Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Painlevé analysis, auto-Bäcklund transformations, bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics

  • Fei-Yan Liu ,
  • Yi-Tian Gao
Expand
  • Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

Author to whom any correspondence should be addressed.

Received date: 2022-08-10

  Revised date: 2022-10-12

  Accepted date: 2022-10-14

  Online published: 2023-02-21

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we investigate a (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics. We prove the Painlevé integrability for that system via the Painlevé analysis. We find some auto-Bäcklund transformations for that system via the truncated Painlevé expansions. Bilinear forms and N-soliton solutions are constructed, where N is a positive integer. We discuss the inelastic interactions, elastic interactions and soliton resonances for the two solitons. We also graphically demonstrate that the velocities of the solitons are affected by the variable coefficient of that system.

Cite this article

Fei-Yan Liu , Yi-Tian Gao . Painlevé analysis, auto-Bäcklund transformations, bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics[J]. Communications in Theoretical Physics, 2023 , 75(2) : 025005 . DOI: 10.1088/1572-9494/ac9a3f

1. Introduction

Fluid mechanics has been regarded as the study of the fundamental mechanisms and force of liquids, plasmas and gases, with applications in astrophysics, meteorology, oceanography and biomedical engineering [14]. Methods have been introduced to solve the nonlinear evolution equations, including the Bäcklund transformation, Darboux transformation and the Lie symmetry approach [510].
A (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics has been constructed as [11]
$\begin{eqnarray}\begin{array}{l}{u}_{{ty}}+\alpha (t){u}_{{xxy}}-2\alpha (t){v}_{{xx}}\\ \,-\beta (t){{uu}}_{{xy}}-\beta (t){u}_{x}{u}_{y}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}{v}_{t}-\alpha (t){v}_{{xx}}-\beta (t){\left({uv}\right)}_{x}=0,\end{eqnarray}$
where α(t) and β(t) are the real non-zero functions of tu(x, y, t), and v(x, y, t) denote the real differentiable functions, while the subscripts denote the partial derivatives with respect to the scaled space variables x, y and time variable t [11]. Variable separation solutions for system (1) have been given via the bifunction method with the exponential form solution [11].
When α(t) = 1 and β(t) = 2, system (1) has been reduced to a (2+1)-dimensional modified dispersive water-wave system [1214],
$\begin{eqnarray}\begin{array}{l}{u}_{{ty}}+{u}_{{xxy}}-2{v}_{{xx}}-2{{uu}}_{{xy}}-2{u}_{x}{u}_{y}=0,\\ {v}_{t}-{v}_{{xx}}-2{\left({uv}\right)}_{x}=0,\end{array}\end{eqnarray}$
where u indicates the height for the water surface above the horizontal bottom and v indicates the horizontal velocity for the water wave. System (2) has been used to describe the nonlinear dispersive long gravity waves propagating in two horizontal directions on shallow water with uniform depth [1214].
However, Painlevé analysis, auto-Bäcklund transformations and bilinear forms for system (1) have not been discussed. In section 2, Painlevé analysis for system (1) will be investigated. In section 3, auto-Bäcklund transformations and soliton solutions for system (1) will be constructed via the truncated Painlevé expansions. In section 4, we will work out the bilinear forms for system (1). In section 5, the interaction between the two solitons for system (1) will be analyzed via asymptotic analysis. Conclusions will be given in section 6.

2. Painlevé analysis for system (1)

Motivated by [15], solutions for system (1) can be expanded as the Laurent series:
$\begin{eqnarray}u=\displaystyle \sum _{j=0}^{+\infty }{u}_{j}{\phi }^{j+{\ell }},\,v=\displaystyle \sum _{j=0}^{+\infty }{v}_{j}{\phi }^{j+\unicode{x00237}},\end{eqnarray}$
where φ, uj's and vj's indicate the analytic functions with respect to x, y and t, j is a non-negative integer, while and ${\unicode{x00237}}$ denote the negative integers. The leading order of solutions (3) is assumed as
$\begin{eqnarray}u\sim {u}_{0}{\phi }^{{\ell }},\,v\sim {v}_{0}{\phi }^{\unicode{x00237}},\end{eqnarray}$
where u0 and v0 denote the non-zero functions in the neighborhood of the non-characteristic movable singularity manifold. Substituting expressions (4) into system (1) and balancing the highest-order nonlinear and linear terms, we work out
$\begin{eqnarray}\begin{array}{l}{\ell }=-1,\,\unicode{x00237}=-2,\,{u}_{0}=\displaystyle \frac{2\alpha (t){\phi }_{x}}{\beta (t)},\\ {v}_{0}=-\displaystyle \frac{2\alpha (t){\phi }_{x}{\phi }_{y}}{\beta (t)}.\end{array}\end{eqnarray}$
Then, in order to find the resonance points, substituting
$\begin{eqnarray}u\sim {u}_{0}{\phi }^{-1}+{u}_{j}{\phi }^{j-1},\,v\sim {v}_{0}{\phi }^{-2}+{v}_{j}{\phi }^{j-2},\end{eqnarray}$
into system (1), we make the sum of the lowest power terms of φ in system (1) vanish. Due to the arbitrariness of uj and vj corresponding to the resonance point j, we get
$\begin{eqnarray}(j+1)(j-2){\left(j-3\right)}^{2}(j-4){\phi }_{x}^{4}{\phi }_{y}=0.\end{eqnarray}$
Thus, resonant points occur at j = −1, 2, 3, 3, 4.
Setting
$\begin{eqnarray}u=\displaystyle \sum _{j=0}^{4}{u}_{j}{\phi }^{j-1},\,v=\displaystyle \sum _{j=0}^{4}{v}_{j}{\phi }^{j-2},\end{eqnarray}$
substituting assumptions (8) into system (1), and making the coefficients of powers of φ vanish, we derive
$\begin{eqnarray}\alpha ^{\prime} (t)\beta (t)-\beta ^{\prime} (t)\alpha (t)=0,\end{eqnarray}$
which is equivalent to
$\begin{eqnarray}c=\displaystyle \frac{\alpha (t)}{\beta (t)},\end{eqnarray}$
where c denotes a real non-zero constant.
Through the above calculation, we can obtain that one of u2(x, y, t) and v2(x, y, t), one of u4(x, y, t) and v4(x, y, t) as well as u3(x, y, t) and v3(x, y, t) are arbitrary. Hence, system (1) is Painlevé integrable under constraint (10).

3. Auto-Bäcklund transformations for system (1)

Motivated by [15], we introduce the truncated Painlevé expansions for system (1) in the form of the Laurent series
$\begin{eqnarray}u={\varphi }^{-\tau }\displaystyle \sum _{{\imath }=0}^{\tau }{u}_{{\imath }}{\varphi }^{{\imath }},\,v={\varphi }^{-\eta }\displaystyle \sum _{\kappa =0}^{\eta }{v}_{\kappa }{\varphi }^{\kappa },\end{eqnarray}$
where τ and η indicate the positive integers, uı(x, y, t)'s, vκ(x, y, t)'s and φ(x, y, t) denote the analytic functions. Substituting expressions (11) into system (1) and balancing the lowest-order nonlinear and linear terms, we obtain τ = 1 and η = 2. Substituting
$\begin{eqnarray}u={\varphi }^{-1}\displaystyle \sum _{{\imath }=0}^{1}{u}_{{\imath }}{\varphi }^{{\imath }},\,v={\varphi }^{-2}\displaystyle \sum _{\kappa =0}^{2}{v}_{\kappa }{\varphi }^{\kappa },\end{eqnarray}$
into system (1), and making the coefficients of powers of φ vanish, we have
$\begin{eqnarray}({\varphi }^{-4},{\varphi }^{-4}):\,{u}_{0}=\displaystyle \frac{2\alpha (t){\varphi }_{x}}{\beta (t)},{v}_{0}=-\displaystyle \frac{2\alpha (t){\varphi }_{x}{\varphi }_{y}}{\beta (t)},\,\end{eqnarray}$
$\begin{eqnarray}\,\begin{array}{lcl}({\varphi }^{-3},{\varphi }^{-3}) & : & 2\alpha (t){\varphi }_{x}{\varphi }_{{xy}}-\beta (t){u}_{1}{\varphi }_{x}{\varphi }_{y}\\ & & -\alpha (t){\varphi }_{y}{\varphi }_{{xx}}+{\varphi }_{y}{\varphi }_{t}-{v}_{1}\beta (t){\varphi }_{x}=0,\\ & & 2\alpha (t){\varphi }_{x}{\varphi }_{{xy}}+2\alpha (t){\varphi }_{{xx}}{\varphi }_{y}-\beta (t){v}_{1}{\varphi }_{x}\\ & & -2{\varphi }_{y}{\varphi }_{t}+2\beta (t){u}_{1}{\varphi }_{x}{\varphi }_{y}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}({\varphi }^{-2},{\varphi }^{-2}) & : & \alpha (t){\varphi }_{{xxx}}{\varphi }_{y}-3\alpha (t){\varphi }_{{xxy}}{\varphi }_{x}\\ & & +{\varphi }_{{xx}}[\beta (t)({v}_{1}+{u}_{1}{\varphi }_{y})-\alpha (t){\varphi }_{{xy}}]-{\varphi }_{{xt}}{\varphi }_{y}\\ & & +{\varphi }_{{xy}}(2\beta (t){u}_{1}{\varphi }_{x}-{\varphi }_{t})\\ & & +{\varphi }_{x}[\beta (t)({\varphi }_{x}{u}_{1,y}+{\varphi }_{y}{u}_{1,x}+2{v}_{1,x})-{\varphi }_{{ty}}]=0,\\ & & 2{\alpha }^{2}(t){\varphi }_{{xxx}}{\varphi }_{y}+2{\alpha }^{2}(t){\varphi }_{{xxy}}{\varphi }_{x}\\ & & +2\alpha (t){\varphi }_{{xx}}\left[2\alpha (t){\varphi }_{{xy}}+\beta (t)\left({\varphi }_{y}{u}_{1}-\displaystyle \frac{{v}_{1}}{2}\right)\right]\\ & & +2\alpha (t)\beta (t){u}_{1}{\varphi }_{{xy}}{\varphi }_{x}-2\alpha (t){\varphi }_{{xt}}{\varphi }_{y}\\ & & -2\alpha (t){\varphi }_{{yt}}{\varphi }_{x}-\beta (t){v}_{1}{\varphi }_{t}\\ & & +\beta (t)\left\{{\varphi }_{x}[2\alpha (t){\varphi }_{y}{u}_{1,x}\right.\\ & & \left.+\beta (t){u}_{1}{v}_{1}]+2\alpha (t){v}_{2}{\varphi }_{x}^{2}\right\}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}({\varphi }^{-1},{\varphi }^{-1}) & : & \beta (t){\varphi }_{x}{u}_{1,{xy}}+\beta (t){\varphi }_{{xx}}{u}_{1,y}+\beta (t){\varphi }_{{xy}}{u}_{1,x}\\ & & +\beta (t){u}_{1}{\varphi }_{{xxy}}-\alpha (t){\varphi }_{{xxxy}}\\ & & +\beta (t){v}_{1,{xx}}-{\varphi }_{{xyt}}=0,\\ & & {v}_{1,t}-2\alpha (t){v}_{2}{\varphi }_{{xx}}-2\alpha (t){\varphi }_{x}{v}_{2,{x}}\\ & & -\beta (t){v}_{1}{u}_{1,x}-\beta (t){u}_{1}{v}_{1,x}-\alpha (t){v}_{1,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}({\varphi }^{0},{\varphi }^{0}):{u}_{1,{ty}}+\alpha (t){u}_{1,{xxy}}-2\alpha (t){v}_{2,{xx}}-\beta (t){u}_{1}{u}_{1,{xy}}\\ \,-\beta (t){u}_{1,x}{u}_{1,y}=0,\\ \,{v}_{2,t}-\alpha (t){v}_{2,{xx}}-\beta (t){\left({u}_{1}{v}_{2}\right)}_{x}=0,\end{array}\end{eqnarray}$
where u1(x, y, t) and v2(x, y, t) can be regarded as the seed solutions for system (1). With symbolic computation [6], we assume that $\varphi ={{\rm{e}}}^{{a}_{1}x+{a}_{2}y+{a}_{3}(t)}+1$ are in Bäcklund transformations (13)–(17), and the solutions for system (1) are derived as:
$\begin{eqnarray}\begin{array}{l}u(x,y,t)={{ca}}_{1}\tanh \left[\displaystyle \frac{{a}_{1}x+{a}_{2}y+{a}_{3}(t)}{2}\right]+{{ca}}_{1},\\ v(x,y,t)=\frac{1}{2}{{ca}}_{1}{a}_{2}{{\rm{sech}} }^{2}\left[\displaystyle \frac{{a}_{1}x+{a}_{2}y+{a}_{3}(t)}{2}\right],\end{array}\end{eqnarray}$
where a1 and a2 are the real constants.

4. Bilinear forms for system (1)

Motivated by [16], we use the variable transformations
$\begin{eqnarray}\begin{array}{l}u=2\displaystyle \frac{\alpha (t)}{\beta (t)}{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x},\\ v=2\displaystyle \frac{\alpha (t)}{\beta (t)}{\left(\mathrm{ln}f\right)}_{{xy}}+\psi (y),\end{array}\end{eqnarray}$
where f(x, y, t) and g(x, y, t) denote the real differentiable functions of x, y and t, as well as ψ(y) is the real differentiable function of y. Substituting variable transformations (19) into equation (1a), under constraints (10), we get
$\begin{eqnarray}\begin{array}{l}2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xyt}}+2c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xxxy}}\\ -4c\alpha (t){\left(\mathrm{ln}f\right)}_{{xxxy}}-4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xxy}}\\ -4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xx}}{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xy}}=0.\end{array}\end{eqnarray}$
Integrating equation (20) once with respect to x and y, respectively, and making the integration functions equal to 0, we work out
$\begin{eqnarray}\begin{array}{l}2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{t}+2c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xx}}\\ -4c\alpha (t){\left(\mathrm{ln}f\right)}_{{xx}}-2c\alpha (t){\left[{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}\right]}^{2}=0.\end{array}\end{eqnarray}$
According to the following formulas [16]
$\begin{eqnarray}\begin{array}{l}{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}=\displaystyle \frac{{D}_{x}f\cdot g}{{fg}},\,{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{t}=\displaystyle \frac{{D}_{t}f\cdot g}{{fg}},\\ {\left(\mathrm{ln}f\right)}_{{xx}}=\displaystyle \frac{{D}_{x}^{2}f\cdot f}{2{f}^{2}},{\left(\mathrm{ln}f\right)}_{{xy}}=\displaystyle \frac{{D}_{x}{D}_{y}f\cdot f}{2{f}^{2}},\\ {\left(\mathrm{ln}f\right)}_{{yt}}=\displaystyle \frac{{D}_{y}{D}_{t}f\cdot f}{2{f}^{2}},\\ {\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xx}}=\displaystyle \frac{{D}_{x}^{2}f\cdot f}{2{f}^{2}}-\displaystyle \frac{{D}_{x}^{2}g\cdot g}{2{g}^{2}},\\ {\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xy}}=\displaystyle \frac{{D}_{x}{D}_{y}f\cdot f}{2{f}^{2}}-\displaystyle \frac{{D}_{x}{D}_{y}g\cdot g}{2{g}^{2}},\\ {\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{yt}}=\displaystyle \frac{{D}_{y}{D}_{t}f\cdot f}{2{f}^{2}}-\displaystyle \frac{{D}_{y}{D}_{t}g\cdot g}{2{g}^{2}},\\ {\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xxy}}=\displaystyle \frac{{D}_{x}^{2}{D}_{y}f\cdot g}{{fg}}-\displaystyle \frac{{D}_{x}^{2}f\cdot g}{{fg}}\cdot \displaystyle \frac{{D}_{y}f\cdot g}{{fg}}\\ \,\,-2\displaystyle \frac{{D}_{x}{D}_{y}f\cdot g}{{fg}}\cdot \displaystyle \frac{{D}_{x}f\cdot g}{{fg}}\\ \,\,+2{\left(\displaystyle \frac{{D}_{x}f\cdot g}{{fg}}\right)}^{2}\cdot \displaystyle \frac{{D}_{y}f\cdot g}{{fg}},\end{array}\end{eqnarray}$
we obtain
$\begin{eqnarray}[\alpha (t){D}_{x}^{2}-{D}_{t}]f\cdot g=0.\end{eqnarray}$
Dx, Dy and Dt are the Hirota bilinear operators defined as [16]
$\begin{eqnarray}\begin{array}{l}{D}_{x}^{{l}_{1}}{D}_{y}^{{l}_{2}}{D}_{t}^{{l}_{3}}F(x,y,t)\cdot G(x,y,t)\\ \,=\,{\left(\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}x}-\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}{x{\rm{^{\prime} }}}^{}}\right)}^{{l}_{1}}{\left(\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}y}-\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}{y{\rm{^{\prime} }}}^{}}\right)}^{{l}_{2}}{\left(\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}t}-\displaystyle \frac{{\rm{\partial }}}{{\rm{\partial }}{t{\rm{^{\prime} }}}^{}}\right)}^{{l}_{3}}\\ \times \,{\left.\left.F(x,y,t)G({x{\rm{^{\prime} }}}^{},{y{\rm{^{\prime} }}}^{},{t{\rm{^{\prime} }}}^{}\right)\right|}_{{x{\rm{^{\prime} }}}^{}=x,{y{\rm{^{\prime} }}}^{}=y,{t{\rm{^{\prime} }}}^{}=t},\end{array}\end{eqnarray}$
where F(x, y, t) is a function of x, y and t, $G(x^{\prime} ,y^{\prime} ,t^{\prime} )$ denotes a function of the independent variables of $x^{\prime} $, $y^{\prime} $ and $t^{\prime} $, while l1, l2 and l3 are the non-negative integers.
Integrating equation (20) once with respect to x, and making the integration constant equal to 0, we work out
$\begin{eqnarray}\begin{array}{l}2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{yt}}+2c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xxy}}-4c\alpha (t){\left(\mathrm{ln}f\right)}_{{xxy}}\\ \qquad \qquad -4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xy}}=0.\end{array}\end{eqnarray}$
Substituting variable transformation (19) into equation (1b), under constraints (10), we have
$\begin{eqnarray}\begin{array}{l}2c{\left(\mathrm{ln}f\right)}_{{xyt}}-2c\alpha (t){\left(\mathrm{ln}f\right)}_{{xxxy}}\\ -\,4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xx}}{\left(\mathrm{ln}f\right)}_{{xy}}-2\alpha (t)\psi (y){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{{xx}}\\ -\,4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}{\left(\mathrm{ln}f\right)}_{{xxy}}=0.\end{array}\end{eqnarray}$
Integrating equation (26) once with respect to x, and making the integration constant equal to 0, we obtain
$\begin{eqnarray}\begin{array}{l}2c{\left(\mathrm{ln}f\right)}_{{yt}}-2c\alpha (t){\left(\mathrm{ln}f\right)}_{{xxy}}-4c\alpha (t){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}{\left(\mathrm{ln}f\right)}_{{xy}}\\ \,-2\alpha (t)\psi (y){\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x}=0.\end{array}\end{eqnarray}$
Substituting formulae (22) and equation (23) into equations (25) and (27), we get
$\begin{eqnarray}\begin{array}{l}\left[2{{cD}}_{y}{D}_{t}-2\alpha (t){{cD}}_{x}^{2}{D}_{y}\right.\,\left.-\,4\alpha (t)\psi (y){D}_{x}\right]f\cdot g=0.\end{array}\end{eqnarray}$
Thus, we can derive the bilinear forms for system (1) under constraint (10) as
$\begin{eqnarray}\begin{array}{l}[\alpha (t){D}_{x}^{2}-{D}_{t}]f\cdot g=0,\\ [2{{cD}}_{y}{D}_{t}-2\alpha (t){{cD}}_{x}^{2}{D}_{y}-\,4\alpha (t)\psi (y){D}_{x}]f\cdot g=0.\end{array}\end{eqnarray}$

5. Soliton solutions for system (1)

In order to derive certain N-soliton solutions for system (1), we give the following expansions:
$\begin{eqnarray}\begin{array}{rcl}f & = & 1+\varepsilon {f}_{1}+{\varepsilon }^{2}{f}_{2}+{\varepsilon }^{3}{f}_{3}+\cdots +{\varepsilon }^{N}{f}_{N},\\ g & = & 1+\varepsilon {g}_{1}+{\varepsilon }^{2}{g}_{2}+{\varepsilon }^{3}{g}_{3}+\cdots +{\varepsilon }^{N}{g}_{N},\end{array}\end{eqnarray}$
where fϱ's and gϱ's (ϱ = 1, 2, 3, ⋯, N) denote the real functions of x, y and t, N is a positive integer, as well as ϵ is a real constant. Substituting expressions (30) into bilinear forms (29) and making the coefficients zero on each power order of ϵ, we work out the N-soliton solutions for system (1)
$\begin{eqnarray}\begin{array}{l}u=2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x},\\ f=\displaystyle \sum _{\mu =0,1}\exp \left\{\displaystyle \sum _{\iota =1}^{N}{\mu }_{\iota }[\mathrm{ln}({B}_{\iota })+{\eta }_{\iota }]+\displaystyle \sum _{\iota \lt \varsigma }^{(N)}{\mu }_{\iota }{\mu }_{\varsigma }\mathrm{ln}({A}_{\iota \varsigma })\right\},\\ v=2c{\left(\mathrm{ln}f\right)}_{{xy}}+\psi (y),\\ g=\displaystyle \sum _{\mu =0,1}\exp \left[\displaystyle \sum _{\iota =1}^{N}{\mu }_{\iota }{\eta }_{\iota }+\displaystyle \sum _{\iota \lt \varsigma }^{(N)}{\mu }_{\iota }{\mu }_{\varsigma }\mathrm{ln}({A}_{\iota \varsigma })\right],\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}{\eta }_{\iota }={k}_{\iota }[x+{p}_{\iota }(y)+{\omega }_{\iota }(t)],\\ {p}_{\iota }(y)=\displaystyle \int \displaystyle \frac{{\left({B}_{\iota }-1\right)}^{2}\psi (y)}{2{B}_{\iota }{{ck}}_{\iota }^{2}}{\rm{d}}y,\\ {\omega }_{\iota }(t)=\displaystyle \int \displaystyle \frac{(1+{B}_{\iota })c\beta (t){k}_{\iota }}{({B}_{\iota }-1)}{\rm{d}}t,\\ {A}_{\iota \varsigma }=\displaystyle \frac{[({B}_{\iota }-1){k}_{\varsigma }-({B}_{\varsigma }-1){k}_{\iota }][{B}_{\iota }{k}_{\iota }({B}_{\varsigma }-1)-({B}_{\iota }-1){B}_{\varsigma }{k}_{\varsigma }]}{[{B}_{\iota }{k}_{\iota }({B}_{\varsigma }-1)-({B}_{\iota }-1){k}_{\varsigma }][({B}_{\iota }-1){B}_{\varsigma }{k}_{\varsigma }-({B}_{\varsigma }-1){k}_{\iota }]},\end{array}\end{eqnarray*}$
where Bι kι(Bς − 1) − (Bι − 1)kς ≠ 0, (Bι − 1)Bςkς − (Bς −1)kι ≠ 0, Bι ≠ 0, α(t) ≠ 0, kι ≠ 0, kι's and Bι's are the real constants, pι(y)'s denote the functions of y, ωι(t)'s are the functions of t, ∑μ=0,1 indicates a summation over all the possible combinations of μι = 0, 1 for ι = 1, 2,⋯, N, while ${\sum }_{\iota \lt \kappa }^{(N)}$ denotes a summation over all possible pairs (ι, κ) chosen from N elements under the condition ι < κ.
When N = 2 in solutions (31), the second-order soliton solutions for system (1) can be expressed as
$\begin{eqnarray}u=2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x},\,v=2c{\left(\mathrm{ln}f\right)}_{{xy}}+\psi (y),\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}f & = & 1+{B}_{1}{{\rm{e}}}^{{\eta }_{1}}+{B}_{2}{{\rm{e}}}^{{\eta }_{2}}+{B}_{1}{B}_{2}{A}_{12}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}},\,g=1+{{\rm{e}}}^{{\eta }_{1}}+{{\rm{e}}}^{{\eta }_{2}}+{A}_{12}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}},\\ {A}_{12} & = & \displaystyle \frac{[({B}_{1}-1){k}_{2}-({B}_{2}-1){k}_{1}][{B}_{1}{k}_{1}({B}_{2}-1)-({B}_{1}-1){B}_{2}{k}_{2}]}{[{B}_{1}{k}_{1}({B}_{2}-1)-({B}_{1}-1){k}_{2}][({B}_{1}-1){B}_{2}{k}_{2}-({B}_{2}-1){k}_{1}]}.\end{array}\end{eqnarray*}$
Through asymptotic analysis of solutions (32), we analyze the interaction properties between the two solitons. We will introduce the symbols ${u}_{{\imath }}^{\pm }$'s and ${v}_{{\imath }}^{\pm }$'s (ı = 1, 2, 3), where the expressions before the interaction between the two solitons are denoted by ${u}_{{\imath }}^{-}$ and ${v}_{{\imath }}^{-}$, while the expressions after the interaction between the two solitons are expressed by ${u}_{{\imath }}^{+}$ and ${v}_{{\imath }}^{+}$.
Case 1: Elastic interaction
We assume that k2 > k1 > 0, $\tfrac{{\left({B}_{2}-1\right)}^{2}\psi (y)}{{B}_{2}{{ck}}_{2}^{2}}\gt \tfrac{{\left({B}_{1}-1\right)}^{2}\psi (y)}{{B}_{1}{{ck}}_{1}^{2}}$ and $\tfrac{({B}_{2}+1)\alpha (t){k}_{2}}{{B}_{2}-1}\gt \tfrac{({B}_{1}+1)\alpha (t){k}_{1}}{{B}_{1}-1}$, and then we work out the asymptotic expressions for solutions (32)
$\begin{eqnarray}u\to \left\{\begin{array}{l}{u}_{1}^{-}=\displaystyle \frac{2{{ck}}_{1}({B}_{1}-1)}{1+{B}_{1}+2\sqrt{{B}_{1}}\cosh ({\eta }_{1}+\mathrm{ln}\sqrt{{B}_{1}})},\,({\eta }_{1}\sim 0,\,{\eta }_{2}\to -\infty ),\\ {u}_{1}^{+}=\displaystyle \frac{2{{ck}}_{1}({B}_{1}-1)}{1+{B}_{1}+2\sqrt{{B}_{1}}\cosh ({\eta }_{1}+\mathrm{ln}\sqrt{{A}_{12}{B}_{1}})},\,({\eta }_{1}\sim 0,\,{\eta }_{2}\to +\infty ),\\ {u}_{2}^{-}=\displaystyle \frac{2{{ck}}_{2}({B}_{2}-1)}{1+{B}_{2}+2\sqrt{{B}_{2}}\cosh ({\eta }_{2}+\mathrm{ln}\sqrt{{A}_{12}{B}_{2}})},\,({\eta }_{2}\sim 0,\,{\eta }_{1}\to +\infty ),\\ {u}_{2}^{+}=\displaystyle \frac{2{{ck}}_{2}({B}_{2}-1)}{1+{B}_{2}+2\sqrt{{B}_{2}}\cosh ({\eta }_{2}+\mathrm{ln}\sqrt{{B}_{2}})},\,({\eta }_{2}\sim 0,\,{\eta }_{1}\to -\infty ).\end{array}\right.\end{eqnarray}$
$\begin{eqnarray}v\to \left\{\begin{array}{l}{v}_{1}^{-}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{1}-1\right)}^{2}}{4{B}_{1}}{{\rm{sech}} }^{2}\left(\displaystyle \frac{{\eta }_{1}}{2}+\mathrm{ln}\sqrt{{B}_{1}}\right)\right],\,({\eta }_{1}\sim 0,\,{\eta }_{2}\to -\infty ),\\ {v}_{1}^{+}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{1}-1\right)}^{2}}{4{B}_{1}}{{\rm{sech}} }^{2}\left(\displaystyle \frac{{\eta }_{1}}{2}+\mathrm{ln}\sqrt{{A}_{12}{B}_{1}}\right)\right],\,({\eta }_{1}\sim 0,\,{\eta }_{2}\to +\infty ),\\ {v}_{2}^{-}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{2}-1\right)}^{2}}{4{B}_{2}}{{\rm{sech}} }^{2}\left(\displaystyle \frac{{\eta }_{2}}{2}+\mathrm{ln}\sqrt{{A}_{12}{B}_{2}}\right)\right],\,({\eta }_{2}\sim 0,\,{\eta }_{1}\to +\infty ),\\ {v}_{2}^{+}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{2}-1\right)}^{2}}{4{B}_{2}}{{\rm{sech}} }^{2}\left(\displaystyle \frac{{\eta }_{2}}{2}+\mathrm{ln}\sqrt{{B}_{2}}\right)\right],\,({\eta }_{2}\sim 0,\,{\eta }_{1}\to -\infty ).\end{array}\right.\end{eqnarray}$
From expressions (33) and (34), we can derive the velocity vectors of the ρth soliton as $\overrightarrow{{V}_{\rho }}={\left({V}_{\rho x},{V}_{\rho y}\right)}^{T}$, where
$\begin{eqnarray}\begin{array}{l}{V}_{\rho x}=-\displaystyle \frac{4({B}_{\rho }+1){B}_{\rho }^{2}{c}^{2}{k}_{\rho }^{5}\beta (t)}{({B}_{\rho }-1)(4{B}_{\rho }^{2}{c}^{2}{k}_{\rho }^{4}+{\left({B}_{\rho }-1\right)}^{4}\psi {\left(y\right)}^{2})},\\ {V}_{\rho y}=-\displaystyle \frac{2({B}_{\rho }^{2}-1){B}_{\rho }{{ck}}_{\rho }^{3}\psi (y)\beta (t)}{4{B}_{\rho }^{2}{c}^{2}{k}_{\rho }^{4}+{\left({B}_{\rho }-1\right)}^{4}\psi {\left(y\right)}^{2}},\end{array}\end{eqnarray}$
where ρ is a positive integer. From expressions (33) and (34), we can get that the amplitudes of u1 and u2 are
$\begin{eqnarray}\widetilde{{u}_{1}}=\displaystyle \frac{2{{ck}}_{1}(\sqrt{{B}_{1}}-1)}{\sqrt{{B}_{1}}+1},\,\widetilde{{u}_{2}}=\displaystyle \frac{2{{ck}}_{2}(\sqrt{{B}_{2}}-1)}{\sqrt{{B}_{2}}+1},\end{eqnarray}$
while we can obtain that the amplitudes of v1 and v2 are
$\begin{eqnarray}\widetilde{{v}_{1}}=\displaystyle \frac{{\left({B}_{1}-1\right)}^{2}}{4{B}_{1}},\,\widetilde{{v}_{2}}=\displaystyle \frac{{\left({B}_{2}-1\right)}^{2}}{4{B}_{2}}.\end{eqnarray}$
From expressions (35)–(37), we can work out that the velocity and amplitude for each soliton remain unchanged before and after the interaction, except for the phase shift associated with A12, as seen in figure 1.
Figure 1. Elastic interaction between two solitons via solutions (32) with the parameters as B1 = 6, B2 = 2, k1 = 1, k2 = 3, β(t) = t2, c =2, ψ(y) = 1.
In figures 1 and 2, we can see that β(t) influences the velocities of the solitons.
Figure 2. Elastic interaction between two solitons via solutions (32) with the same as figure 1 except that $\beta (t)=\sin (t)$.
From figures 1 and 3, we can observe that ψ(y) affects the soliton shape and background plane.
Figure 3. Elastic interaction between two solitons via solutions (32) with the same as figure 1 except that $\psi (y)=\tanh (y)$.
Case 2: Inelastic interaction
In order to obtain the inelastic interaction between the two solitons, we take A12 equal to 0, that is, $\tfrac{{B}_{1}-1}{{k}_{1}}=\tfrac{{B}_{2}-1}{{k}_{2}}$ or $\tfrac{{B}_{1}-1}{{k}_{1}{B}_{1}}=\tfrac{{B}_{2}-1}{{k}_{2}{B}_{2}}$ in solutions (32). We take $\tfrac{{B}_{1}-1}{{k}_{1}}=\tfrac{{B}_{2}-1}{{k}_{2}}$, and then we derive the asymptotic expressions for solutions (32)
$\begin{eqnarray}u\to \left\{\begin{array}{ll}{u}_{1}^{-}=\displaystyle \frac{2{{ck}}_{1}({B}_{1}-1)}{1+{B}_{1}+2\sqrt{{B}_{1}}\cosh ({\eta }_{1}+\mathrm{ln}\sqrt{{B}_{1}})}, & ({\eta }_{1}\sim 0,\,{\eta }_{2}\to -\infty ),\\ {u}_{2}^{-}=\displaystyle \frac{2{{ck}}_{1}{\left({B}_{2}-1\right)}^{2}}{({B}_{1}-1)\left(1+{B}_{2}+2\sqrt{{B}_{2}}\cosh ({\eta }_{2}+\mathrm{ln}\sqrt{{B}_{2}})\right)}, & ({\eta }_{2}\sim 0,\,{\eta }_{1}\to -\infty ),\\ {u}_{3}^{+}=\displaystyle \frac{2{{ck}}_{1}{\left({B}_{1}-{B}_{2}\right)}^{2}}{({B}_{1}-1)\left[{B}_{1}+{B}_{2}+2\sqrt{{B}_{1}{B}_{2}}\cosh \left({\eta }_{1}-{\eta }_{2}+\mathrm{ln}\sqrt{\tfrac{{B}_{1}}{{B}_{2}}}\right)\right]}, & \\ \quad ({\eta }_{1}-{\eta }_{2}\sim 0,\,{\eta }_{1}\to +\infty ,\,{\eta }_{2}\to +\infty ). & \end{array}\right.\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}v\to \left\{\begin{array}{l}{v}_{1}^{-}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{1}-1\right)}^{2}}{4{B}_{1}}{{\rm{{\rm{sech}} }}}^{2}\left(\frac{{\eta }_{1}}{2}+{\rm{ln}}\sqrt{{B}_{1}}\right)\right],\,({\eta }_{1}\sim 0,\,{\eta }_{2}\to -\infty ),\\ {v}_{2}^{-}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{2}-1\right)}^{2}}{4{B}_{2}}{{\rm{{\rm{sech}} }}}^{2}\left(\displaystyle \frac{{\eta }_{2}}{2}+{\rm{ln}}\sqrt{{B}_{2}}\right)\right],\,({\eta }_{2}\sim 0,\,{\eta }_{1}\to -\infty ),\\ {v}_{3}^{+}=\psi (y)\left[1+\displaystyle \frac{{\left({B}_{1}-{B}_{2}\right)}^{2}}{4{B}_{1}{B}_{2}}{{\rm{{\rm{sech}} }}}^{2}\left(\displaystyle \frac{{\eta }_{1}-{\eta }_{2}}{2}+{\rm{ln}}\sqrt{\displaystyle \frac{{B}_{1}}{{B}_{2}}}\right)\right],\\ ({\eta }_{1}-{\eta }_{2}\sim 0,\,{\eta }_{1}\to +\infty ,\,{\eta }_{2}\to +\infty ).\end{array}\right.\end{array}\end{eqnarray}$
From expression (38), we can get that the amplitudes of ${u}_{1}^{-}$ and ${u}_{2}^{-}$ before the interaction are $\widetilde{{u}_{1}}=\tfrac{2{{ck}}_{1}(\sqrt{{B}_{1}}-1)}{\sqrt{{B}_{1}}+1}$ and $\widetilde{{u}_{2}}=\tfrac{2{{ck}}_{1}{\left(\sqrt{{B}_{2}}-1\right)}^{2}}{{B}_{1}-1}$, respectively, and the amplitude of ${u}_{3}^{+}$ after the interaction is $\widetilde{{u}_{3}}=\tfrac{2{{ck}}_{1}{\left(\sqrt{{B}_{1}}-\sqrt{{B}_{2}}\right)}^{2}}{{B}_{1}-1}$. $\widetilde{{u}_{1}}$, $\widetilde{{u}_{2}}$ and $\widetilde{{u}_{3}}$ have the following relationship:
$\begin{eqnarray}\begin{array}{lcl}\widetilde{{u}_{3}} & = & \widetilde{{u}_{1}}+\widetilde{{u}_{2}}-2\sqrt{\widetilde{{u}_{1}}\widetilde{{u}_{2}}},\\ & & \mathrm{when}\,\displaystyle \frac{2{{ck}}_{1}(\sqrt{{B}_{1}}-1)(\sqrt{{B}_{2}}-1)}{{B}_{1}-1}\gt 0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{lcl}\widetilde{{u}_{3}} & = & \widetilde{{u}_{1}}+\widetilde{{u}_{2}}+2\sqrt{\widetilde{{u}_{1}}\widetilde{{u}_{2}}},\\ & & \mathrm{when}\,\displaystyle \frac{2{{ck}}_{1}(\sqrt{{B}_{1}}-1)(\sqrt{{B}_{2}}-1)}{{B}_{1}-1}\lt 0.\end{array}\end{eqnarray}$
In the case of $\tfrac{{B}_{1}-1}{{k}_{1}{B}_{1}}=\tfrac{{B}_{2}-1}{{k}_{2}{B}_{2}}$, we get the similar properties and asymptotic expressions.
In figure 4, the two solitons fuse into one, and the direction of propagation changes.
Figure 4. Inelastic interaction between two solitons via solutions (32) with the same as figure 1 except that B2 = 16.
Case 3: Soliton resonance
The resonance between the two solitons can be derived when A12 → +∞ in solutions (32), as seen in figure 5. From figure 5, we can observe that the two solitons initially fuse into one and then separate, and the amplitude of the interacting part is bigger than the amplitudes of the solitons in the other parts.
Figure 5. Resonance between two solitons via solutions (32) with the same as figure 1 except that ${B}_{2}=\tfrac{69}{20}$.
When N = 3 in solutions (31), the third-order soliton solutions for system (1) can be expressed as
$\begin{eqnarray}u=2c{\left(\mathrm{ln}\displaystyle \frac{f}{g}\right)}_{x},\,v=2c{\left(\mathrm{ln}f\right)}_{{xy}}+\psi (y),\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}f=1+{B}_{1}{{\rm{e}}}^{{\eta }_{1}}+{B}_{2}{{\rm{e}}}^{{\eta }_{2}}+{B}_{3}{{\rm{e}}}^{{\eta }_{3}}\\ \,+\,{B}_{1}{B}_{2}{A}_{12}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}}+{B}_{1}{B}_{3}{A}_{13}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{3}}+{B}_{2}{B}_{3}{A}_{23}{{\rm{e}}}^{{\eta }_{2}+{\eta }_{3}}\\ \,+\,{B}_{1}{B}_{2}{B}_{3}{A}_{123}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}+{\eta }_{3}},\\ g=1+{{\rm{e}}}^{{\eta }_{1}}+{{\rm{e}}}^{{\eta }_{2}}+{A}_{12}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}}\\ \,+\,{A}_{13}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{3}}+{A}_{23}{{\rm{e}}}^{{\eta }_{2}+{\eta }_{3}}+{A}_{123}{{\rm{e}}}^{{\eta }_{1}+{\eta }_{2}+{\eta }_{3}},\\ {A}_{123}={A}_{12}{A}_{13}{A}_{23}.\end{array}\end{eqnarray*}$
A study by [17] believed that the three-soliton condition implies the N-soliton condition.

6. Conclusions

In this paper, a (2+1)-dimensional variable-coefficient modified dispersive water-wave system in fluid mechanics, i.e., system (1), has been investigated. It has been proved that system (1) is Painlevé integrable under constraint (10) via the Painlevé analysis. We have worked out auto-Bäcklund transformations (13)–(17) and soliton solutions (18) via the truncated Painlevé expansions. Bilinear forms (29) and N-soliton solutions (31) have been derived. For the two solitons, interactions, inelastic interactions and soliton resonances via asymptotic analysis, as shown in figures 1, 4 and 5, respectively. From figures 1 and 2, we have determined that the velocities of the solitons are affected by the variable coefficient β(t). From figures 1 and 3, we have observed that the soliton shape and background plane are affected by ψ(y). In addition, those solitons could help people analytically study other nonlinear evolution equations in fluid mechanics, plasma physics, nonlinear dynamics, nonlinear optics and mathematical physics.

We express our sincere thanks to the editors, reviewers and members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11 772 017, and by the Fundamental Research Funds for the Central Universities.

1
Chanson H Bombardelli F Castro-Orgaz O 2020 Environmental fluid mechanics in hydraulic engineering Environ. Fluid Mech. 20 227 232

DOI

2
Gao X T Tian B Feng C H 2022 In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system Chin. J. Phys. 77 2818 2824

DOI

3
Manafian J Ilhan O A Alizadeh A Mohammed S A 2020 Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics Commun. Theor. Phys. 72 075002

DOI

Gao X Y Guo Y J Shan W R 2022 Auto-Bäcklund transformation, similarity reductions and solitons of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics Qual. Theory Dyn. Syst. 21 60

DOI

Shen Y Tian B Liu S H Zhou T Y 2022 Studies on certain bilinear form N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3.1)-dimensional shallow water wave equation with time-dependent coefficients Nonlinear Dyn. 108 2447 2460

DOI

Gao X T Tian B Shen Y Feng C H 2022 Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system Qual. Theory Dyn. Syst. 21 104

DOI

Gao X Y Guo Y J Shan W R 2022 Regarding the shallow water in an ocean via a Whitham-Broer-Kaup-like system: hetero-Bäcklund transformations, bilinear forms and M solitons Chaos Solitons Fract. 162 112486

DOI

Zhou T Y Tian B Chen Y Q Shen Y 2022 Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2.1)-dimensional generalized Burgers system with the variable coefficients in a fluid Nonlinear Dyn. 108 2417 2428

DOI

Cheng C D Tian B Zhang C R Zhao X 2021 Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid Nonlinear Dyn. 105 2525 2538

DOI

Shen Y Tian B 2021 Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves Appl. Math. Lett. 122 107301

DOI

Gao X Y Guo Y J Shan W R 2022 Bilinear auto-Bäcklund transformations and similarity reductions for a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system in fluid mechanics and lattice dynamics Qual. Theory Dyn. Syst. 21 95

DOI

Liu F Y Gao Y T Yu X Ding C C 2022 Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3.1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves Nonlinear Dyn. 108 1599 1616

DOI

Gao X T Tian B 2022 Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system Appl. Math. Lett. 128 107858

DOI

Gao X Y Guo Y J Shan W R 2023 Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system Phys. Lett. A 457 128552

DOI

4
Shen Y Tian B Zhou T Y Gao X T 2022 Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions Chaos Solitons Fract. 157 111861

DOI

5
Zhou T Y Tian B 2022 Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber Appl. Math. Lett. 133 108280

DOI

Zhou T Y Tian B Zhang C R Liu S H 2022 Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3.1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma Eur. Phys. J. Plus 137 912

Shen Y Tian B Zhou T Y Gao X T 2022 N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material Nonlinear Dyn.

DOI

Gao X Y Guo Y J Shan W R Du Z Chen Y Q 2022 Magnetooptic studies on a ferromagnetic material via an extended (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system Qual. Theory Dyn. Syst. 21 153

DOI

Yang D Y Tian B Hu C C Liu S H Shan W R Jiang Y 2022 Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber Wave. Random Complex

DOI

Cheng C D Tian B Ma Y X Zhou T Y Shen Y 2022 Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics Phys. Fluids 34 115132

DOI

Shen Y Tian B Zhou T Y Gao X T 2022 Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws N-fold Darboux transformation and explicit exact solutions Chaos Silotons Fract. 164 112460

DOI

Gao X Y Guo Y J Shan W R Zhou T Y 2022 Singular manifold, auto-Bäcklund transformations and symbolic-computation steps with solitons for an extended three-coupled Korteweg-de Vries system Int. J. Geom. Methods Mod. Phys.

DOI

Yang D Y Tian B Hu C C Zhou T Y 2022 The generalized Darboux transformation and higher-order rogue waves for a coupled nonlinear Schrödinger system with the four-wave mixing terms in a birefringent fiber Eur. Phys. J. Plus 137 1213

DOI

6
Gao X Y Guo Y J Shan W R 2022 Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system Appl. Math. Lett. 132 108189

DOI

7
Wang M Tian B Zhou T Y 2021 Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain Chaos Solitons Fract. 152 111411

DOI

8
Wu X H Gao Y T Yu X Ding C C Li L Q 2022 Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation Chaos Solitons Fract. 162 112399

DOI

9
Yang D Y Tian B Tian H Y Wei C C Shan W R Jiang Y 2022 Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber Chaos Solitons Fract. 156 111719

DOI

10
Abd-el-Malek M B Amin A M 2013 Lie group method for solving generalized Hirota-Satsuma coupled Korteweg-de Vries equations Appl. Math. Comput. 224 501 516

DOI

11
Chen Y X 2020 Soliton exotic collision of the (2+1)-dimensional modified dispersive water-wave system in fluid mechanics Phys. Scr. 95 055205

DOI

12
Ma Z Y Fei J X Du X Y 2015 Symmetry reduction of the (2+1)-dimensional modified dispersive water-wave system Commun. Theor. Phys. 64 127 132

DOI

13
Li D S Zhang H Q 2004 New families of non-travelling wave solutions to the (2+1)-dimensional modified dispersive water-wave system Chin. Phys. 13 1377

DOI

14
Liang J F Wang X 2019 Consistent Riccati expansion for finding interaction solutions of (2+1)-dimensional modified dispersive water-wave system Math. Meth. Appl. Sci. 42 6131 6138

DOI

15
Ablowitz M J Segur H 1977 Exact linearization of a Painlevé transcendent Phys. Rev. Lett. 38 1103 1106

DOI

16
Hirota R 2004 The Direct Method in Soliton Theory Cambridge Cambridge University Press

17
Ma W X 2020 N-soliton solutions and the Hirota conditions in (2+1)-dimensions Opt. Quantum. Electron. 52 511

DOI

Outlines

/