1. Introduction
2. Method for excited spectrum
2.1. Spin-independent mass
1. | (1) 1S wave. The relative orbital angular momentum L = 0 with respect to QQ. In this case, the Regge relation ( $\begin{eqnarray}\begin{array}{rcl}\bar{M}(1S) & = & {M}_{{QQ}}+{m}_{{qq}}+\displaystyle \frac{{k}_{{QQ}}^{2}}{{M}_{{QQ}}},\\ {k}_{{QQ}}^{2} & \equiv & {M}_{{QQ}}^{2}-{m}_{\mathrm{bare}{QQ}}^{2}.\end{array}\end{eqnarray}$ Putting masses in table 1 and equations ( |
2. | (2) 1P wave. As examined in [14], the Regge slope πa of heavy baryons, in the sense of quantum averaging in hadrons, is nearly independent of the spin of light diquarks (=0 or 1), but relies on the mass MQQ of heavy quarks. One then expects for tetraquark TQQ that its effective value of the tension a varies only with the heavy content of the flavor combinations QQ. |
Table 2. Mean (spin-averaged) mass(in MeV) of the doubly heavy tetraquarks TQQ in ground states, [] and {} stands for S[] = 0 and S{} = 1. |
System | State | QQ = cc | QQ = bb | QQ = bc |
---|---|---|---|---|
IJP | Mass | |||
$\{{QQ}\}[\bar{u}\bar{d}]$ | 01+ | 3997 | 10530 | 7270 |
$[{QQ}][\bar{u}\bar{d}]$ | 00+ | – | – | 7268 |
$[{QQ}]\{\bar{u}\bar{d}\}$ | 11+ | – | – | 7478 |
$\{{QQ}\}\{\bar{u}\bar{d}\}$ | 10+, 11+, 12+ | 4207 | 10740 | 7480 |
$\{{QQ}\}[\bar{u}\bar{s}]$ | $\tfrac{1}{2}{1}^{+}$ | 4180 | 10713 | 7453 |
$[{QQ}][\bar{u}\bar{s}]$ | $\tfrac{1}{2}{0}^{+}$ | – | – | 7451 |
$[{QQ}]\{\bar{u}\bar{s}\}$ | $\tfrac{1}{2}{1}^{+}$ | – | – | 7605 |
$\{{QQ}\}\{\bar{u}\bar{s}\}$ | $\tfrac{1}{2}{0}^{+}$ ![]() | 4334 | 10867 | 7607 |
$\{{QQ}\}\{\bar{s}\bar{s}\}$ | 00+, 01+, 02+ | 4450 | 10987 | 7725 |
$[{QQ}]\{\bar{s}\bar{s}\}$ | 01+ | – | – | 7724 |
Table 3. The string tension coefficient a (GeV)2 of Λc/Λb,Ξc/Ξb,Ωc/Ωb baryons and the effective mass of component quark (GeV) of Mc and Mb. |
Parameters | Mc | Mb | mu | ${a}_{{{\rm{\Lambda }}}_{c}}$ | ${a}_{{{\rm{\Lambda }}}_{b}}$ | ${a}_{{{\rm{\Xi }}}_{c}}$ | ${a}_{{{\rm{\Xi }}}_{b}}$ | ${a}_{{{\rm{\Omega }}}_{c}}$ | ${a}_{{{\rm{\Omega }}}_{b}}$ |
---|---|---|---|---|---|---|---|---|---|
The value | 1.44 | 4.48 | 0.23 | 0.212 | 0.246 | 0.255 | 0.307 | 0.316 | 0.318 |
2.2. Spin-dependent mass
1. | (1) 1S wave. For the 1S wave, L = 0, the spin-interaction Hamiltonian is simply $\begin{eqnarray}{H}^{{SD}}=c{{\bf{S}}}_{{QQ}}\cdot {{\bf{S}}}_{{qq}},\end{eqnarray}$ in which SQQ · Sqq has the eigenvalues −2, −1, 1, 0 when SQQ = 1. One has the mass formula then, $\begin{eqnarray}\begin{array}{l}M({QQ}\bar{q}\bar{q},1S)=\bar{M}({QQ}\bar{q}\bar{q})+c({QQ}\bar{q}\bar{q})\\ {diag}\{-2,-1,1,0\}.\end{array}\end{eqnarray}$ Based on the similarity between TQQ and heavy mesons $Q\bar{q}$(we choose D meson typically), one has a relation of mass scaling for the spin coupling c, $\begin{eqnarray}c\left(\{{QQ}\}\left(\bar{q}\bar{q}\right)\right)=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{q}}{{m}_{{qq}}}\cdot c{\left(D\right)}_{1S}.\end{eqnarray}$ in which c(D)1S = 140.6 MeV, mq = 230 MeV and other masses are given in table 1 and table 3. |
2. | (2) 1P wave. In the heavy-diquark(D)-light-antidiquark($\bar{{\rm{D}}}$) picture, the total spin of the TQQ is denoted by ${S}_{{tot}}={S}_{D}+{S}_{\bar{D}}$, which takes value Stot = 2, 1, 0 when ${S}_{D}={S}_{\bar{D}}=1$ and Stot = 1 when SD = 1 and ${S}_{\bar{D}}=0$. In the scheme of LS coupling, coupling Stot = 2 to L = 1 gives the states with the total angular momentums J = 3, 2, 1, while coupling Stot = 1 to L = 1 leads to the states with J = 2, 1, 0; coupling Stot = 0 to L = 1 leads to the states with J = 1. Normally, one uses the LS basis ${}^{2{S}_{{tot}}+1}{P}_{J}$ ={3P0,1P1,3P1,5P1,3P2,5P2,5P3} to label these multiplets in P-wave. We consider two cases for DH tetraquarks: |
a | (a) ${S}_{D}={S}_{\bar{D}}=1$. There are seven states, all of which are negative parity. In the LS basis, the three J = 1 states and two J = 2 states are unmixed unless a1 = a2. Otherwise, they are the respective eigenstates of a 3 × 3 and 2 × 2 matrices ΔMJ representing HSD with J = 1 and J = 2. The matrices of mass shifts are then (see $\begin{eqnarray}{\rm{\Delta }}{M}_{J=0}=-{a}_{1}-{a}_{2}-2b-c,\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}{\rm{\Delta }}{M}_{J=1}=\left[\begin{array}{ccc}0 & \displaystyle \frac{2}{\sqrt{3}}\left({a}_{1}-{a}_{2}\right) & 0\\ \displaystyle \frac{2}{\sqrt{3}}\left({a}_{1}-{a}_{2}\right) & \displaystyle \frac{1}{2}\left({a}_{1}+{a}_{2}\right) & \displaystyle \frac{\sqrt{5}}{6}\left({a}_{1}-{a}_{2}\right)\\ 0 & \displaystyle \frac{\sqrt{5}}{6}\left({a}_{1}-{a}_{2}\right) & -\displaystyle \frac{3}{2}\left({a}_{1}+{a}_{2}\right)\end{array}\right],\\ \quad +b\left[\begin{array}{ccc}0 & 0 & \displaystyle \frac{32}{15\sqrt{5}}\\ 0 & 1 & 0\\ \displaystyle \frac{32}{15\sqrt{5}} & 0 & -\displaystyle \frac{7}{5}\end{array}\right]+c\left[\begin{array}{ccc}-2 & 0 & \displaystyle \frac{1}{6\sqrt{5}}\\ 0 & -1 & 0\\ \displaystyle \frac{1}{6\sqrt{5}} & 0 & 1\end{array}\right],\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{rcl}{\rm{\Delta }}{M}_{J=2} & = & \left[\begin{array}{cc}\displaystyle \frac{1}{2}\left({a}_{2}+{a}_{1}\right) & \displaystyle \frac{\sqrt{3}}{2}\left({a}_{1}-{a}_{2}\right)\\ \displaystyle \frac{\sqrt{3}}{2}\left({a}_{1}-{a}_{2}\right) & \displaystyle \frac{1}{2}\left({a}_{2}+{a}_{1}\right)\end{array}\right]\\ & & +b\left[\begin{array}{cc}-\displaystyle \frac{1}{5} & 0\\ 0 & \displaystyle \frac{7}{5}\end{array}\right]+c\left[\begin{array}{cc}-1 & 0\\ 0 & 1\end{array}\right],\end{array}\end{eqnarray}$ $\begin{eqnarray}{\rm{\Delta }}{M}_{J=3}={a}_{1}+{a}_{2}-\displaystyle \frac{2}{5}b+c,\end{eqnarray}$ |
Table 4. The matrix elements of the mass splitting operators in the P-wave TQQ state in the jj coupling. |
(J, j) | $\left\langle {\bf{L}}\cdot {{\bf{S}}}_{{qq}}\right\rangle $ | $\left\langle {\bf{L}}\cdot {{\bf{S}}}_{{QQ}}\right\rangle $ | $\left\langle {S}_{12}\right\rangle $ | $\left\langle {{\bf{S}}}_{{qq}}\cdot {{\bf{S}}}_{{QQ}}\right\rangle $ |
---|---|---|---|---|
(0, 0) | −1 | −1 | −2 | −1 |
| ||||
(1, 0) | −2 | 0 | 4/135 | 1/27 |
(1, 1) | −1 | −1/2 | −47/45 | −5/9 |
(1, 2) | 1 | −2/3 | 83/135 | −40/27 |
| ||||
(2, 1) | −1 | 1/2 | 1 | 1/2 |
(2, 2) | 1 | −1/2 | 1/5 | −1/2 |
| ||||
(3, 2) | 1 | 1 | −2/5 | 1 |
Table 5. Spin-coupling parameters (in MeV) in the spin interaction ( |
TQQ | ${cc}\{\bar{u}\bar{d}\}$ | ${bb}\{\bar{u}\bar{d}\}$ | ${bc}\{\bar{u}\bar{d}\}$ | ${cc}\{\bar{u}\bar{s}\}$ | ${bb}\{\bar{u}\bar{s}\}$ | ${bc}\{\bar{u}\bar{s}\}$ | ${cc}\{\bar{s}\bar{s}\}$ | ${bb}\{\bar{s}\bar{s}\}$ | ${bc}\{\bar{s}\bar{s}\}$ |
---|---|---|---|---|---|---|---|---|---|
a1 | 19.77 | 6.35 | 9.61 | 16.89 | 5.43 | 8.21 | 14.86 | 4.78 | 7.23 |
a2 | 13.48 | 4.33 | 6.56 | 12.74 | 4.09 | 6.20 | 12.12 | 3.89 | 5.89 |
b | 10.08 | 3.42 | 4.90 | 9.01 | 2.90 | 4.38 | 8.20 | 2.63 | 3.99 |
c | 2.70 | 0.87 | 1.31 | 2.31 | 0.74 | 1.12 | 2.03 | 0.65 | 0.99 |
a | (b) SD = 1,${S}_{\bar{D}}=0$. There are three states with J = 0, 1, 2, corresponding to mass shifts of the spin interaction as follows $\begin{eqnarray}{\rm{\Delta }}{M}_{J=0}=-2{a}_{2},\end{eqnarray}$ $\begin{eqnarray}{\rm{\Delta }}{M}_{J=1}=-{a}_{2},\end{eqnarray}$ $\begin{eqnarray}{\rm{\Delta }}{M}_{J=2}={a}_{2},\end{eqnarray}$ for which ∑J(2J + 1)ΔMJ = 0 ( $\begin{eqnarray}\left\{\begin{array}{c}{a}_{2}({cc}[\bar{u}\bar{d}])=14.91\ \ \mathrm{MeV},{a}_{2}({bb}[\bar{u}\bar{d}])=4.79\ \ \mathrm{MeV},{a}_{2}({bc}[\bar{u}\bar{d}])=7.25\ \ \mathrm{MeV},\\ {a}_{2}({cc}[\bar{u}\bar{s}])=13.65\ \ \mathrm{MeV},{a}_{2}({bb}[\bar{u}\bar{s}])=4.39\ \ \mathrm{MeV},{a}_{2}({bc}[\bar{u}\bar{s}])=6.64\ \ \mathrm{MeV},\end{array}\right\}\end{eqnarray}$ |
3. Numerical results and discussions
Table 6. Ground-state masses M of the cc tetraquarks, the lowest threshold T for its decaying into two D($c\bar{q}$) mesons and Δ = M − T. All values are given in MeV. |
System | IJP | M | T | Δ | [31] | [32] | [3] | [33] | [4] | [25] |
---|---|---|---|---|---|---|---|---|---|---|
$({cc})(\bar{u}\bar{d})$ | 01+ | 3997 | 3871 | 126 | 3935 | 3947 | 3978 | |||
10+ | 4163 | 3729 | 434 | 4056 | 4111 | 4146 | ||||
11+ | 4185 | 3871 | 314 | 4079 | 4133 | 4167 | 4117 | 4201 | 4268 | |
12+ | 4229 | 4041 | 188 | 4118 | 4177 | 4210 | 4179 | 4271 | 4318 | |
| ||||||||||
$({cc})(\bar{u}\bar{s})$ | $\tfrac{1}{2}{1}^{+}$ | 4180 | 3975 | 205 | 4143 | 4124 | 4156 | |||
$\tfrac{1}{2}{0}^{+}$ | 4297 | 3833 | 464 | 4221 | 4232 | |||||
$\tfrac{1}{2}{1}^{+}$ | 4315 | 3975 | 340 | 4239 | 4254 | 4314 | 4363 | 4394 | ||
$\tfrac{1}{2}{2}^{+}$ | 4352 | 4119 | 233 | 4271 | 4298 | 4305 | 4434 | 4440 | ||
| ||||||||||
$({cc})(\bar{s}\bar{s})$ | 00+ | 4420 | 3936 | 484 | 4359 | 4352 | ||||
01+ | 4436 | 4080 | 356 | 4375 | 4374 | 4382 | 4526 | 4493 | ||
02+ | 4470 | 4224 | 246 | 4402 | 4418 | 4433 | 4597 | 4536 |
Table 7. Ground-state masses M of the bb tetraquarks, the lowest threshold T for its decaying into two B($b\bar{q}$) mesons and Δ = M − T. All values are in MeV. |
System | IJP | M | T | Δ | [31] | [32] | [3] | [33] | [4] | [25] |
---|---|---|---|---|---|---|---|---|---|---|
$({bb})(\bar{u}\bar{d})$ | 01+ | 10530 | 10604 | −74 | 10502 | 10471 | 10482 | |||
10+ | 10726 | 10588 | 168 | 10648 | 10664 | 10674 | ||||
11+ | 10733 | 10604 | 129 | 10657 | 10671 | 10681 | 10854 | 10875 | 10779 | |
12+ | 10747 | 10650 | 97 | 10673 | 10685 | 10695 | 10878 | 10897 | 10799 | |
| ||||||||||
$({bb})(\bar{u}\bar{s})$ | $\tfrac{1}{2}{1}^{+}$ | 10713 | 10693 | 20 | 10706 | 10644 | 10643 | |||
$\tfrac{1}{2}{0}^{+}$ | 10855 | 10649 | 208 | 10802 | 10781 | |||||
$\tfrac{1}{2}{1}^{+}$ | 10861 | 10693 | 168 | 10809 | 10788 | 10974 | 11010 | 10897 | ||
$\tfrac{1}{2}{2}^{+}$ | 10873 | 10742 | 131 | 10823 | 10802 | 10997 | 11060 | 10915 | ||
| ||||||||||
$({bb})(\bar{s}\bar{s})$ | 00+ | 10976 | 10739 | 237 | 10932 | 10898 | ||||
01+ | 10981 | 10786 | 195 | 10939 | 10905 | 11099 | 11199 | 10986 | ||
02+ | 10991 | 10833 | 158 | 10950 | 10919 | 11119 | 11224 | 11004 |
Table 8. Ground-state masses M of bc tetraquarks, lowest threshold T for its decaying into B and D mesons and Δ = M − T. All values are in MeV. |
System | IJP | M | T | Δ | [31] | [32] | [3] | [33] | [4] | [25] |
---|---|---|---|---|---|---|---|---|---|---|
$({bc})(\bar{u}\bar{d})$ | 00+ | 7268 | 7144 | 154 | 7239 | 7248 | 7229 | |||
01+ | 7269 | 7190 | 79 | 7246 | 7289 | 7272 | ||||
11+ | 7478 | 7190 | 288 | 7403 | 7455 | 7439 | ||||
10+ | 7458 | 7114 | 344 | 7383 | 7460 | 7461 | ||||
11+ | 7469 | 7190 | 279 | 7396 | 7474 | 7472 | ||||
12+ | 7490 | 7332 | 158 | 7422 | 7503 | 7493 | 7586 | 7531 | 7582 | |
| ||||||||||
$({bc})(\bar{u}\bar{s})$ | $\tfrac{1}{2}{0}^{+}$ | 7451 | 7232 | 219 | 7444 | 7422 | 7406 | |||
$\tfrac{1}{2}{1}^{+}$ | 7452 | 7277 | 175 | 7451 | 7456 | 7445 | ||||
$\tfrac{1}{2}{1}^{+}$ | 7605 | 7277 | 328 | 7555 | 7573 | |||||
$\tfrac{1}{2}{0}^{+}$ | 7558 | 7232 | 356 | 7540 | 7578 | |||||
$\tfrac{1}{2}{1}^{+}$ | 7579 | 7277 | 320 | 7552 | 7592 | |||||
$\tfrac{1}{2}{2}^{+}$ | 7616 | 7420 | 196 | 7572 | 7621 | 7705 | ||||
| ||||||||||
$({bc})(\bar{s}\bar{s})$ | 01+ | 7710 | 7336 | 374 | 7673 | 4696 | ||||
01+ | 7724 | 7381 | 343 | 7684 | 7691 | |||||
10+ | 7717 | 7381 | 336 | 7683 | 7710 | |||||
11+ | 7733 | 7525 | 208 | 7701 | 7739 | 7779 | 7908 | 7798 |
i | (i) The ground state masses of the DH tetraquarks increase mostly with the quantum number JP of the states listed, as shown in table 6 through table 8. A few exceptions are the IJP = 01+ and 10+ states of the nonstrange tetraquarks $({cc})(\bar{u}\bar{d})$ and $({bb})(\bar{u}\bar{d})$, the IJP = (1/2)0+ and (1/2)1+ states of the strange bc-tetraquarks $({bc})(\bar{u}\bar{s})$ and the IJP = 01+ and 10+ states of the double-strange bc-tetraquarks $({bc})(\bar{s}\bar{s})$. |
ii | (ii) The state number of the excited DH tetraquarks is far less than that allowed by the four-body quark systems. As such, some P-wave excited states have not been predicted in tables 9 and 10, which are associated with the internal excitations of the light or heavy diquarks. |
iii | (iii) Generally, a multiquark state may form a mixture of all possible colour components, including the colour singlets and hidden colour configurations. For example, the ${T}_{{cc}}^{+}$ state $| {\bar{3}}_{c},{3}_{c}\rangle $ (with colour structure ${\bar{3}}_{c}\times {3}_{c}$) with IJP = 01+ can in principle mix with the tetraquark $| {6}_{c},{\bar{6}}_{c}\rangle $ (colour structure ${6}_{c}\times {\bar{6}}_{c}$) with IJP = 01+ to form the two states ∣1c, 1c〉 and ∣8c, 8c〉: $\begin{eqnarray}| {1}_{c},{1}_{c}\rangle =-\displaystyle \frac{1}{\sqrt{3}}| {\bar{3}}_{c},{3}_{c}\rangle +\sqrt{\displaystyle \frac{2}{3}}| {6}_{c},{\bar{6}}_{c}\rangle ,\end{eqnarray}$ $\begin{eqnarray}| {8}_{c},{8}_{c}\rangle =\sqrt{\displaystyle \frac{2}{3}}| {\bar{3}}_{c},{3}_{c}\rangle +\displaystyle \frac{1}{\sqrt{3}}| {6}_{c},{\bar{6}}_{c}\rangle .\end{eqnarray}$ |
Table 9. P wave masses (MeV) of the DH tetraquarks TQQ with configuration ${QQ}\{\bar{q}\bar{q}\}$. |
JP | ${cc}\{\bar{u}\bar{d}\}$ | ${bb}\{\bar{u}\bar{d}\}$ | ${bc}\{\bar{u}\bar{d}\}$ | ${cc}\{\bar{u}\bar{s}\}$ | ${bb}\{\bar{u}\bar{s}\}$ | ${bc}\{\bar{u}\bar{s}\}$ | ${cc}\{\bar{s}\bar{s}\}$ | ${bb}\{\bar{s}\bar{s}\}$ | ${bc}\{\bar{s}\bar{s}\}$ |
---|---|---|---|---|---|---|---|---|---|
0− | 4429 | 10941 | 7687 | 4563 | 11110 | 7855 | 4696 | 11201 | 7959 |
1− | 4446 | 10946 | 7695 | 4579 | 11116 | 7863 | 4711 | 11206 | 7966 |
1− | 4447 | 10946 | 7696 | 4579 | 11116 | 7863 | 4710 | 11206 | 7966 |
1− | 4487 | 10959 | 7715 | 4613 | 11127 | 7879 | 4739 | 11215 | 7980 |
2− | 4484 | 10958 | 7714 | 4612 | 11126 | 7879 | 4741 | 11216 | 7981 |
2− | 4499 | 10963 | 7721 | 4624 | 11130 | 7884 | 4751 | 11219 | 7985 |
3− | 4517 | 10969 | 7730 | 4641 | 11136 | 7893 | 4766 | 11224 | 7993 |
Table 10. P wave masses (MeV) of the DH tetraquark with configurations ${QQ}[\bar{u}\bar{d}]$ and ${QQ}[\bar{u}\bar{s}]$. |
JP | Mass (MeV) | |||||
---|---|---|---|---|---|---|
${cc}[\bar{u}\bar{d}]$ | ${bb}[\bar{u}\bar{d}]$ | ${bc}[\bar{u}\bar{d}]$ | ${cc}[\bar{u}\bar{s}]$ | ${bb}[\bar{u}\bar{s}]$ | ${bc}[\bar{u}\bar{s}]$ | |
0− | 4253 | 10764 | 7520 | 4458 | 10983 | 7735 |
1− | 4268 | 10769 | 7528 | 4472 | 10988 | 7741 |
2− | 4298 | 10779 | 7542 | 4499 | 10996 | 7754 |