Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Multi-solutions with specific geometrical wave structures to a nonlinear evolution equation in the presence of the linear superposition principle

  • Hajar F Ismael , 1 ,
  • Tukur Abdulkadir Sulaiman , 2, * ,
  • M S Osman , 3, *
Expand
  • 1Department of Mathematics, Faculty of Science, University of Zakho, Zakho, Iraq
  • 2Department of Computer Engineering, Biruni University, Istanbul, Turkey
  • 3Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

*Authors to whom any correspondence should be addressed.

Received date: 2022-07-28

  Revised date: 2022-10-08

  Accepted date: 2022-11-08

  Online published: 2022-12-22

Copyright

© 2022 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Lump solutions are one of the most common solutions for nonlinear evolution equations. This study aspires to investigate the generalized Hietarintatype equation. We auspiciously provide multiple M-lump waves. On the other hand, collision phenomena to multiple M-lump waves with soliton wave solutions are also provided. During the collision, the amplitude of the lump will change significantly over the processes, whereas the amplitude of the soliton will just minimally alter. As it is of paramount importance, we use suitable values of parameter to put out the physical features of the reported results through three dimensional and contour graphics. The results presented express physical features of lump and lump interaction phenomena of different kinds of nonlinear physical processes. Further, this study serves to enrich nonlinear dynamics and provide insight into how nonlinear waves propagate.

Cite this article

Hajar F Ismael , Tukur Abdulkadir Sulaiman , M S Osman . Multi-solutions with specific geometrical wave structures to a nonlinear evolution equation in the presence of the linear superposition principle[J]. Communications in Theoretical Physics, 2023 , 75(1) : 015001 . DOI: 10.1088/1572-9494/aca0e2

1. Introduction

A wave is a dynamic disturbance of one or more quantities that propagates and is frequently expressed by a wave equation in physics, mathematics, and related subjects. At least two field quantities are present in the wave medium for physical waves. When quantities oscillate at a set frequency around an equilibrium value, periodic waves are provided. A standing wave is provided when two superimposed periodic waves travel in opposite directions. A traveling wave is provided when the entire waveform travels in one direction. When the wave amplitude appears to be resized or even nil, a standing wave's vibrational amplitude nulls out at certain points. In mathematics and physics, a soliton, also known as a solitary wave, is a wave packet that keeps its structure while travelling at a constant speed. When dispersive and nonlinear effects in a medium balance out, soliton formation arises. A class of weakly nonlinear dispersive partial differential equations has physical system solutions called solitons [16].
Partial differential equations are usually utilized in scientific areas with a powerful quantitative focus. such as physics and engineering. For instance, general relativity, quantum mechanics, electrostatics, electrodynamics, thermodynamics, fluid dynamics, elasticity, and many more areas are all founded on them. The Poincaré conjecture from geometric topology is one of their most notable applications, although they also come from purely mathematical ideas like differential geometry and the calculus of variations [7, 8].
In addition, several studies show that interaction solutions between lumps and other types of solutions to nonlinear integrable equations existed. It should be emphasized, however, that numerous approaches such as the Lie symmetric analysis and its application [914], the Kudryashov method [15, 16], the tanh-coth method [17], the improved Sardar-subequation [18], the new generalized auxiliary equation method [19], and other techniques [2024] have been employed for generating interaction phenomena for nonlinear differential equations. Values are assigned to these constant coefficients in particular conditions to ensure that solutions exist [2541]. Nonetheless, it is worth emphasizing that the problem of dealing with such interactions has yet to be studied. This article provides us with lump collision phenomena to the generalized Hietarintatype equation [42]
$\begin{eqnarray}\begin{array}{l}{\alpha }_{1}\left(6{u}_{x}{u}_{{xx}}+{u}_{{xxxx}}\right)+{\alpha }_{2}\left(3{u}_{t}{u}_{{tt}}+3{u}_{{xt}}{v}_{{tt}}+{u}_{{xttt}}\right)\\ \quad +{\gamma }_{1}{u}_{{yt}}+{\gamma }_{2}{u}_{{xx}}+{\gamma }_{3}{u}_{{xt}}+{\gamma }_{4}{u}_{{xy}}+{\gamma }_{5}{u}_{{yy}}=0.\end{array}\end{eqnarray}$
The multi-soliton solutions, one-lump wave, and mixed one-lump-soliton wave have been studied in [42]. It is worth noting that when α2 = 0 and γ1 = 0, the aforementioned equation is simplified to the following equation:
$\begin{eqnarray}\begin{array}{l}\alpha \left(6{u}_{x}{u}_{{xx}}+{u}_{{xxxx}}\right)+{\gamma }_{2}{u}_{{xx}}\\ \quad +{\gamma }_{3}{u}_{{xt}}+{\gamma }_{4}{u}_{{xy}}+{\gamma }_{5}{u}_{{yy}}=0.\end{array}\end{eqnarray}$
In this work, we are interested to study multiple M-lump waves. and constructing interactions of M-lump waves with soliton wave solutions. These interesting solutions are original and have not been proposed in other research papers.
The introduction and primary problem are covered in the first section of the paper. The sorts of M-lump wave solutions are addressed using the long-wave technique in the second section. The third section introduces the phenomenon of collision between 1- and 2-M-lump wave solutions and 1- or 2-soliton solutions. Breather wave, mixed breather-soliton, and mixed breather-M-lump waves are all examined in the fourth section. In the final section, conclusions are made.

2. M-lump wave solutions

Consider equation (2). With the transformation
$\begin{eqnarray}u=2\displaystyle \frac{\partial }{\partial x}\left(\mathrm{ln}f\left(x,y,t\right)\right).\end{eqnarray}$
It is easy to know that when f solves equation (2) then u is a solution of equation (1). Usually, the soliton results are provided by utilizing
$\begin{eqnarray}f={f}_{N}=\sum _{\mu =0,1}\exp \left(\sum _{i=1}^{N}{\mu }_{i}{{\rm{\Phi }}}_{j}+\sum _{1\leqslant i\lt j\leqslant N}^{\left(N\right)}{\mu }_{i}{\mu }_{j}{A}_{{ij}}\right).\end{eqnarray}$
μ=0,1 stands for a summation that comprises of all possible gatherings of μi = 0, 1, for i = 1, 2,…,N. Substituting (2) into equation (1) and integrating it with respect to x provides
$\begin{eqnarray}\begin{array}{l}6\alpha {{f}_{{xx}}}^{2}-2{\gamma }_{5}{{f}_{y}}^{2}-2{\gamma }_{4}{f}_{y}{f}_{x}-2{f}_{x}\left({\gamma }_{3}{f}_{t}+{\gamma }_{2}{f}_{x}+4\alpha {f}_{{xxx}}\right)\\ \quad +2f\left({\gamma }_{5}{f}_{{yy}}+{\gamma }_{3}{f}_{{xt}}+{\gamma }_{4}{f}_{{xy}}+{\gamma }_{2}{f}^{\left(\mathrm{2,0,0}\right)}+\alpha {f}_{{xxxx}}\right)=0.\end{array}\end{eqnarray}$
The Hirota bilinear form of equation (5) becomes
$\begin{eqnarray}\left(\alpha {D}_{x}^{4}+{\gamma }_{2}{D}_{x}^{2}+{\gamma }_{3}{D}_{x}{D}_{t}+{\gamma }_{4}{D}_{x}{D}_{y}+{\gamma }_{5}{D}_{y}^{2}\right)f.f=0,\end{eqnarray}$
where D is the Hirota bilinear operator, and provided by Hirota direct method as
$\begin{eqnarray}\prod _{i=1}^{m}{D}_{{x}_{i}}^{{n}_{i}}f.g=\prod _{i=1}^{m}{\left.{\left(\displaystyle \frac{\partial }{\partial {x}_{i}}-\displaystyle \frac{\partial }{\partial x{{\prime} }_{i}}\right)}^{{n}_{i}}f\left(x\right)g\left(x^{\prime} \right)\right|}_{{\boldsymbol{x}}{\boldsymbol{^{\prime} }}={\boldsymbol{x}}},\end{eqnarray}$
where ${\boldsymbol{x}}=\left({x}_{1},{x}_{2},\ldots ,{x}_{M}\right)$, ${\boldsymbol{x}}^{\prime} =\left(x{{\prime} }_{1},x{{\prime} }_{2},\ldots ,x{{\prime} }_{M}\right)$ are vectors and n1, n2,…,nM are random non-negative integers numbers. Let the dispersion variable Φm is defined as
$\begin{eqnarray}{{\rm{\Phi }}}_{i}={k}_{i}\left(x+{l}_{i}y+{w}_{i}t\right)+{\alpha }_{i},\end{eqnarray}$
where the dispersion relation and the phase shift are
$\begin{eqnarray}{w}_{i}=-\displaystyle \frac{{{k}_{i}}^{2}\alpha +{\gamma }_{2}+{l}_{i}\left({\gamma }_{4}+{l}_{i}{\gamma }_{5}\right)}{{\gamma }_{3}},\end{eqnarray}$
and
$\begin{eqnarray}{{\rm{e}}}^{{A}_{{ij}}}=1-\displaystyle \frac{12{k}_{i}{k}_{j}\alpha }{3{\left({k}_{i}+{k}_{j}\right)}^{2}\alpha -{\left({l}_{i}-{l}_{j}\right)}^{2}{\gamma }_{5}}.\end{eqnarray}$
Taking N = 1 in equation (3) and put it into equation (2), we get an equation that presents a one-soliton solution
$\begin{eqnarray}u=\displaystyle \frac{2{k}_{1}{{\rm{e}}}^{{k}_{1}x+{k}_{1}{l}_{1}y+{\alpha }_{1}}}{{{\rm{e}}}^{{k}_{1}x+{k}_{1}{l}_{1}y+{\alpha }_{1}}+{{\rm{e}}}^{\tfrac{{k}_{1}t\left({{k}_{1}}^{2}\alpha +{\gamma }_{2}+{l}_{1}\left({\gamma }_{4}+{l}_{1}{\gamma }_{5}\right)\right)}{{\gamma }_{3}}}}.\end{eqnarray}$
Utilizing N = 2 in equation (3), provides
$\begin{eqnarray}f=1+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{2}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}+{{\rm{\Phi }}}_{2}+{A}_{12}},\end{eqnarray}$
where ${{\rm{e}}}^{{A}_{{ij}}}$ is defined in equation (9). As a result of substituting equations (11) into (2), we obtain an equation that describes a two-soliton solution. Also, by taking N = 3 in equation (3), a result is
$\begin{eqnarray}\begin{array}{l}f=1+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{2}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{3}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}+{{\rm{\Phi }}}_{2}+{A}_{12}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}+{{\rm{\Phi }}}_{3}+{A}_{13}}\\ \qquad +\,{{\rm{e}}}^{{{\rm{\Phi }}}_{2}+{{\rm{\Phi }}}_{3}+{A}_{23}}+{{\rm{e}}}^{{{\rm{\Phi }}}_{1}+{{\rm{\Phi }}}_{2}+{{\rm{\Phi }}}_{3}+{A}_{123}},\end{array}\end{eqnarray}$
where A123 = A12A13A23 and Aij(i < j) are stated in equation (9). As a result of inserting this equation into equation (2), we get an equation that presents a three-soliton solution. Moreover, by taking n = 4, we can get a 4-soliton solution. In figure 1, we present multiple soliton solutions.
Figure 1. Multiple soliton wave when γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5, t = 2.
We now provide M-lump waves of the studied equation, using the long-wave method. Plugging ${{\rm{e}}}^{{\alpha }_{i}}=-1$ into equations (7), (3) holds the formula
$\begin{eqnarray*}{f}_{N}=\sum _{\mu =0,1}^{}\prod _{i=1}^{N}{\left(-1\right)}^{{\mu }_{i}}{{\rm{e}}}^{{\mu }_{i}{{\rm{\Phi }}}_{i}}\prod _{i\lt j}^{(N)}{{\rm{e}}}^{{\mu }_{i}{\mu }_{n}{A}_{{ij}}},\end{eqnarray*}$
where
$\begin{eqnarray*}{{\rm{\Phi }}}_{i}={k}_{i}\left(x+{l}_{i}y-\left(\displaystyle \frac{{{k}_{i}}^{2}\alpha +{\gamma }_{2}+{l}_{i}\left({\gamma }_{4}+{l}_{i}{\gamma }_{5}\right)}{{\gamma }_{3}}\right)t\right)+{\alpha }_{i}.\end{eqnarray*}$
Inserting ki → 0 into fN, provides
$\begin{eqnarray*}\begin{array}{l}f={f}_{N}=\displaystyle \sum _{\mu =0,1}^{}\displaystyle \prod _{i=1}^{N}{\left(-1\right)}^{{\mu }_{i}}\left(1+{\mu }_{i}{k}_{i}{{\rm{\Theta }}}_{i}\right)\\ \quad \times \displaystyle \prod _{i\lt j}^{(N)}(1+{\mu }_{i}{k}_{i}{\mu }_{j}{k}_{j}{B}_{{ij}})+O\left({k}^{N+1}\right).\end{array}\end{eqnarray*}$
It is obvious that $u=2\mathrm{ln}{\left({}^{{f}_{N}}/{}_{{\prod }_{i=1}^{N} \ \ {k}_{i}}\right)}_{x}$. To do more about the solution, the term ${\prod }_{i=1}^{N}{k}_{i}$ can be eliminated, and be replaced by fN. This leads us to
$\begin{eqnarray*}\begin{array}{l}{f}_{N}=\displaystyle \prod _{i=1}^{N}{{\rm{\Theta }}}_{i}+\displaystyle \frac{1}{2}\displaystyle \sum _{i,j}^{(N)}{B}_{{ij}}\displaystyle \prod _{r\ne i,j}^{N}{{\rm{\Theta }}}_{r}+\cdots +\displaystyle \frac{1}{M!{2}^{M}}\\ \quad \times \displaystyle \sum _{i,j\cdots ,p,q}^{(N)}\mathop{\overbrace{{A}_{{ij}}{B}_{{kl}}\cdots {B}_{{pq}}}}\limits^{M}\displaystyle \prod _{s\ne i,j,k,l,\cdots ,p,q}^{N}{{\rm{\Theta }}}_{s}+\cdots ,\end{array}\end{eqnarray*}$
here, ${{\rm{\Theta }}}_{i}=x+{l}_{i}y-\left(\tfrac{{\gamma }_{2}+{l}_{i}\left({\gamma }_{4}+{l}_{i}{\gamma }_{5}\right)}{{\gamma }_{3}}\right)t$. ${\sum }_{i,j,\cdots ,p,q}^{N}$ is a collection of all feasible gatherings of i, j,...,p, q, that accept different values from 1, 2,...,N. If the parameters li affirm the situation ${l}_{M+i}={l}_{i}^{* }(i=1,2,...,M)$ with N = 2M and Bij > 0.
Here we apply long-wave approach on equation (3) by considering N = 2, ki → 0, ${{\rm{e}}}^{{\alpha }_{i}}=-1\left(i=1,2\right)$ and $\tfrac{{k}_{1}}{{k}_{2}}=O\left(1\right)$, then equation (3) becomes
$\begin{eqnarray}f={{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12},\end{eqnarray}$
where equation (7) could be rewritten as
$\begin{eqnarray}{{\rm{\Theta }}}_{i}=x+{l}_{i}y-\left(\displaystyle \frac{{\gamma }_{2}+{l}_{i}\left({\gamma }_{4}+{l}_{i}{\gamma }_{5}\right)}{{\gamma }_{3}}\right)t,\end{eqnarray}$
and equation (9) becomes
$\begin{eqnarray}\begin{array}{l}{B}_{{ij}}=\displaystyle \frac{12\alpha }{{\left({l}_{i}-{l}_{j}\right)}^{2}{\gamma }_{5}},\,{l}_{\tfrac{N}{2}+i}={l}_{i}^{* },\left(i=1,2,..,\displaystyle \frac{N}{2}\right)\mathrm{and}\,i\lt j.\end{array}\end{eqnarray}$
Inserting equations (13)–(15) into (2), provides
$\begin{eqnarray}\begin{array}{rcl}u & = & 2\displaystyle \frac{\partial }{\partial x}\mathrm{log}\left({\left(x^{\prime} +{ay}^{\prime} \right)}^{2}+{b}^{2}y{{\prime} }^{2}-\displaystyle \frac{3\alpha }{{b}^{2}{\gamma }_{5}}\right)\\ & = & \displaystyle \frac{4\left(x^{\prime} +{ay}^{\prime} \right)}{{\left(x^{\prime} +{ay}^{\prime} \right)}^{2}+{b}^{2}y{{\prime} }^{2}-\tfrac{3\alpha }{{b}^{2}{\gamma }_{5}}}\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}x^{\prime} =x-\left(\displaystyle \frac{{\gamma }_{2}}{{\gamma }_{3}}-{a}^{2}\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}}-{b}^{2}\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}}\right)t.\end{eqnarray*}$
$\begin{eqnarray*}y^{\prime} =y-\left(\displaystyle \frac{{\gamma }_{4}}{{\gamma }_{3}}+2a\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}}\right)t,\end{eqnarray*}$
With a single-M-lump wave for equation (2) as shown in figure 2. This rational result is a permanent wave result decomposing as $O\left(\tfrac{1}{{x}^{2}},\tfrac{1}{{y}^{2}}\right)$ for $\left|x\right|,\left|y\right|\to \infty $ and travelling with the speed
$\begin{eqnarray*}{v}_{x}=\displaystyle \frac{{\gamma }_{2}}{{\gamma }_{3}}-{a}^{2}\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}}-{b}^{2}\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}},\,\,\,\,\,\,\,\,\,\,{v}_{y}=\displaystyle \frac{{\gamma }_{4}}{{\gamma }_{3}}+2a\displaystyle \frac{{\gamma }_{5}}{{\gamma }_{3}}.\end{eqnarray*}$
Finding out that this wave travels in the following straight line is interesting
$\begin{eqnarray*}y=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{1}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{1}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{1}}^{2}+{{b}_{1}}^{2}\right){\gamma }_{5}}.\end{eqnarray*}$
A one-M-lump wave that travels along this line at different times is drawn in figure 1(b).
Figure 2. One-M-lump wave when a1 = 1/3, b1 = 8/7, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5.
To derive a 2-M-lump result to equation (2), we let N = 4 in equation (3), and considering ${{\rm{e}}}^{{\alpha }_{i}}=-1\left(i=1,2,3,4\right)$, ki → 0, we provide
$\begin{eqnarray}\begin{array}{rcl}f & = & {{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+{B}_{12}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+{B}_{13}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}\\ & & +{B}_{14}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}+{B}_{23}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}\\ & & +{B}_{24}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}+{B}_{34}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}{{\rm{\Theta }}}_{34}\\ & & +{B}_{13}{{\rm{\Theta }}}_{24}+{B}_{14}{B}_{23},\end{array}\end{eqnarray}$
where Θ1, Θ2, Θ3, Θ4, wi, ${B}_{{ij}}\left(i\lt j\right)$ and ${l}_{\tfrac{N}{2}+i}$ are defined in equations (14) and (15), respectively.
Inserting equations (17) into (3), provides
$\begin{eqnarray*}{y}_{1}=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{1}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{1}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{1}}^{2}+{{b}_{1}}^{2}\right){\gamma }_{5}},\end{eqnarray*}$
and
$\begin{eqnarray*}{y}_{2}=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{2}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{2}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{2}}^{2}+{{b}_{2}}^{2}\right){\gamma }_{5}}.\end{eqnarray*}$
The travel of two-M-lump waves alongside the two lines is graphed in figure 3 in different periods.
Figure 3. Two-M-lump wave when a1 = 1/3, b1 = 8/7, a2 = 1/4, b2 = 4/3, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5.
To provide a 3M-lump result of equation (1), we implement ${k}_{i}\to 0,{{\rm{e}}}^{{\alpha }_{i}}=-1,\left(i=1,2,3,4,5,6\right)$ and consider N = 6 in equation (3), which provides
$\begin{eqnarray}\begin{array}{rcl}{f}_{6} & = & {{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}+{B}_{12}{B}_{34}{B}_{56}\\ & & +{B}_{12}{B}_{35}{B}_{46}+{B}_{12}{B}_{45}{B}_{36}+{B}_{13}{B}_{24}{B}_{56}\\ & & +{B}_{13}{B}_{25}{B}_{46}+{B}_{13}{B}_{45}{B}_{26}\\ & & +{B}_{23}{B}_{14}{B}_{56}+{B}_{14}{B}_{25}{B}_{36}+{B}_{14}{B}_{35}{B}_{26}+{B}_{24}{B}_{15}{B}_{36}\\ & & +{B}_{34}{B}_{15}{B}_{26}+{B}_{23}{B}_{15}{B}_{46}+{B}_{23}{B}_{45}{B}_{16}\\ & & +{B}_{24}{B}_{35}{B}_{16}+{B}_{34}{B}_{25}{B}_{16}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{16}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{14}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{15}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{12}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{13}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{35}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{36}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{23}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{24}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{25}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{26}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{B}_{56}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{6}{B}_{45}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{B}_{46}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{34}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{B}_{34}{B}_{56}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{B}_{35}{B}_{46}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{B}_{45}{B}_{36}+{{\rm{\Theta }}}_{1}{B}_{23}{{\rm{\Theta }}}_{4}{B}_{56}\\ & & +{{\rm{\Theta }}}_{1}{B}_{23}{B}_{45}{{\rm{\Theta }}}_{6}+{{\rm{\Theta }}}_{1}{B}_{23}{{\rm{\Theta }}}_{5}{{B}_{4}}_{6}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{B}_{24}{B}_{56}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{6}{B}_{24}{B}_{35}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{5}{B}_{24}{B}_{36}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{B}_{25}{B}_{46}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{6}{B}_{34}{B}_{25}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}{B}_{25}{B}_{36}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{B}_{45}{B}_{26}\\ & & +{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{5}{B}_{34}{B}_{26}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}{B}_{35}{B}_{26}+{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{12}{B}_{36}\\ & & +{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{B}_{12}{B}_{56}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{6}{B}_{12}{B}_{45}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{B}_{12}{B}_{46}\\ & & +{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{12}{B}_{34}+{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{12}{B}_{35}+{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{13}{B}_{24}\\ & & +{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{13}{B}_{25}+{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{13}{B}_{26}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{B}_{13}{B}_{56}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{6}{B}_{13}{B}_{45}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{5}{B}_{13}{B}_{46}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{B}_{14}{B}_{56}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{6}{B}_{14}{B}_{35}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{5}{B}_{14}{B}_{36}+{{\rm{\Theta }}}_{5}{{\rm{\Theta }}}_{6}{B}_{23}{B}_{14}\\ & & +{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{6}{B}_{14}{B}_{25}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{B}_{14}{B}_{26}+{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{6}{B}_{23}{B}_{15}\\ & & +{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{6}{B}_{24}{B}_{15}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{B}_{15}{B}_{26}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{B}_{15}{B}_{46}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{6}{B}_{34}{B}_{15}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{B}_{15}{B}_{36}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}{B}_{35}{B}_{16}+{{\rm{\Theta }}}_{4}{{\rm{\Theta }}}_{5}{B}_{23}{B}_{16}\\ & & +{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{5}{B}_{24}{B}_{16}+{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}{B}_{25}{B}_{16}\\ & & +{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{B}_{45}{B}_{16}+{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{5}{B}_{34}{B}_{16}.\end{array}\end{eqnarray}$
We should know that Θ1, Θ2, Θ3, Θ4, Θ5, Θ6, Bij and ${l}_{\tfrac{N}{2}+i}$ are provides in equations (14) and (15), respectively. Subsequently, inserting equations (21) into (3), a 3-M-lump result is provided as displayed in figure 4. We should know that l1 = a1 + ib1, l2 = a2 + ib2, l3 = a3 + ib3, ${l}_{4}={{l}_{1}}^{* }$, ${l}_{5}={{l}_{2}}^{* }$ and ${l}_{6}={{l}_{3}}^{* }$. The following straight lines are followed by a three-M-lump wave, which is interesting to know
$\begin{eqnarray*}{y}_{1}=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{1}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{1}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{1}}^{2}+{{b}_{1}}^{2}\right){\gamma }_{5}},\end{eqnarray*}$
$\begin{eqnarray*}{y}_{2}=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{2}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{2}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{2}}^{2}+{{b}_{2}}^{2}\right){\gamma }_{5}},\end{eqnarray*}$
and
$\begin{eqnarray*}{y}_{3}=\displaystyle \frac{\left({\gamma }_{4}+2{a}_{3}{\gamma }_{5}\right)\left(x+\sqrt{-\tfrac{3\alpha }{{{b}_{3}}^{2}{\gamma }_{5}}}\right)}{{\gamma }_{2}-\left({{a}_{3}}^{2}+{{b}_{3}}^{2}\right){\gamma }_{5}}.\end{eqnarray*}$
In figure 5, the three-M-lump waves' path along these three lines is graphed for various times.
Figure 4. Three-M-lump wave when a1 = 1/3, b1 = 8/7, a2 = 1/4, b2 = 9/7, a3 = 1/5, b3 = 10/7, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5.
Figure 5. Mixed M-lump-soliton wave when a1 = 1/3, b1 = 3/2, k3 = 1, l3 = 2, α3 = 5, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5, t = 5.

3. Collision phenomena

This section attempts to design the collision of a 1-M-lump result along with one-soliton, two-soliton, and a 2-M-lump wave with a single soliton. To begin with, we set N = 3 in equation (3) and take the limit ${k}_{i}\to 0,\left(i=1,2\right)$ and $\tfrac{{k}_{1}}{{k}_{2}}=O\left(1\right)$, and this provides
$\begin{eqnarray}f={{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}+{\xi }_{1}{{\rm{e}}}^{{{\rm{\Phi }}}_{3}},\end{eqnarray}$
where
$\begin{eqnarray*}{\xi }_{1}={{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}+{C}_{23}{{\rm{\Theta }}}_{1}+{C}_{13}{{\rm{\Theta }}}_{2}+{C}_{13}{C}_{23}.\end{eqnarray*}$
Here Φ3 is expressed in equation (7), ${{\rm{\Theta }}}_{i}\left(i=1,2\right)$ are provided in equation (14), B12 is given in equation (15). C13, C23 are derived as follows
$\begin{eqnarray}{C}_{{ij}}=-\displaystyle \frac{12{k}_{j}\alpha }{3{{k}_{j}}^{2}\alpha -{\left({l}_{i}-{l}_{j}\right)}^{2}{\gamma }_{5}}\,\,\,\,\,\,\,\,\,\,i\lt j.\end{eqnarray}$
A result that depicts the interaction between a 1-M-lump solution and a 1-soliton solution is obtained by putting equations (20) into (19), and then into equation (3), as shown in figure 4.
To provide a collision of two-soliton with an M-lump wave, we consider that
$\begin{eqnarray}\begin{array}{l}f={B}_{12}+{\xi }_{1}{{\rm{e}}}^{{{\rm{\Phi }}}_{3}}+{\xi }_{2}{{\rm{e}}}^{{{\rm{\Phi }}}_{4}}+{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}-{{\rm{e}}}^{{{\rm{\Phi }}}_{3}+{{\rm{\Phi }}}_{4}+{A}_{34}}\\ \quad \times \left({{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}-{C}_{14}{C}_{23}-{C}_{13}{C}_{24}-{\xi }_{1}-{\xi }_{2}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}{\xi }_{1}={{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}+{C}_{23}{{\rm{\Theta }}}_{1}+{C}_{13}{{\rm{\Theta }}}_{2}+{C}_{13}{C}_{23},\end{eqnarray*}$
and
$\begin{eqnarray*}{\xi }_{2}={{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{12}+{C}_{24}{{\rm{\Theta }}}_{1}+{C}_{14}{{\rm{\Theta }}}_{2}+{C}_{14}{C}_{24}.\end{eqnarray*}$
The constants Bij and Cij are provided in equations (14) and (20). The functions Φi and Θi are provided in equations (7) and (15). Inserting equations (21) into (2), an outcome is a result that stands for a collision between a one-M-lump wave and a two-soliton solution which display in figure 6.
Figure 6. Mixed M-lump-two-soliton wave when a1 = 1/3, b1 = 3/2, a2 = 1/4, b2 = 9/7, k3 = 1, l3 = 2, k4 = 3/4, l4 = 1, α3 = 10, α4 = 0, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5, t = 5.
When N = 5 and considering the limit ${k}_{i}\to 0,\left(i=1,2,3,4\right)$ in equation (3), the collision between two-M-lump wave and one-soliton are
$\begin{eqnarray}\begin{array}{rcl}f & = & {{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+{B}_{34}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}+{B}_{24}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}\\ & & +{B}_{23}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}+{B}_{14}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}+{B}_{13}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}\\ & & +{B}_{12}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+Q{{\rm{e}}}^{{k}_{5}\left(x+{l}_{5}y+{w}_{5}t\right)+{\alpha }_{5}}\\ & & +{B}_{14}{B}_{23}+{B}_{13}{B}_{24}+{B}_{12}{B}_{34},\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}Q & = & {{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+{C}_{45}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}+{C}_{15}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}\\ & & +{C}_{25}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}\\ & & +{C}_{35}{{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}+\left({B}_{34}+{C}_{35}{C}_{45}\right){{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{2}\\ & & +\left({B}_{24}+{C}_{25}{C}_{45}\right){{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{3}+\left({B}_{14}+{C}_{15}{C}_{45}\right){{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{3}\\ & & +\left({B}_{23}+{C}_{25}{C}_{35}\right){{\rm{\Theta }}}_{1}{{\rm{\Theta }}}_{4}+\left({B}_{13}+{C}_{15}{C}_{35}\right){{\rm{\Theta }}}_{2}{{\rm{\Theta }}}_{4}\\ & & +\left({B}_{12}+{C}_{15}{C}_{25}\right){{\rm{\Theta }}}_{3}{{\rm{\Theta }}}_{4}+\left({B}_{34}{C}_{25}+{B}_{24}{C}_{35}\right.\\ & & \left.+{B}_{23}{C}_{45}+{C}_{25}{C}_{35}{C}_{45}\right){{\rm{\Theta }}}_{1}\\ & & +\left({B}_{34}{C}_{15}+{B}_{14}{C}_{35}+{B}_{13}{C}_{45}+{C}_{15}{C}_{35}{C}_{45}\right){{\rm{\Theta }}}_{2}\\ & & +\left({B}_{24}{C}_{15}+{B}_{14}{C}_{25}+{B}_{12}{C}_{45}+{C}_{15}{C}_{25}{C}_{45}\right){{\rm{\Theta }}}_{3}\\ & & +\left({B}_{23}{C}_{15}+{B}_{13}{C}_{25}+{B}_{12}{C}_{35}+{C}_{15}{C}_{25}{C}_{35}\right){{\rm{\Theta }}}_{4}\\ & & +{B}_{14}{B}_{23}+{B}_{13}{B}_{24}+{B}_{12}{B}_{34}+{B}_{34}{C}_{15}{C}_{25}\\ & & +{B}_{24}{C}_{15}{C}_{35}+{B}_{14}{C}_{25}{C}_{35}\\ & & +{B}_{23}{C}_{15}{C}_{45}+{B}_{13}{C}_{25}{C}_{45}\\ & & +{B}_{12}{C}_{35}{C}_{45}+{C}_{15}{C}_{25}{C}_{35}{C}_{45}.\end{array}\end{eqnarray*}$
In this article, all constants and functions are listed. Now that we have provided a collision between a two-M-lump and a one-soliton solution, inserting equations (22) into (3), and the consequence is the aspect displayed in figure 7.
Figure 7. Mixed two-M-lump-soliton wave when a1 = 1/3, b1 = 8/7, a2 = 1/4, b2 = 4/3, k5 = 1, l5 = 4, α5 = 1, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ5 = 1/5, α = −1/5, t = 5.

4. Breather solution and its interactions

In this section, we try to explore some new solutions to the suggested equation like breather wave, mixed breather-soliton, and mixed breather-M-lump waves. Taking ${k}_{1}=\tfrac{1}{4}+{\rm{i}},{{\rm{k}}}_{2}={{k}_{1}}^{* },{l}_{1}=\tfrac{1}{2}+{\rm{i}}$, ${l}_{2}={{l}_{1}}^{* }$ in equation (10) then into equation (2) a result yields a breather wave as presented in figure 8.
Figure 8. Breather wave when α1 = 0, α2 = 0, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ52 = 1/5, α = −1/5, t = 2.
An interaction physical phenomena between breather and soliton solution could be constructed by taking ${k}_{1}=\tfrac{1}{4}+{\rm{i}},{{\rm{k}}}_{2}={{k}_{1}}^{* },{l}_{1}=\tfrac{1}{2}+{\rm{i}},\,{l}_{2}={{l}_{1}}^{* }$ in equation (12) then substituting these values into equation (2), an outcome gives us a mixed breather-soliton wave as seen in figure 9.
Figure 9. Mixed breather-soliton wave when k3 = 1, l3 = 1/4, α1 = 0, α2 = 0, α3 = 0, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ52 = 1/5, α = −1/5, t = 2.
Moreover, to offer a mixed breather-M-lump wave, we let N = 4, ${k}_{3}=\tfrac{1}{5}+{\rm{i}},{{\rm{k}}}_{4}={{k}_{3}}^{* },{l}_{3}=\tfrac{1}{2}+{\rm{i}},\,{l}_{4}={{l}_{3}}^{* }$ in equation (21) and putting these values into equation (2) gives an interaction between the breather wave and M-lump wave as shown in figure 10.
Figure 10. Mixed breather-M-lump wave when a1 = 1/3, b1 = 10/7, a2 = 1/4, b2 = 13/7, α3 = 0, α4 = 0, γ2 = 1/2, γ3 = −1, γ4 = 1/4, γ52 = 1/5, α = −1/5, t = 2.

5. Conclusions

This study investigated the generalized Hietarintatype equation. Multiple M-lump waves alongside their collision phenomena to multiple M-lump waves with soliton wave solutions are auspiciously provided. Using suitable values of parameter, we put out the physical features of the reported results through three dimensional and contour graphics. The results presented express physical features of lump and lump interaction phenomena of different kinds of nonlinear physical processes. Further, Breather solutions and their interactions such as breather waves, mixed breather-solitons, and mixed breather-M-lump waves have been investigated. In a subsequent paper, we analyze the extended Hietarintatype equation with variable coefficients and derive a number of novel conclusions for this model.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The author state that this research paper complies with ethical standards. This research paper does not involve either human participants or animals.
1
John F 1991 Partial Differential Equations. Applied Mathematical Sciences 4th edn Berlin Springer

2
Protter M H Weinberger H F 1984 Maximum Principles in Differential Equations, Corrected Reprint of the 1967 Original New York Springer

3
Osman M S Tariq K U Bekir A Elmoasry A Elazab N S Younis M Abdel-Aty M 2020 Investigation of soliton solutions with different wave structures to the (2+ 1)-dimensional Heisenberg ferromagnetic spin chain equation Commun. Theor. Phys. 72 035002

DOI

4
Park C Nuruddeen R I Ali K K Muhammad L Osman M S Baleanu D 2020 Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations Adv. Differ. Equ. 2020 627

DOI

5
Schatzman M 2002 Numerical Analysis-A Mathematical Introduction Oxford Oxford University Press

6
Arqub O A Osman M S Abdel-Aty A H Mohamed A B A Momani S 2020 A numerical algorithm for the solutions of ABC singular Lane-Emden type models arising in astrophysics using reproducing kernel discretization method Mathematics 8 923

DOI

7
David L J 1994 An Introduction to Nonlinear Partial Differential Equations New York Wiley

8
Adomian G 1994 Solving Frontier Problems of Physics: The Decomposition Method New York Kluwer Academic Publishers

9
Wang G Yang K Gu H Guan F Kara A H 2020 A (2+ 1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions Nucl. Phys. B 953 114956

DOI

10
Wang G 2021 A new (3+ 1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws Nonlinear Dyn. 104 1595 1602

DOI

11
Wang G 2021 A novel (3+ 1)-dimensional sine-Gorden and a sinh-Gorden equation: derivation, symmetries and conservation laws Appl. Math. Lett. 113 106768

DOI

12
Wang G 2021 Symmetry analysis, analytical solutions and conservation laws of a generalized KdV-Burgers-Kuramoto equation and its fractional version Fractals 29 2150101

DOI

13
Wang G Wazwaz A M 2022 On the modified Gardner type equation and its time fractional form Chaos Soliton. Fract. 155 111694

DOI

14
Wang G Wazwaz A M 2022 A new (3+ 1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms Fractals 30 2250081

DOI

15
Hosseini K Akbulut A Baleanu D Salahshour S Mirzazadeh M Akinyemi L 2022 The geophysical KdV equation: its solitons, complexiton, and conservation laws Int. J. Geomath. 13 12

DOI

16
Kumar S Malik S Rezazadeh H Akinyemi L 2022 The integrable Boussinesq equation and it is breather, lump and soliton solutions Nonlinear Dyn. 107 2703 2716

DOI

17
Gomez S C A Roshid H O Inc M Akinyemi L Rezazadeh H 2022 On soliton solutions for perturbed Fokas-Lenells equation Opt. Quant. Electron. 54 370

DOI

18
Tao G Sabi'u J Nestor S El-Shiekh R M Akinyemi L Az-Zo'bi E Betchewe G 2022 Dynamics of a new class of solitary wave structures in telecommunications systems via a (2+ 1)-dimensional nonlinear transmission line Mod. Phys. Lett. B 36 2150596

DOI

19
Abbagari S Houwe A Akinyemi L Inc M Doka S Y Crépin K T 2022 Synchronized wave and modulation instability gain induce by the effects of higher-order dispersions in nonlinear optical fibers Opt. Quant. Electron. 54 642

DOI

20
Ntiamoah D Ofori-Atta W Akinyemi L 2022 The higher-order modified Korteweg-de Vries equation: its soliton, breather and approximate solutions J. Ocean Eng. Sci. In Press, Corrected Proof

DOI

21
Ismael H F Akkilic A N Murad M A S Bulut H Mahmoud W Osman M S 2022 Boiti-Leon-Manna-Pempinelli equation including time-dependent coefficient (vcBLMPE): a variety of nonautonomous geometrical structures of wave solutions Nonlinear Dyn.

DOI

22
Yao S W Islam M E Akbar M A Adel M Osman M S 2022 Analysis of parametric effects in the wave profile of the variant Boussinesq equation through two analytical approaches Open Phys. 20 778 794

DOI

23
Yao S W Behera S Inc M Rezazadeh H Virdi J P S Mahmoud W Arqub O A Osman M S 2022 Analytical solutions of conformable Drinfel'd-Sokolov-Wilson and Boiti Leon Pempinelli equations via sine-cosine method Result Phys. 42 105990

DOI

24
Az-Zo'bi E Al-Maaitah A F Tashtoush M A Osman M S 2022 New generalised cubic-quintic-septic NLSE and its optical solitons Pramana 96 184

DOI

25
Hua Y F Guo B-L Ma W-X X 2019 Interaction behavior associated with a generalized (2+ 1)-dimensional Hirota bilinear equation for nonlinear waves Appl. Math. Model. 74 184 198

DOI

26
Hosseini K Mirzazadeh M Aligoli M Eslami M Liu J G 2020 Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation, Math. Model Nat. Phenom. 15 61

DOI

27
Manakov S V Zakharov V E 1977 Twodimensional solitons of the Kadomtsev–Petviashvili equation and their interaction Phys. Lett. A 63 205-6

28
Satsuma J Ablowitz M J 1979 Two-dimensional lumps in nonlinear dispersive systems J. Math. Phys. 20 1496 1503

DOI

29
Ismael H F Seadawy A Bulut H 2021 Construction of breather solutions and N-soliton for the higher order dimensional Caudrey-Dodd-Gibbon-Sawada-Kotera equation arising from wave patterns Int. J. Nonlinear Sci. Numer. Simul.

DOI

30
Ismael H F Bulut H 2021 Nonlinear dynamics of (2+1)-dimensional Bogoyavlenskii-Schieff equation arising in plasma physics Math. Methods Appl. Sci.

DOI

31
Ismael H F Seadawy A Bulut H 2021 Multiple soliton, fusion, breather, lump, mixed kink-lump and periodic solutions to the extended shallow water wave model in (2+ 1)-dimensions Mod. Phys. Lett. B 35 2150138

DOI

32
Ismael H F Seadawy A Bulut H 2021 Rational solutions, and the interaction solutions to the (2+1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation Int. J. Comput. Math. 98 2369-77

DOI

33
Manafian J Ilhan O A Ismael H F Mohammed S A Mazanova S 2020 Periodic wave solutions and stability analysis for the (3+1)-D potential-YTSF equation arising in fluid mechanics Int. J. Comput. Math.

DOI

34
Hosseini K Samavat M Mirzazadeh M Ma W-X Hammouch Z 2020 A New (3+1)-dimensional Hirota Bilinear equation: its Bäcklund transformation and rational-type solutions Regul. Chaotic Dyn. 25 383 391

DOI

35
Liu D Ju X Ilhan O A Manafian J Ismael H F 2020 Multi-Waves, breathers, periodic and cross-kink solutions to the (2+1)-dimensional variable-coefficient caudrey-dodd-gibbon-kotera-sawada equation J. Ocean Univ. China 20 35-44

36
Zhang Y Yang J W Chow K W Wu C F 2017 Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation, Nonlinear Anal Real World Appl.

DOI

37
Lan Z Z Su J-J 2019 Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system Nonlinear Dyn. 96 2535 2546

DOI

38
Lan Z Z 2019 Dark solitonic interactions for the (3+1)-dimensional coupled nonlinear Schrödinger equations in nonlinear optical fibers Opt. Laser Technol. 113 462 466

DOI

39
Younas U Ren J Sulaiman T A Bilal M Yusuf A 2022 On the lump solutions, breather waves, two-wave solutions of (2+1)-dimensional Pavlov equation and stability analysis Mod. Phys. Lett. B 113 2250084

DOI

40
Younas U Sulaiman T A Ren J Yusuf A 2022 Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation J. Geom. Phys. 178 104586

DOI

41
Sulaiman T A Yusuf A Abdeljabbar A Alquran M 2022 Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation J. Geom. Phys. 169 104347

DOI

42
Batwa S Ma W X 2020 Lump solutions to a generalized Hietarintatype equation via symbolic computation Front. Math. China 15 435 450

DOI

Outlines

/