Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Optical recursional binormal optical visco Landau–Lifshitz electromagnetic optical density

  • Talat Körpinar , 1, ,
  • Zeliha Körpinar 2
Expand
  • 1 Muş Alparslan University, Department of Mathematics, 49250, Muş, Turkey
  • 2 Muş Alparslan University, Department of Administration, 49250, Muş, Turkey

Author to whom any correspondence should be addressed.

Received date: 2022-12-15

  Revised date: 2023-03-20

  Accepted date: 2023-03-21

  Online published: 2023-05-10

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this manuscript, we study a new version of the optical recursional binormal microbeam model for a flexible binormal microscale beam in terms of a binormal normalized operator. Also, we give new explanations for the optical recursional visco Landau–Lifshitz binormal electromagnetic binormal microscale beam. Finally, we obtain an optical application for the normalized visco Landau–Lifshitz electromagnetic binormal optimistic density with an optical binormal resonator.

Cite this article

Talat Körpinar , Zeliha Körpinar . Optical recursional binormal optical visco Landau–Lifshitz electromagnetic optical density[J]. Communications in Theoretical Physics, 2023 , 75(5) : 055003 . DOI: 10.1088/1572-9494/acc5de

1. Introduction

The fundamental design of electromagnetic fibers is constructed by interfacing semiconductors with magnetically density phases by modeling the optical fiber principle. Physical recursion materials have been largely adopted by thin glazes, spherical tubes, cannulas, optical fibers, biopsy needles, fiberscopes, and optical refreshment electrodes with some applications. Progress in physical components, production technology, nanotechnology, and hybrid electronics is compelled by elastic models [115].
Numerous applications have drawn on the importance of mathematicians, physicists, and mechanic engineers on electromagnetic hydrodynamic fluid phases. Also, geometric flexible antiferrofluid hybrid microscales are essential hybrid models to collect laser regressions of physical photonic flux paths. Optical ferromagnetic electromagnetic flux density is described by spherical electromotive energy flux applications. Hybrid electromagnetic flux structures have been determined by optical electromagnetic microscales in spherical Heisenberg space, Lorentz geometry, phase geometry, and de Sitter geometry [1632].
Electrically, propagation of optical geometric microscales is principally required for electromagnetic applications in electrophysical sensors, optical flux devices, and other electromagnetic components. Hybrid geometric influences of optical elastic fibers are conducted in quasi-optical systems, phase modeling, and optical dynamics by viscoelastic optical applications [3352].
The organisation of our manuscript is as follows. First, we study the optical recursional binormal microbeam model for a flexible binormal microscale beam in terms of a binormal normalized operator. Also, we give new explanations for the optical recursional visco Landau–Lifshitz binormal electromagnetic binormal microscale beam. Finally, we obtain an optical application for normalized visco Landau–Lifshitz electromagnetic binormal optimistic density with an optical binormal resonator.

2. Formulation of recursional operator

Quasi-field equations are
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\nabla }}}_{s}{{\boldsymbol{t}}}_{{\boldsymbol{q}}} & = & {\chi }_{1}{{\boldsymbol{n}}}_{{\boldsymbol{q}}}+{\chi }_{2}{{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ {{\rm{\nabla }}}_{s}{{\boldsymbol{n}}}_{{\boldsymbol{q}}} & = & -{\chi }_{1}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}+{\chi }_{3}{{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ {{\rm{\nabla }}}_{s}{{\boldsymbol{b}}}_{{\bf{q}}} & = & -{\chi }_{2}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}-{\chi }_{3}{{\boldsymbol{n}}}_{{\boldsymbol{q}}},\end{array}\end{eqnarray*}$
Also, Lorentz forces are
$\begin{eqnarray*}\begin{array}{rcl}\phi ({{\boldsymbol{t}}}_{{\bf{q}}}) & = & \psi {{\boldsymbol{n}}}_{{\boldsymbol{q}}}+{\chi }_{2}{{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ \phi ({{\boldsymbol{n}}}_{{\bf{q}}}) & = & -\psi {{\boldsymbol{t}}}_{{\bf{q}}}+{\chi }_{3}{{\boldsymbol{b}}}_{{\bf{q}}},\\ \phi ({{\boldsymbol{b}}}_{{\bf{q}}}) & = & -{\chi }_{2}{{\boldsymbol{t}}}_{{\bf{q}}}-{\chi }_{3}{{\boldsymbol{n}}}_{{\bf{q}}},\end{array}\end{eqnarray*}$
where ψ = φ(tq) · nq. Also, electromagnetic fields are
$\begin{eqnarray*}\begin{array}{rcl}{ \mathcal B } & = & {\chi }_{3}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}-{\chi }_{2}{{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\psi {{\boldsymbol{b}}}_{{\boldsymbol{q}}}\\ { \mathcal E } & = & -\displaystyle \frac{\varsigma }{\epsilon }{{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\end{array}\end{eqnarray*}$
Putting
$\begin{eqnarray*}\displaystyle \frac{\partial \alpha }{\partial t}={\varepsilon }_{1}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}+{\varepsilon }_{2}{{\boldsymbol{n}}}_{{\boldsymbol{q}}}+{\varepsilon }_{3}{{\boldsymbol{b}}}_{{\boldsymbol{q}}},\end{eqnarray*}$
where ϵ1, ϵ2, ϵ3 are potential velocities.
Optical quasi-normalization operators of Lorentz fields are
$\begin{eqnarray*}\begin{array}{rcl}{ \mathcal N }\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right) & = & \left({\displaystyle \int }_{\alpha }\left({\kappa }_{1}^{2}+\chi {\kappa }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+{\kappa }_{1}{{\boldsymbol{n}}}_{{\bf{q}}}+\chi {{\boldsymbol{b}}}_{{\bf{q}}},\\ { \mathcal N }\phi ({{\boldsymbol{n}}}_{{\boldsymbol{q}}}) & = & \left({\displaystyle \int }_{\alpha }{\kappa }_{2}{\kappa }_{3}d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+{\kappa }_{3}{{\boldsymbol{b}}}_{{\bf{q}}},\\ { \mathcal N }\phi ({{\boldsymbol{b}}}_{{\bf{q}}}) & = & -\left({\displaystyle \int }_{\alpha }{\kappa }_{1}{\kappa }_{3}d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-{\kappa }_{3}{{\boldsymbol{n}}}_{{\bf{q}}},\end{array}\end{eqnarray*}$
and
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }{ \mathcal B }=\left({\displaystyle \int }_{\alpha }\left(-\chi {\kappa }_{1}+{\kappa }_{1}{\kappa }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\chi {{\boldsymbol{n}}}_{{\boldsymbol{q}}}+{\kappa }_{1}{{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal N }{ \mathcal E }=\left({\displaystyle \int }_{\alpha }\left({\kappa }_{1}^{2}\left(1-\displaystyle \frac{m}{e}\right)+\left(\chi -\displaystyle \frac{m}{e}{\kappa }_{2}\right){\kappa }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +{\kappa }_{1}\left(1-\displaystyle \frac{m}{e}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\chi -\displaystyle \frac{m}{e}{\kappa }_{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
Also, we get
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{t}}}_{{\boldsymbol{q}}}) & = & -\,\left({\chi }_{1}\psi +{\chi }_{2}^{2}\right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\\ & & +\,\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ {{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{n}}}_{{\boldsymbol{q}}}) & = & -\left(\displaystyle \frac{\partial }{\partial s}\psi +{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\\ & & +\,\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ {{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{b}}}_{{\boldsymbol{q}}}) & = & \left({\chi }_{3}{\chi }_{1}-\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\\ & & -\,\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\end{array}\end{eqnarray*}$
and
$\begin{eqnarray*}\begin{array}{l}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{t}}}_{{\boldsymbol{q}}})=\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){{\boldsymbol{n}}}_{{\boldsymbol{q}}},\\ {{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{n}}}_{{\boldsymbol{q}}})=-\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}},\\ {{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi ({{\boldsymbol{b}}}_{{\boldsymbol{q}}})=-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
Optical normalization operators of the above fields are
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }\left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){\chi }_{1}\right.\right.\left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal N }\left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){\chi }_{1}\right.\right.\left.\left.-\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}-\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal N }\left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{1}\right.\right.\left.\left.-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
Then
$\begin{eqnarray*}\begin{array}{l}{ \mathcal R }\left(\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)\right)=-\left({\displaystyle \int }_{\alpha }\left(-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal R }\left(\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)\right)=-\left({\displaystyle \int }_{\alpha }\left(-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.-\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal R }\left(\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)\right)=-\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{1}\right.\right.\left.\left.-\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad -\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
For electromagnetic fields, we get
$\begin{eqnarray*}\begin{array}{l}{{\rm{\nabla }}}_{s}{ \mathcal B }=\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\\ \quad +\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ {{\rm{\nabla }}}_{s}{ \mathcal E }=-\left({\chi }_{2}^{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)+{\chi }_{1}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\\ \quad +\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\end{array}\end{eqnarray*}$
and
$\begin{eqnarray*}\begin{array}{l}{{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}{ \mathcal B }=\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}\\ \quad -\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}},{{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}{ \mathcal E }=\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}\\ \quad -\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
Optical normalization operators of the above fields are
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }\left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}{ \mathcal B }\right)=\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad -\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},{ \mathcal N }\left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\times {{\rm{\nabla }}}_{s}{ \mathcal E }\right)=\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\\ \quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\\ \quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
Optical recursional operators of the above electromagnetic fields are
$\begin{eqnarray*}\begin{array}{l}{ \mathcal R }({ \mathcal B })=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}},\\ { \mathcal R }({ \mathcal E })=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\\ \quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\\ \quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}-\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$

3. Recursional visco Landau–Lifshitz electromagnetic φ(tq) elastic visco microscale beam

The optical normalized operator fortφ(tq) is
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }{{\rm{\nabla }}}_{t}\phi ({{\boldsymbol{t}}}_{{\boldsymbol{q}}})=\left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad +\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
where χ = ∇tnq·bq.
The optical flexible binormal electroosmotic magnetical φ(tq) normalized quasi binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \,\left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right).\end{array}\end{eqnarray*}$
The optical recursional binormal magnetical φ(tq) flexible elastic quasi binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right.\\ \quad \times \,\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)\\ \quad \left.-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional binormal microbeam model for flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \times \left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)=0.\end{array}\end{eqnarray*}$
From the visco Landau–Lifshitz condition, we have
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }\left(\phi ({{\boldsymbol{t}}}_{{\boldsymbol{q}}})\times {{\rm{\nabla }}}_{s}^{2}\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)+\nu {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}\\ +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)\right.\right.\\ \left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}\right.\right.\right.\left.+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\\ \left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
From the definition of visco Landau–Lifshitz φ(tq) magnetic binormal optimistic density, we have
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)\\ \quad \left.+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)\right.\right.\left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)\\ \quad \left.\left.\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)\right.\right.\\ \quad +\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}\right.\right.\right.\\ \quad \left.+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right).\end{array}\end{eqnarray*}$
The optical recursional visco Landau–Lifshitz binormal magnetical φ(tq) binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right.\times \left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\\ \quad \left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}\right.\right.\right.\\ \quad \left.+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\left.\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional binormal microbeam model for flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)\right.\right.\left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)\\ \left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}\\ +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)\\ +\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)\right.\right.\left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)\\ \left.+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)=0.\end{array}\end{eqnarray*}$
The optical quasi flexible binormal electroosmotic electrical φ(tq) normalized binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)+\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.+\left.\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \quad -\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\times \left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right).\end{array}\end{eqnarray*}$
The optical recursional binormal electrical φ(tq) flexible elastic binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)-\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\left.\,\times \,\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical recursional electric microbeam model for φ(tq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\\ \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \times \left({\displaystyle \int }_{\alpha }\left(\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial t}+\chi \psi \right){\chi }_{2}\right)d\sigma \right)+\left(\displaystyle \frac{\partial \psi }{\partial t}-\chi {\chi }_{2}\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)=0.\end{array}\end{eqnarray*}$
The normalized visco Landau–Lifshitz φ(tq) electric binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\quad \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\\ \quad \left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}\quad +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.\left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)\quad +\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \times \left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\quad \left.\left.+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)\\ \quad -\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\quad \left.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right)\\ \times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right).\end{array}\end{eqnarray*}$
The optical recursional Landau–Lifshitz binormal electrical φ(tq) flexible elastic quasi microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)\right.\right.\\ \quad \left.\left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)\right.\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\right.\right.\left.\left.\,+\,\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}\\ \quad +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\left.\left.\,+\,\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)\\ \quad -\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right)\\ \quad \left.\times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical recursional Landau–Lifshitz binormal electric visco microbeam model for φ(tq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right.\\ \left.\left.+{\chi }_{3}\psi \right)\right)\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\\ +\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right.\left.\left.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)\right.\right.\right.\right.\\ \left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{1}\psi \right)\right.\right.\\ \left.+\left(-{\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+\psi {\chi }_{3}\right){\chi }_{2}\right)\left.\left.\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{2}+{\chi }_{3}\psi \right)\right){\chi }_{2}\right)d\sigma \right)\\ \left.+\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\times \left({\chi }_{2}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi {\chi }_{1}+{\chi }_{2}^{2}\right)+\left(-{\chi }_{2}{\chi }_{3}\right.\right.\right.\right.\\ \left.\left.+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(\psi {\chi }_{3}+\displaystyle \frac{\partial {\chi }_{2}}{\partial s}\right){\chi }_{2}\right)+\left.\nu \left(\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right)=0.\end{array}\end{eqnarray*}$
The optical resonator for the visco Landau–Lifshitz binormal recursional electric φ(tq) electric binormal optimistic density with a quasi-spherical ring resonator is illustrated in figure 1.
Figure 1. Optical visco Landau–Lifshitz binormal recursional electric $\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)$ microscale beam.

4. Recursional visco Landau–Lifshitz electromagnetical φ(nq) elastic visco microscale beam

First, we have
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }{{\rm{\nabla }}}_{t}\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)=\left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\\ \quad -\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
The optical magnetic normalized binormal $\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)$ optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\quad \times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)\quad -\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi \right.\\ \quad \left.+\chi {\chi }_{3}\right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\quad \times \left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right).\end{array}\end{eqnarray*}$
The optical recursional binormal magnetical φ(nq) flexible elastic binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right.\times \left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}+\left({\chi }_{3}{\chi }_{1}\right.\right.\right.\quad \left.\left.\left.-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi \right.\right.\right.\quad \left.\left.\left.+\chi {\chi }_{3}\right){\chi }_{1}+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)\\ \quad -\left(-\psi {\chi }_{3}+{\chi }_{3}{\chi }_{1}-\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi \right.\quad \left.\left.+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional magnetic binormal microbeam model for φ(nq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(-\psi {\chi }_{3}+{\chi }_{3}{\chi }_{1}-\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi \right.\left.+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){\chi }_{1}\right.\right.\\ \left.\left.+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi \right.\\ \,\left.+\chi {\chi }_{3}\right)=0.\end{array}\end{eqnarray*}$
The normalized visco Landau–Lifshitz calculations are
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }\left(\phi ({{\boldsymbol{n}}}_{{\boldsymbol{q}}})\times {{\rm{\nabla }}}_{s}^{2}\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)+\nu {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}\right.\right.\right.\right.\right.\\ \quad \left.\left.+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\left.\,,-\,\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\left.+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\\ \quad \left.\left.\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\right.\\ \quad \left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\left.\,-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi \right.\right.\right.\quad \left.\left.+{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\\ \quad \left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
The optical visco Landau–Lifshitz normalized φ(nq) optimistic binormal density is
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\\ \quad -{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\,\left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\\ \quad \left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\left.\,-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\left.\left.\left.\,+\,\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)\\ \quad +\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\left.\,-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)\\ \quad +{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi \right.\right.\left.\left.\left.\,+\,\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\quad \left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right).\end{array}\end{eqnarray*}$
The optical recursional visco Landau–Lifshitz binormal magnetical φ(nq) binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{t}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\right.\times \left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\\ \quad \left.\left.-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)\,-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\right.\right.\right.\\ \quad \left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\,\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\left.\,+\,\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\\ \quad +\left.\left.\left.\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\left.\,+\,\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\\ \quad \left.\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional ferromagnetic binormal magnetic visco microbeam model for φ(nq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\\ \times \left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\\ \quad \left.-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\\ \left.\left.-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.\left.\left.+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)\left.\,,+\,\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\\ \quad \left.-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi \right.\right.\left.+{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\\ \quad \left.\left.-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)=0.\end{array}\end{eqnarray*}$
The optical normalized binormal electric optimistic φ(nq) density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\left.\,+\,\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)\,-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \quad \times \left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right)\,-\,\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\\ \quad \times \left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right).\end{array}\end{eqnarray*}$
The optical recursional binormal electrical φ(nq) flexible elastic binormal microscale beam is given
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\left.\,+\,\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)\\ \quad -\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\left.\,\times \,\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical visco Landau–Lifshitz recursional binormal electric microbeam model for φ(nq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\times \left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi \right.\\ \left.+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\right.\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\\ \left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(-\left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi \right.\right.\right.\\ \left.\left.\left.+\chi {\chi }_{3}\right){\chi }_{1}+\left(-\left({\varepsilon }_{1}{\chi }_{2}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}+{\chi }_{3}{\varepsilon }_{2}\right)\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \times \left(\left(-{\chi }_{3}{\varepsilon }_{3}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,+{\chi }_{1}{\varepsilon }_{1}\right)\psi +\chi {\chi }_{3}\right)=0.\end{array}\end{eqnarray*}$
The optical visco Landau–Lifshitz normalized electric optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\,\left.-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)\\ \quad +{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\,\left.\left.-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}\\ \quad +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.\left.\left.\,+\,\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad +\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\right.\,\left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\\ \quad \left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\,\left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\\ \quad \left.+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\,-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\,\times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right).\end{array}\end{eqnarray*}$
The optical recursional visco Landau–Lifshitz electrical φ(nq) flexible elastic binormal microscale beam is presented
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\,\left.-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)\\ \quad +{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\,\left.\left.-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)\\ \quad \times \left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\,-\left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\\ \quad -{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\,\left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\\ \quad \left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\,\left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\left.\left.\left.\,+\,\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\left.\,+\,\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\,-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\,\times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right.\quad \left.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical recursional visco Landau–Lifshitz binormal electric visco microbeam model for φ(nq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}\right.\right.\left.\left.+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right)\\ \times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\left({\displaystyle \int }_{\alpha }\left(\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\right.\right.\right.\\ \left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right){\chi }_{1}+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right)\right.\right.\left.+\left({\chi }_{2}{\chi }_{3}+\displaystyle \frac{\partial \psi }{\partial s}\right){\chi }_{1}+\left(-\psi {\chi }_{2}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right){\chi }_{3}\right)\\ \left.\left.\left.+\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}-\psi {\chi }_{2}\right)\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\\ \left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)+\left(\psi \left(\displaystyle \frac{\partial }{\partial s}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-{\chi }_{2}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)\right.\right.\\ \left.-\left({\chi }_{3}^{2}+\psi {\chi }_{1}\right){\chi }_{3}\right)+{\chi }_{3}\left(\left({\chi }_{1}\psi +{\chi }_{3}^{2}\right){\chi }_{1}\right.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial \psi }{\partial s}\right)-{\chi }_{2}\left(-{\chi }_{2}\psi +\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \left.-\nu \left(\psi {\chi }_{1}+{\chi }_{3}^{2}\right)\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)=0.\end{array}\end{eqnarray*}$
The optical resonator for visco Landau–Lifshitz binormal recursional electric φ(nq) electric binormal optimistic density with quasi spherical ring resonator is illustrated in figure 2.
Figure 2. Optical visco Landau–Lifshitz binormal recursional electric φ (nq) microscale beam.

5. Recursional visco Landau–Lifshitz electromagnetical φ(bq) elastic visco microscale beam

The normalization operator of ∇tφ(bq) is
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }{{\rm{\nabla }}}_{t}\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)=\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)\right.\right.\right.\left.\,+\,\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)\right.\\ \quad \left.\left.\left.+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}\,-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}\quad -\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
The optical flexible binormal electroosmotic magnetical φ(bq) normalized quasi binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\left.\left.-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\\ \quad \times \left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)\right.\left.+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\times \left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right).\end{array}\end{eqnarray*}$
The optical recursional binormal magnetical φ(bq) flexible elastic quasi binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{n}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(-\left(\displaystyle \frac{\partial \psi }{\partial s}+{\chi }_{3}{\chi }_{2}-{\chi }_{2}{\chi }_{3}\right)\right.\times \left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\,\left.\left.-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)\\ \quad +\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\times \left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)\right.\left.\left.\,+\,\chi {\chi }_{3}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional magnetic microbeam model for φ(bq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi \right)\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)\right.\left.+\chi {\chi }_{3}\right)-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\\ \left.\left.-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}\right.\right.\left.\left.+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)=0.\end{array}\end{eqnarray*}$
The normalized visco Landau–Lifshitz calculations of φ(bq) are
$\begin{eqnarray*}\begin{array}{l}{ \mathcal N }\left(\phi ({{\boldsymbol{b}}}_{{\boldsymbol{q}}})\times {{\rm{\nabla }}}_{s}^{2}\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)+\nu {{\rm{\nabla }}}_{s}\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)\right)=\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\\ \left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}+\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right){{\boldsymbol{t}}}_{{\boldsymbol{q}}}+\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){{\boldsymbol{n}}}_{{\boldsymbol{q}}}+\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)\right.\right.\left.+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)\\ -{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right.\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){{\boldsymbol{b}}}_{{\boldsymbol{q}}}.\end{array}\end{eqnarray*}$
The optical visco Landau–Lifshitz magnetic φ(bq) binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\,\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}\\ \quad +\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\left.\,+\,\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\\ \quad \left.+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\,\left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\\ \quad \times \left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\,\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)\,-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)\right.\right.\\ \left.+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right.\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right).\end{array}\end{eqnarray*}$
The optical recursional visco Landau–Lifshitz binormal magnetical φ(bq)flexible elastic binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{b}^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\right.\,\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\,-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.+\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\,\times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\\ \quad \left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}\,+\,\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\,\times \,\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{b}^{{qb}}$ is recursional binormal magnetic flexibility potential.
The optical recursional visco Landau–Lifshitz binormal magnetic visco microbeam model for φ(bq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal B }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\,\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}\\ \quad +\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}\quad \left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{3}{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}\psi -{\chi }_{2}{\chi }_{3}\right)\times \left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\\ \quad \left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\,\left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)-\left({\chi }_{3}{\chi }_{1}-{\chi }_{3}\psi -\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\right)\\ \quad \times \left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\left.\,+\,\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\\ \,+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\,\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right).\end{array}\end{eqnarray*}$
The normalized electric binormal optimistic density is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}=-\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\right.\,\left.+\,\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\,\times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\\ \quad \left.\left.-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)\,-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \quad \times \left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\\ \quad \times \left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right).\end{array}\end{eqnarray*}$
The optical recursional binormal electrical φ(bq) flexible elastic binormal microscale beam is given
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}\right.\right.\left.\,+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\left.\left.\,+\,\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\left.\left.\,-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)\\ \quad +\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\left.\,\times \,\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical recursional electric microbeam model for φ(bq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\times \left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right)\\ -\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \times \left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right){\chi }_{1}\right.\right.\left.\left.-\left({\chi }_{2}\left({\chi }_{2}{\varepsilon }_{1}+{\varepsilon }_{2}{\chi }_{3}+\displaystyle \frac{\partial {\varepsilon }_{3}}{\partial s}\right)+\chi {\chi }_{3}\right){\chi }_{2}\right)d\sigma \right)\\ -\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\times \left({\chi }_{2}\left({\chi }_{1}{\varepsilon }_{1}+\displaystyle \frac{\partial {\varepsilon }_{2}}{\partial s}\,-{\chi }_{3}{\varepsilon }_{3}\right)+\displaystyle \frac{\partial {\chi }_{3}}{\partial t}\right)=0.\end{array}\end{eqnarray*}$
Since
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal N }{{ \mathcal D }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}^{* }=-\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\right.\right.\,\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}+\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)\right.\right.\\ \quad \left.+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)\,-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\\ \quad \left.+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\,\left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\right.\right.\\ \quad \left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\,\left.\left.\left.-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\\ \quad +\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\,\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\\ \quad \left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\,-\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.\,-\,{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right).\end{array}\end{eqnarray*}$
The quasi-recursional visco Landau–Lifshitz binormal electrical φ(bq) binormalmicroscale beam is
$\begin{eqnarray*}\begin{array}{l}{}^{{ \mathcal E }}{ \mathcal R }{{ \mathcal M }}_{\phi \left({{\boldsymbol{b}}}_{{\boldsymbol{q}}}\right)}^{* }={{ \mathcal P }}_{\varepsilon }^{{qb}}\displaystyle \int {\displaystyle \int }_{{ \mathcal I }}\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\right.\,\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\,\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)\\ \quad -\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}\right.\right.\right.\right.\,\left.-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}+\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)\right.\right.\left.\,+\,{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)\\ \quad -{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \quad \left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)\left.\,\times \,\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\right.\right.\right.\\ \quad \left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)\,-\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \quad \left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.\left.\,+\,{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\\ \quad \left.\times \left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right)d{ \mathcal I },\end{array}\end{eqnarray*}$
where ${{ \mathcal P }}_{\varepsilon }^{{qb}}$ is recursional binormal electric flexibility potential.
The optical recursional ferromagnetic binormal electric visco microbeam model for φ(bq) flexible binormal microscale beam is
$\begin{eqnarray*}\begin{array}{l}-\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\\ \left.+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\\ -\left({\displaystyle \int }_{\alpha }\left(\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\right.\right.\left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right){\chi }_{1}\\ +\left({\chi }_{3}\left(\displaystyle \frac{\partial }{\partial s}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right)+{\chi }_{1}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\left.+\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right){\chi }_{2}\right)-{\chi }_{2}\left({\chi }_{1}\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{3}{\chi }_{1}\right)\right.\left.+{\chi }_{3}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right)\\ \left.\left.\left.-\nu \left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right){\chi }_{2}\right)d\sigma \right)\left({\displaystyle \int }_{\alpha }\left(-\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\right.\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right){\chi }_{1}\\ \left.\left.+\left(\displaystyle \frac{\partial }{\partial s}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)-{\chi }_{3}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right){\chi }_{2}\right)d\sigma \right)+\left({\chi }_{2}\left(\left(-\displaystyle \frac{\partial {\chi }_{2}}{\partial s}+{\chi }_{1}{\chi }_{3}\right){\chi }_{2}-{\chi }_{3}\left({\chi }_{2}{\chi }_{1}+\displaystyle \frac{\partial {\chi }_{3}}{\partial s}\right)\right.\right.\\ \left.\left.-\displaystyle \frac{\partial }{\partial s}\left({\chi }_{2}^{2}+{\chi }_{3}^{2}\right)\right)-\nu \left(\displaystyle \frac{\partial }{\partial s}{\chi }_{3}+{\chi }_{2}{\chi }_{1}\right)\right)\left({\chi }_{3}\left(\psi -\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{1}\right)\right.\left.-\displaystyle \frac{\varsigma }{\epsilon }{\chi }_{2}+\displaystyle \frac{\partial }{\partial s}{\chi }_{2}\left(1-\displaystyle \frac{\varsigma }{\epsilon }\right)\right)=0.\end{array}\end{eqnarray*}$
The optical resonator for visco Landau–Lifshitz binormal recursional electric φ(bq) electric binormal optimistic density with quasi spherical ring resonator is illustrated in figure 3.
Figure 3. Optical visco Landau–Lifshitz binormal recursional electric φ(bq) microscale beam.

6. Conclusion

Optical electromagnetic flux designs are constructed by flexible fibers, optical waves and optical sonics. The results of optical spherical modelling of hybrid sonic electromagnetic crystals with geometrical applications are obtained [5366].
In our manuscript, we give new explanations for an optical recursional visco Landau–Lifshitz binormal electromagnetical binormal microscale beam. Finally, we obtain an optical application for normalized visco Landau–Lifshitz electromagnetic binormal optimistic density with an optical binormal resonator.
1
Hu Y Zheng Z 2019 Progress in textile-based triboelectric nanogenerators forsmart fabrics Nano Energy 56 16 24

DOI

2
Leber A Cholst B Sandt J Vogel N Kolle M 2018 Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations Adv. Funct. Mater. 29 1802629

DOI

3
Rogers J A Someya T Huang Y 2010 Materials and mechanics for stretchable electronics Science 327 1603 1607

DOI

4
Lu N Kim D-H 2014 Flexible and stretchable electronics paving the way for soft robotics Soft Rob. 1 53 62

DOI

5
Ryu J 2018 Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability Nano Energy 55 348 353

DOI

6
Zhong J 2014 Fiber-based generator for wearable electronics and mobile medication ACS Nano 8 6273 6280

DOI

7
Sun H Zhang Y Zhang J Sun X Peng H 2017 Energy harvesting and storage in 1D devices Nat. Rev. Mater. 2 17023

DOI

8
Körpınar T Demirkol R C Körpınar Z Asil V 2020 Maxwellian evolution equations along the uniform optical fiber in Minkowski space Revista Mexicana de Física 66 431 439

DOI

9
Körpınar T Demirkol R C Körpınar Z Asil V 2020 Maxwellian evolution equations along the uniform optical fiber in Minkowski space Optik 217 164561

DOI

10
Ricca R L 2005 Inflexional disequilibrium of magnetic flux-tubes Fluid Dyn. Res. 36 319

DOI

11
Körpınar Z Körpınar T 2021 Optical hybrid electric and magnetic B1-phase with Landau Lifshitz approach Optik 247 167917

DOI

12
Körpınar T Körpınar Z Yeneroğlu M 2021 Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space ${{\mathbb{S}}}_{{{Heis}}^{3}}^{2}$ Optik 247 167937

DOI

13
Körpınar T Sazak A Körpınar Z 2021 Optical effects of some motion equations on quasi-frame with compatible Hasimoto map Optik 247 167914

DOI

14
Körpınar Z Körpınar T 2021 Optical tangent hybrid electromotives for tangent hybrid magnetic particle Optik 247 167823

DOI

15
Körpınar T Demirkol R C Körpınar Z 2021 Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD Optik 247 167823

DOI

16
Diaz A F Felix-Navarro R M 2004 A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties J. Electrostat. 62 277 290

DOI

17
Wang Z L 2013 Triboelectric nanogenerators as new energy technology for selfpowered systems and as active mechanical and chemical sensors ACS Nano 7 9533 9557

DOI

18
Sordo F 2019 Microstructured fibers for the production of food Adv. Mater. 31 e1807282

DOI

19
Qu Y 2018 Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing Adv. Mater. 30 1707251

DOI

20
Zhu S 2013 Ultrastretchable fibers with metallic conductivity using a liquidmetal alloy core Adv. Funct. Mater. 23 2308 2314

DOI

21
Fassler A Majidi C 2015 Liquid-phase metal inclusions for a conductive polymer composite Adv. Mater. 27 1928 1932

DOI

22
Yan W 2019 Advanced multimaterial electronic and optoelectronic fibers and textiles Adv. Mater. 31 1802348

DOI

23
Körpınar T Körpınar Z 2021 New version of optical spherical electric and magnetic flow phasewith some fractional solutions in ${{\mathbb{S}}}_{{{\mathbb{H}}}^{3}}^{2}$ Optik 243 167378

DOI

24
Körpınar T Demirkol R C Körpınar Z 2021 Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD Optik 242 167302

DOI

25
Körpınar T Demirkol R C Körpınar Z 2021 New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction Phys. Scr. 96 085219

DOI

26
Körpınar T Körpınar Z 2021 A new approach for fractional spherical magnetic flux flows with some fractional solutions Optik 240 166906

DOI

27
Gürbüz N 2005 The differantial formula of Hasimoto transformation in Minkowski 3-space International Journal of Mathematics and Mathematical Sciences 2005 542381

DOI

28
Körpınar Z Körpınar T 2021 Optical hybrid electric and magnetic B1-phase with Landau Lifshitz approach Optik 247 167917

DOI

29
Körpınar T Körpınar Z Yeneroğlu M 2021 Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space ${{\mathbb{S}}}_{{{Heis}}^{3}}^{2}$ Optik 247 167937

DOI

30
Körpınar T Sazak A Körpınar Z 2021 Optical effects of some motion equations on quasi-frame with compatible Hasimoto map Optik 247 167914

DOI

31
Körpınar Z Körpınar T 2021 Optical tangent hybrid electromotives for tangent hybrid magnetic particle Optik 247 167823

DOI

32
Körpınar T Körpınar Z Asil V 2022 New approach for optical electroostimistic phase with optical quasi potential energy Optik 251 168291

DOI

33
Yu X 2017 A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation J. Mater. Chem. A 5 6032 6037

DOI

34
Dong K 2017 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors Adv. Mater. 29 1702648

DOI

35
He X 2017 A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics Adv. Funct. Mater. 27 1604378

DOI

36
Li X 2014 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor ACS Nano 8 10674 10681

DOI

37
Zhang T 2017 High-performance, flexible, and ultralong crystalline thermoelectric fibers Nano Energy 41 35 42

DOI

38
Luo J Wang Z L 2019 Recent advances in triboelectric nanogenerator based self-charging power systems Energy Storage Mater. 23 617 628

DOI

39
Wang Z L Chen J Lin L 2015 Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors Energy Environ. Sci. 8 2250 2282

DOI

40
Guo B Ding S 2008 Landau-Lifshitz Equations Singapore World Scientific

41
Vieira V R Horley P P 2012 The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation J. Phys. A: Math. Theor. 45 065208

DOI

42
Hasimoto H 1972 A soliton on a vortex filament J. Fluid Mech. 51 477 485

DOI

43
Ricca R L 1992 Physical interpretation of certain invariants for vortex filament motion under LIA Physics of Fluids A: Fluid Dynamics 4 938 944

DOI

44
Balakrishnan R Bishop A R Dandoloff R 1993 Anholonomy of a moving space curve and applications to classical magnetic chains Phys. Rev. B 47 3108

DOI

45
Barros M Ferrández A Lucas P Merono M 1995 Hopf cylinders, B-scrolls and solitons of the Betchov-Da Rios equation in the 3-dimensional anti-De Sitter space CR Acad. Sci. Paris, Série I 321 505 509

46
Barros M Ferrández A Lucas P Meroño M A 1999 Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach J. Geom. Phys. 31 217 228

DOI

47
Körpınar T 2020 Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model Optik 219 165134

DOI

48
Körpınar T Körpınar Z Demirkol R C 2020 Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach Optik 235 166444

DOI

49
Körpınar T Demirkol R C Körpınar Z 2021 Polarization of propagated light with optical solitons along the fiber in de-sitter space Optik 226 165872

DOI

50
Körpınar T Demirkol R C Körpınar Z 2021 Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space Optik 238 166403

DOI

51
Körpınar T Körpınar Z 2021 Timelike spherical magnetic flux flows with Heisenberg spherical ferromagnetic spin with some solutions Optik 242 166745

DOI

52
Körpınar T Körpınar Z 2021 Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions Optik 242 167164

DOI

53
Ashkin A Dziedzic J M Bjorkholm J E Chu S 1986 Observation of a single-beam gradient force optical trap for dielectric particles Opt. Lett. 11 288 290

DOI

54
Ashkin A 1970 Acceleration and trapping of particles by radiation pressure Phys. Rev. Lett. 24 156 159

DOI

55
Dholakia K Zemánek P 2010 Colloquium: gripped by light: optical binding Rev. Mod. Phys. 82 1767 1791

DOI

56
Schief W K Rogers C 2005 The Da Rios system under a geometric constraint: the Gilbarg problem J. Geom. Phys. 54 286 300

DOI

57
Körpınar T Demirkol R C Asil V Körpınar Z 2022 Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b-lines in binormal direction in Minkowski space J. Magn. Magn. Mater. 549 168952

DOI

58
Körpınar Z Körpınar T 2022 Optical spherical electroosmotic phase and optical energy for spherical α-magnetic fibers Optik 255 168455

DOI

59
Körpınar Z Körpınar T 2022 Optical antiferromagnetic electric ${\mathbb{S}}\alpha $-flux with electroosmotic velocity in Heisenberg ${{\mathbb{S}}}_{{\mathbb{H}}}^{2}$ Optik 252 168206

DOI

60
Körpınar T Körpınar Z Asil V 2022 Electric flux fibers with spherical antiferromagnetic approach with electroosmotic velocity Optik 252 168108

DOI

61
Körpınar T Körpınar Z Optical electromagnetic flux fibers with optical antiferromagnetic model Optik 251 168301

DOI

62
Dong C Page A G Yan W Nguyen-Dang T Sorin F 2019 Microstructured multimaterial fibers for microfluidic sensing Adv. Mater. Technol. 1900417

DOI

63
Seung W 2015 Nanopatterned textile-based wearable triboelectric nanogenerator ACS Nano 9 3501 3509

DOI

64
Körpinar T Körpinar Z 2023 Optical phase of recursional hybrid visco ferromagnetic electromagnetic microscale Phys. Lett. A 128651

DOI

65
Körpınar T Ünlütürk Y Körpınar Z 2023 A new version of the motion equations of pseudo null curves with compatible Hasimoto map Opt. Quantum Electron. 55 23

DOI

66
Körpınar T Demirkol R C Körpınar Z 2022 Optical flux surfaces throughout normal evoluted flowlines in the presence of the modified visco effect The European Physical Journal Plus 137 1168

DOI

Outlines

/