{\tfrac{t}{\sqrt{{k}_{1}}}}+\\ {c}_{2}{{\rm{e}}}^{\tfrac{-t}{\sqrt{{k}_{1}}}}\end{array}\right]$ with ${c}_{1},{c}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | CVFs |
(xvii) | $a=\left(\tfrac{{k}_{2}{r}^{2}}{2}-\mathrm{ln}r+{k}_{3}\right)$, $b=\mathrm{constant}={k}_{1}\ne 0$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xviii) | $a=\left({k}_{1}r+{k}_{2}\right)$, $b=\mathrm{ln}\left[\tfrac{{k}_{3}\left({k}_{1}r+1\right)}{{r}^{2}}\right]$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xix) | $Q=\left({k}_{2}r+{k}_{3}\right)$, $b=\mathrm{ln}\left[\tfrac{{k}_{4}}{{\left({k}_{2}r+{k}_{3}\right)}^{2}}\right]$ and Q = r. | Y1, Y2, Y3 and Y4. | ξ = 0. | KVFs |
(xx) | $a=\mathrm{ln}\left({k}_{1}\right)$, $b=\mathrm{ln}\left({k}_{2}\right)$ and $Q={{\rm{e}}}^{{k}_{3}r+{k}_{4}}.$ | Y1, Y2, Y3, Y4, Y5**$={{\rm{e}}}^{{k}_{3}{{\rm{\Omega }}}_{5}}\left(\tfrac{1}{\sqrt{{k}_{1}{k}_{2}}}\tfrac{\partial }{\partial t}+\tfrac{1}{{k}_{2}}\tfrac{\partial }{\partial r}\right)$ and Y6**$={{\rm{e}}}^{{k}_{3}{{\rm{\Omega }}}_{6}}\left(\tfrac{-1}{\sqrt{{k}_{1}{k}_{2}}}\tfrac{\partial }{\partial t}+\tfrac{1}{{k}_{2}}\tfrac{\partial }{\partial r}\right).$ | $\xi =\tfrac{{k}_{3}\,\psi }{{k}_{2}},$ where $\psi =\left[{c}_{1}{{\rm{e}}}^{{k}_{3}{{\rm{\Omega }}}_{5}}+{c}_{2}{{\rm{e}}}^{{k}_{3}{{\rm{\Omega }}}_{6}}\right]$ with ${c}_{1},{c}_{2}\in {\mathfrak{R}}\setminus \{0\}.$ | CVFs |
3. Summary and discussion
a | (a)The CVFs in cases (iv), (v), (vi), (viii), (ix), (xi), (xii), (xiii), (xiv), (xv), (xvii), (xviii) and (xix) become the KVFs. Physically, the KVFs produce conservation laws i.e. conservation of energy and linear momentum are related with the translational KVFs ∂t and ∂φ respectively, whereas conservation of angular momentum has been depicted by the rotational isometries Y2 and Y3 respectively. |
b | (b)In cases (vii), (xvi) and (xx), the space-times admit proper CVFs. The dimension of CVFs for these cases has turned out to be six, of which four are KVFs which are given in equation ( |
c | (c)In case (x), the space-time admits proper HVFs due to the conformal factor ξ being a non-zero constant. The HVFs are quite important from several points of view. First, HVFs have been found useful in discussing the constant of motion that allows for examining particle trajectories in space-time [84]. Secondly, the homothetic motion helps to address the singularity issue in GR. It is to be noted that by studying self-similar solutions of the EFEs, the class of HVFs has also played a significant role. |
Table 2. ED and pressure. |
Case No. | Metric components | ED | Pressure |
---|---|---|---|
(i) | $a=\mathrm{constant}$ $b=\mathrm{ln}\left(\tfrac{1}{1+{k}_{1}{r}^{2}}\right)$ and Q = r. | $\rho =\tfrac{1}{16\pi }\left({d}_{2}-6{k}_{1}{d}_{1}\right).$ | $p=-\tfrac{1}{16\pi }\left({d}_{2}-2{k}_{1}{d}_{1}\right).$ |
(ii) | $a=\mathrm{ln}{r}^{4}$, eb = 1 and Q = r. | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=\tfrac{1}{16\pi }\left[\tfrac{8{d}_{1}}{{r}^{2}}-{d}_{2}\right].$ |
(iii) | $a=\mathrm{ln}\left(1-\tfrac{{k}_{1}}{r}+\tfrac{{k}_{2}{r}^{2}}{3}\right),$ $b=\mathrm{ln}{\left(1-\tfrac{{k}_{1}}{r}+\tfrac{{k}_{2}{r}^{2}}{3}\right)}^{-1}$ and Q = r. | $\rho =\tfrac{-1}{16\pi }\left[2{k}_{2}{d}_{1}-{d}_{2}\right].$ | $p=\tfrac{1}{16\pi }\left[2{k}_{2}{d}_{1}-{d}_{2}\right].$ |
(iv) | $a=\mathrm{ln}\left(1-\tfrac{2M}{r}\right),$ $b=\mathrm{ln}{\left(1-\tfrac{2M}{r}\right)}^{-1}$ and Q = r. | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=-\tfrac{{d}_{2}}{16\pi }.$ |
(v) | $a=\mathrm{ln}\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right),$ $b=\mathrm{ln}{\left(1-\tfrac{{\rm{\Lambda }}{r}^{2}}{3}\right)}^{-1}$ and Q = r. | $\rho =\tfrac{1}{16\pi }\left(2{\rm{\Lambda }}{d}_{1}+{d}_{2}\right).$ | $p=-\tfrac{1}{16\pi }\left(2{\rm{\Lambda }}{d}_{1}+{d}_{2}\right).$ |
(vi) | $a=\mathrm{ln}\left(\tfrac{{k}_{1}}{r}\right),$ $b=\mathrm{ln}\left(\tfrac{r}{{k}_{2}-4r}\right)$ and Q = r. | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=-\tfrac{{d}_{2}}{16\pi }.$ |
(vii) | $a=\mathrm{ln}\left({k}_{1}{r}^{2}\right),$ $b=\mathrm{ln}\left(\tfrac{2}{1+2{k}_{2}{r}^{2}}\right)$ and Q = r. | $\rho =\tfrac{1}{16\pi }\left[\left(\tfrac{1-6{k}_{2}{r}^{2}}{{r}^{2}}\right){d}_{1}+{d}_{2}\right].$ | $p=\tfrac{1}{16\pi }\left[\left(\tfrac{1+6{k}_{2}{r}^{2}}{{r}^{2}}\right){d}_{1}-{d}_{2}\right].$ |
(viii) | $a=\mathrm{ln}{\left(\tfrac{{k}_{1}r+{k}_{2}}{2}\right)}^{2},$ $b=\mathrm{ln}\left(\tfrac{{k}_{1}}{{k}_{1}{k}_{3}-{k}_{1}{r}^{2}-2{k}_{2}r}\right)$ and Q=1. | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=-\tfrac{{d}_{2}}{16\pi }.$ |
(ix) | $a=\mathrm{ln}\left({k}_{2}-{k}_{1}r-{r}^{2}\right)$, $b=\mathrm{ln}{\left({k}_{2}-{k}_{1}r-{r}^{2}\right)}^{-1}$ and Q=1. | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=-\tfrac{{d}_{2}}{16\pi }.$ |
(x) | $a=\mathrm{ln}\left({k}_{1}\right)$, $b=\mathrm{ln}\left({k}_{2}\right)$ and $Q=r\sqrt{{k}_{2}}.$ | $\rho =\tfrac{{d}_{2}}{16\pi }.$ | $p=-\tfrac{{d}_{2}}{16\pi }.$ |