Welcome to visit Communications in Theoretical Physics,
Particle Physics and Quantum Field Theory

Mass spectra of doubly heavy tetraquarks in diquark−antidiquark picture*

  • Yong-Xing Song(宋永新) 1 ,
  • Duo-Jie Jia(贾多杰) , 2
Expand
  • 1Institute of Theoretical Physics, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
  • 2Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, 730000, China

Received date: 2022-07-11

  Revised date: 2023-02-27

  Accepted date: 2023-03-01

  Online published: 2023-04-25

Supported by

* National Natural Science Foundation of China(12165017)

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Inspired by the recent observation of the first doubly charmed tetraquark Tcc, we apply the linear Regge relation and mass scaling to study low-lying mass spectra of the doubly heavy tetraquark in a heavy-diquark−light-antidiquark picture. The measured data and other compatible estimates of ground-state masses of doubly heavy baryons are employed to evaluate masses of heavy diquark MQQ (Q = c, b) and the D/Ds meson masses are used in mass scaling to determine the hyperfine mass splitting. Our mass computation indicates that all low-lying states of doubly heavy tetraquarks are unstable against strong decays to two heavy-light mesons, except for the ground states of nonstrange bb tetraquarks.

Cite this article

Yong-Xing Song(宋永新) , Duo-Jie Jia(贾多杰) . Mass spectra of doubly heavy tetraquarks in diquark−antidiquark picture*[J]. Communications in Theoretical Physics, 2023 , 75(5) : 055201 . DOI: 10.1088/1572-9494/acc019

1. Introduction

Recently, the LHCb collaboration [1] reported the important observation of a doubly charmed tetraquark containing two charm quarks, an anti-u and an anti-d quark, using the LHCb-experiment data at CERN, which manifests itself as a narrow peak in the mass spectrum of D0D0π+ mesons just below the D*+D0 mass threshold. This invites quantitative study of the mass spectroscopy of the multiquark hadrons and raises the issue of if there are more (strongly) stable doubly heavy tetraquark TQQ against the two-meson decay. Most mass computations of the compact tetraquark Tcc [27] predict masses around 3.9 − 4.1 GeV, above the D*+D0 mass threshold (3876 MeV).
For doubly charmed hadrons, one crucial experimental input is the strength of the interaction between two charm quarks, which can be provided by the doubly charmed baryon ${{\rm{\Xi }}}_{{cc}}^{++}={cuu}$ discovered by the LHCb Collaboration at CERN. The updated mass of the doubly charmed baryon ${{\rm{\Xi }}}_{{cc}}^{++}$ is 3621.55 ± 0.53 MeV [8]. This value is consistent with several predictions, including the computed values of 3620 MeV [9] and 3627 ± 12 MeV [10].
Interestingly, a narrow structure X(6900) around 6.9 GeV, the candidate for all-charm tetraquark, was observed in 2020 in the J/ψ-pair mass spectrum (above five standard deviations) by LHCb collaboration at CERN [11], with the Breit-Wigner mass m[X(6900)] = 6905 ± 11 ± 7 MeV and natural width Γ[X(6900)] = 80 ± 19 ± 33 MeV. This observation is confirmed recently by CMS experiment [12] in the di-J/ψ mass data with the resonance mass 6927 ± 9 ± 5 MeV. The recent ATLAS experiment at CERN also finds a resonance in the di-J/ψ channel [13], with the mass $6.87\pm {0.03}_{-0.01}^{+0.06}$ GeV and the width $0.12\pm {0.04}_{-0.01}^{+0.03}$ GeV, which is also consistent with X(6900) reported by the LHCb. Some other broad structures at lower masses and around 6.9 GeV are also seen in these experiments, whose natures are under study.
Given the mass of the ${{\rm{\Xi }}}_{{cc}}^{++}(3620)$ [8], a simple sum rule $M({cc}\bar{q}\bar{q})$ = 2M(ccu)-$M({cc}\bar{c}\bar{c})/2$ predicts the mass of the tetraquark ${T}_{{cc}\bar{q}\bar{q}}$ to be around 3790.6 ± 10.06 MeV, which is slightly below the D*+D0 mass threshold. Here, we used the mass $M({cc}\bar{c}\bar{c})$ = 6905 ± 18 MeV, taken from the LHCb measured data of the fully charmed tetraquark X(6900), around 6.9 GeV just above twice the J/$\Psi$ mass [11].
We use Regge relation methods in [14, 16] and earlier works [18], which are validated by many successful predictions of the excited heavy baryons [14, 16], to analyze low-lying mass spectra of the doubly heavy (DH) tetraquark. Masses of the DH tetraquark in their ground state and 1P wave are computed. In the analysis, the measured data of the ${{\rm{\Xi }}}_{{cc}}^{++}$ [8] and other mass estimates of the ground-state of doubly heavy baryons [9] is compatible with this data and are used to extract masses of heavy diquark MQQ (Q = c, b) and other trajectory parameters [18].
In the past, the doubly heavy tetraquarks in their ground state have been studied extensively in [1925], among many others. Some comprehensive reviews are given in Ref. [26]. For a recent review, see [27, 28].

2. Method for excited spectrum

We write the mass of the doubly heavy (DH) tetraquarks TQQ as the sum of two parts: $M=\bar{M}+{\rm{\Delta }}M$, where $\bar{M}$ is the spin-independent part and ΔM is the spin-dependent mass. In the picture of heavy-diquark-light-antidiquark($\bar{q}\bar{q}$), the diquark QQ consisting of two heavy quarks is quite heavy compared to light antidiquark $\bar{q}\bar{q}$ so the heavy-light limit applies to the DH tetraquarks ${QQ}\bar{q}\bar{q}$. One can then derive, by analogy with the Regge relation in Ref. [14], a linear Regge relation from the quantum chromodynamics (QCD) string model for the DH tetraquark TQQ by viewing it to be a system of a massive QCD string with the diquark QQ(D) at one end and $\bar{q}\bar{q}$($\bar{D}$) at the other.

2.1. Spin-independent mass

We consider systems of a DH tetraquark TQQ(=${QQ}\bar{q}\bar{q}$) consisting of an S-wave heavy diquark QQ and an S-wave light antidiquark $\bar{q}\bar{q}$, which are in relative states of the orbital angular momentum L = 0 or L = 1 between two diquarks. We also assume the heavy diquark QQ is in colour antitriplet (${\bar{3}}_{c}$) and $\bar{q}\bar{q}$ is in colour triplet (3c). Thus, the DH tetraquark we consider is that with colour structure $({\bar{3}}_{c}\times {3}_{c})$. To describe TQQ, especially its excited states, we employ a linear Regge relation for the tetraquark TQQ, which is rooted in the general scattering theory of strong interaction and based on the observed spectrum of established hadrons [17]. The relation takes its form from [14]:
$\begin{eqnarray}{\bar{M}}_{L}={M}_{{QQ}}+\sqrt{\pi {aL}+{\left[{m}_{{qq}}+{M}_{{QQ}}-{m}_{\mathrm{bare}\ \mathrm{QQ}}^{2}/{M}_{{QQ}}\right]}^{2}},\end{eqnarray}$
where MQQ and mqq are the effective masses of the heavy and light diquarks, respectively, and a stands for the tension of the QCD string connecting the diquark QQ at one end and the antidiquark $\bar{q}\bar{q}$ at the other. Here, ${m}_{\mathrm{bare}{QQ}}$ is the bare mass of QQ, given approximately by the sum of the bare masses of each quark Q: ${m}_{\mathrm{bare}{QQ}}$ $=\ {m}_{\mathrm{bare}Q}+{m}_{\mathrm{bare}Q}$, where ${m}_{{bare},Q}$ of the quarks Q(=c, b) are ${m}_{{bare},c}=1.275\,\mathrm{GeV}$ and ${m}_{{bare},b}=4.18$ GeV [15]. Numerically, one has
$\begin{eqnarray}\begin{array}{l}{m}_{\mathrm{bare}{cc}}=2.55\,\mathrm{GeV},{m}_{\mathrm{bare}{bb}}=8.36\,\mathrm{GeV},\\ {m}_{\mathrm{bare}{bc}}=5.455\,\mathrm{GeV}.\end{array}\end{eqnarray}$
Applying to the S wave, one sees the reduction of the Regge relation (1), $\bar{M}={M}_{{QQ}}+{m}_{{qq}}+{({M}_{{QQ}}{v}_{{QQ}})}^{2}/{M}_{{QQ}}$ where ${v}_{{QQ}}^{2}=1-{({m}_{\mathrm{bare}{QQ}}/{M}_{{QQ}})}^{2}$. It agrees with mass expansion at the heavy quark limit of DH hadrons.
In table 1, we list the relevant parameters in equation (1) and their values. These values were evaluated previously in [14, 18, 29] via matching of the observed spectra of the singly-heavy hadrons.
Table 1. Related parameters (GeV) of the QCD string model. Taken from [14, 18, 29].
Parameter Mcc Mbb M{bc} M[bc] m{ud} m[ud] m{us} m[us] m{ss}
The value 2.8655 8.9166 5.8923 5.8918 0.745 0.535 0.872 0.718 0.991
1.

(1) 1S wave. The relative orbital angular momentum L = 0 with respect to QQ. In this case, the Regge relation (1) becomes

$\begin{eqnarray}\begin{array}{rcl}\bar{M}(1S) & = & {M}_{{QQ}}+{m}_{{qq}}+\displaystyle \frac{{k}_{{QQ}}^{2}}{{M}_{{QQ}}},\\ {k}_{{QQ}}^{2} & \equiv & {M}_{{QQ}}^{2}-{m}_{\mathrm{bare}{QQ}}^{2}.\end{array}\end{eqnarray}$
Putting masses in table 1 and equations (2) into (3), one can obtain spin-averaged masses of all DH tetraquark TQQ, as listed in table 2.

2.

(2) 1P wave. As examined in [14], the Regge slope πa of heavy baryons, in the sense of quantum averaging in hadrons, is nearly independent of the spin of light diquarks (=0 or 1), but relies on the mass MQQ of heavy quarks. One then expects for tetraquark TQQ that its effective value of the tension a varies only with the heavy content of the flavor combinations QQ.

Table 2. Mean (spin-averaged) mass(in MeV) of the doubly heavy tetraquarks TQQ in ground states, [] and {} stands for S[] = 0 and S{} = 1.
System State QQ = cc QQ = bb QQ = bc
IJP Mass
$\{{QQ}\}[\bar{u}\bar{d}]$ 01+ 3997 10530 7270
$[{QQ}][\bar{u}\bar{d}]$ 00+ 7268
$[{QQ}]\{\bar{u}\bar{d}\}$ 11+ 7478
$\{{QQ}\}\{\bar{u}\bar{d}\}$ 10+, 11+, 12+ 4207 10740 7480
$\{{QQ}\}[\bar{u}\bar{s}]$ $\tfrac{1}{2}{1}^{+}$ 4180 10713 7453
$[{QQ}][\bar{u}\bar{s}]$ $\tfrac{1}{2}{0}^{+}$ 7451
$[{QQ}]\{\bar{u}\bar{s}\}$ $\tfrac{1}{2}{1}^{+}$ 7605
$\{{QQ}\}\{\bar{u}\bar{s}\}$ $\tfrac{1}{2}{0}^{+}$ , $\tfrac{1}{2}{1}^{+}$, $\tfrac{1}{2}{2}^{+}$ 4334 10867 7607
$\{{QQ}\}\{\bar{s}\bar{s}\}$ 00+, 01+, 02+ 4450 10987 7725
$[{QQ}]\{\bar{s}\bar{s}\}$ 01+ 7724
Let us consider first the tetraquark ${T}_{{QQ}}=({QQ})(\bar{u}\bar{d})$ and scale its tension to the Λc,b( = Qud, Q = c, b) baryons which share the heavy-light structure similar to singly-heavy mesons. We assume, for simplicity, a power-law of the mass scaling for two string tensions of the doubly heavy tetraquark $({QQ})(\bar{u}\bar{d})$ and Λc,b:
$\begin{eqnarray}\displaystyle \frac{{a}_{{{\rm{\Lambda }}}_{c}}}{{a}_{{{\rm{\Lambda }}}_{b}}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{b}}\right)}^{{P}_{1}},\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{a}_{{{\rm{\Lambda }}}_{c}}}{{a}_{({QQ})(\bar{u}\bar{d})}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\right)}^{{P}_{1}},\end{eqnarray}$
Here, the relevant string tensions are evaluated previously in [14], as listed in table 3.
Table 3. The string tension coefficient a (GeV)2 of Λcbcbcb baryons and the effective mass of component quark (GeV) of Mc and Mb.
Parameters Mc Mb mu ${a}_{{{\rm{\Lambda }}}_{c}}$ ${a}_{{{\rm{\Lambda }}}_{b}}$ ${a}_{{{\rm{\Xi }}}_{c}}$ ${a}_{{{\rm{\Xi }}}_{b}}$ ${a}_{{{\rm{\Omega }}}_{c}}$ ${a}_{{{\rm{\Omega }}}_{b}}$
The value 1.44 4.48 0.23 0.212 0.246 0.255 0.307 0.316 0.318
The same procedure applies to the strange ${T}_{{QQ}}=({QQ})(\bar{u}\bar{s})$ and the associated Ξc,b(=c(us), b(us)) baryons, the ${T}_{{QQ}}=({QQ})(\bar{s}\bar{s})$ and the Ωc,b(=c(ss), b(ss)) baryons, for which the mass scaling, corresponding to equations (4) and (5), has the same form
$\begin{eqnarray}\displaystyle \frac{{a}_{{{\rm{\Xi }}}_{c}}}{{a}_{{{\rm{\Xi }}}_{b}}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{b}}\right)}^{{P}_{2}},\displaystyle \frac{{a}_{{{\rm{\Xi }}}_{c}}}{{a}_{({QQ})(\bar{u}\bar{s})}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\right)}^{{P}_{2}},\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{a}_{{{\rm{\Omega }}}_{c}}}{{a}_{{{\rm{\Omega }}}_{b}}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{b}}\right)}^{{P}_{3}},\displaystyle \frac{{a}_{{{\rm{\Omega }}}_{c}}}{{a}_{({QQ})(\bar{s}\bar{s})}}={\left(\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\right)}^{{P}_{3}}.\end{eqnarray}$
Putting the parameters in table 3 into equations (4)–(7), one obtains the all power parameter P and ensuing effective values of the string tension
$\begin{eqnarray}\begin{array}{c}{P}_{1}=0.1311\ \ ,{P}_{2}=0.1635\ \ ,{P}_{3}=0.0056\ \ ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\left\{\begin{array}{c}{a}_{({cc})(\bar{u}\bar{d})}=0.2320\ \ {\mathrm{GeV}}^{2},{a}_{({bb})(\bar{u}\bar{d})}=0.2692\ \ {\mathrm{GeV}}^{2},{a}_{({bc})(\bar{u}\bar{d})}=0.2320\ \ {\mathrm{GeV}}^{2},\\ {a}_{({cc})(\bar{u}\bar{s})}=0.2854\ \ {\mathrm{GeV}}^{2},{a}_{({bb})(\bar{u}\bar{s})}=0.3436\ \ {\mathrm{GeV}}^{2},{a}_{({bc})(\bar{u}\bar{s})}=0.3211\ \ {\mathrm{GeV}}^{2},\\ {a}_{({cc})(\bar{s}\bar{s})}=0.3172\ \ {\mathrm{GeV}}^{2},{a}_{({bb})(\bar{s}\bar{s})}=0.3192\ \ {\mathrm{GeV}}^{2},{a}_{({bc})(\bar{s}\bar{s})}=0.3185\ \ {\mathrm{GeV}}^{2},\end{array}\right\}\end{eqnarray}$
Applying the data in equation (9) and table 1 to equation (1), one can obtain the mean (spin-averaged) masses of the TQQ system $({QQ})(\bar{q}\bar{q})$ in P-wave(L = 1). The results are
$\begin{eqnarray}\left\{\begin{array}{c}{\bar{M}}_{({cc}[\bar{u}\bar{d}])}=4.283\ \ \mathrm{GeV},{\bar{M}}_{({bb}[\bar{u}\bar{d}])}=10.774\ \ \mathrm{GeV},{\bar{M}}_{({bc}[\bar{u}\bar{d}])}=7.535\ \ \mathrm{GeV},\\ {\bar{M}}_{({cc}\{\bar{u}\bar{d}\})}=4.455\ \ \mathrm{GeV},{\bar{M}}_{({bb}\{\bar{u}\bar{d}\})}=10.959\ \ \mathrm{GeV},{\bar{M}}_{({bc}\{\bar{u}\bar{d}\})}=7.714\ \ \mathrm{GeV},\\ {\bar{M}}_{({cc}[\bar{u}\bar{s}])}=4.485\ \ \mathrm{GeV},{\bar{M}}_{({bb}[\bar{u}\bar{s}])}=10.992\ \ \mathrm{GeV},{\bar{M}}_{({bc}[\bar{u}\bar{s}])}=7.748\ \ \mathrm{GeV},\\ {\bar{M}}_{({cc}\{\bar{u}\bar{s}\})}=4.613\ \ \mathrm{GeV},{\bar{M}}_{({bb}\{\bar{u}\bar{s}\})}=11.127\ \ \mathrm{GeV},{\bar{M}}_{({bc}\{\bar{u}\bar{s}\})}=7.879\ \ \mathrm{GeV},\\ {\bar{M}}_{({cc}\{\bar{s}\bar{s}\})}=4.741\ \ \mathrm{GeV},{\bar{M}}_{({bb}\{\bar{s}\bar{s}\})}=11.216\ \ \mathrm{GeV},{\bar{M}}_{({bc}\{\bar{s}\bar{s}\})}=7.981\ \ \mathrm{GeV}.\end{array}\right\}\end{eqnarray}$
where QQ = cc, bb, bc stand for the axial diquark {QQ} with spin S{QQ}=1.

2.2. Spin-dependent mass

For mass splitting ΔM = ⟨HSD⟩ due to spin interaction between heavy and light diquarks with spins SQQ and Sqq, we consider the spin-dependent Hamiltonian [16, 30]
$\begin{eqnarray}\begin{array}{rcl}{H}^{{SD}} & = & {a}_{1}{\bf{L}}\cdot {{\bf{S}}}_{{qq}}+{a}_{2}{\bf{L}}\cdot {{\bf{S}}}_{{QQ}}+{{bS}}_{12}+c{{\bf{S}}}_{{qq}}\cdot {{\bf{S}}}_{{QQ}},\\ {S}_{12} & = & 3{{\bf{S}}}_{{qq}}\cdot \hat{{\bf{r}}}{{\bf{S}}}_{{QQ}}\cdot \hat{{\bf{r}}}-{{\bf{S}}}_{{qq}}\cdot {{\bf{S}}}_{{QQ}},\end{array}\end{eqnarray}$
where the first two terms are spin-orbit forces, the third is a tensor force, and the last describes hyperfine splitting. We discuss the following states of the DH tetraquark:
1.

(1) 1S wave. For the 1S wave, L = 0, the spin-interaction Hamiltonian is simply

$\begin{eqnarray}{H}^{{SD}}=c{{\bf{S}}}_{{QQ}}\cdot {{\bf{S}}}_{{qq}},\end{eqnarray}$
in which SQQ · Sqq has the eigenvalues −2, −1, 1, 0 when SQQ = 1. One has the mass formula then,
$\begin{eqnarray}\begin{array}{l}M({QQ}\bar{q}\bar{q},1S)=\bar{M}({QQ}\bar{q}\bar{q})+c({QQ}\bar{q}\bar{q})\\ {diag}\{-2,-1,1,0\}.\end{array}\end{eqnarray}$
Based on the similarity between TQQ and heavy mesons $Q\bar{q}$(we choose D meson typically), one has a relation of mass scaling for the spin coupling c,
$\begin{eqnarray}c\left(\{{QQ}\}\left(\bar{q}\bar{q}\right)\right)=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{q}}{{m}_{{qq}}}\cdot c{\left(D\right)}_{1S}.\end{eqnarray}$
in which c(D)1S = 140.6 MeV, mq = 230 MeV and other masses are given in table 1 and table 3.

2.

(2) 1P wave. In the heavy-diquark(D)-light-antidiquark($\bar{{\rm{D}}}$) picture, the total spin of the TQQ is denoted by ${S}_{{tot}}={S}_{D}+{S}_{\bar{D}}$, which takes value Stot = 2, 1, 0 when ${S}_{D}={S}_{\bar{D}}=1$ and Stot = 1 when SD = 1 and ${S}_{\bar{D}}=0$. In the scheme of LS coupling, coupling Stot = 2 to L = 1 gives the states with the total angular momentums J = 3, 2, 1, while coupling Stot = 1 to L = 1 leads to the states with J = 2, 1, 0; coupling Stot = 0 to L = 1 leads to the states with J = 1. Normally, one uses the LS basis ${}^{2{S}_{{tot}}+1}{P}_{J}$ ={3P0,1P1,3P1,5P1,3P2,5P2,5P3} to label these multiplets in P-wave. We consider two cases for DH tetraquarks:

a

(a) ${S}_{D}={S}_{\bar{D}}=1$. There are seven states, all of which are negative parity. In the LS basis, the three J = 1 states and two J = 2 states are unmixed unless a1 = a2. Otherwise, they are the respective eigenstates of a 3 × 3 and 2 × 2 matrices ΔMJ representing HSD with J = 1 and J = 2. The matrices of mass shifts are then (see appendix).

$\begin{eqnarray}{\rm{\Delta }}{M}_{J=0}=-{a}_{1}-{a}_{2}-2b-c,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rm{\Delta }}{M}_{J=1}=\left[\begin{array}{ccc}0 & \displaystyle \frac{2}{\sqrt{3}}\left({a}_{1}-{a}_{2}\right) & 0\\ \displaystyle \frac{2}{\sqrt{3}}\left({a}_{1}-{a}_{2}\right) & \displaystyle \frac{1}{2}\left({a}_{1}+{a}_{2}\right) & \displaystyle \frac{\sqrt{5}}{6}\left({a}_{1}-{a}_{2}\right)\\ 0 & \displaystyle \frac{\sqrt{5}}{6}\left({a}_{1}-{a}_{2}\right) & -\displaystyle \frac{3}{2}\left({a}_{1}+{a}_{2}\right)\end{array}\right],\\ \quad +b\left[\begin{array}{ccc}0 & 0 & \displaystyle \frac{32}{15\sqrt{5}}\\ 0 & 1 & 0\\ \displaystyle \frac{32}{15\sqrt{5}} & 0 & -\displaystyle \frac{7}{5}\end{array}\right]+c\left[\begin{array}{ccc}-2 & 0 & \displaystyle \frac{1}{6\sqrt{5}}\\ 0 & -1 & 0\\ \displaystyle \frac{1}{6\sqrt{5}} & 0 & 1\end{array}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Delta }}{M}_{J=2} & = & \left[\begin{array}{cc}\displaystyle \frac{1}{2}\left({a}_{2}+{a}_{1}\right) & \displaystyle \frac{\sqrt{3}}{2}\left({a}_{1}-{a}_{2}\right)\\ \displaystyle \frac{\sqrt{3}}{2}\left({a}_{1}-{a}_{2}\right) & \displaystyle \frac{1}{2}\left({a}_{2}+{a}_{1}\right)\end{array}\right]\\ & & +b\left[\begin{array}{cc}-\displaystyle \frac{1}{5} & 0\\ 0 & \displaystyle \frac{7}{5}\end{array}\right]+c\left[\begin{array}{cc}-1 & 0\\ 0 & 1\end{array}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}{M}_{J=3}={a}_{1}+{a}_{2}-\displaystyle \frac{2}{5}b+c,\end{eqnarray}$

In the heavy quark limit, the terms involving SQQ in equation (13) behave as 1/MQQ and are suppressed. Due to heavy quark spin symmetry(SQQ conserved), the total angular momentum of the light quark j = L + Sqq = JSQQ is conserved and forms a set of the conserved operators {J, j}, together with the total angular momentum J of the DH tetraquark. So instead of the LS coupling, one can use the jj coupling scheme in which the light-antidiquark spin Sqq couples to L to form total angular momentum j of the light quark and then to the conserved spin SQQ of the heavy-diquark. So, for the tetraquarks TQQ, we label the P-wave multiplets in terms of the basis ∣J, j⟩ of the jj coupling (appendix), in which the diquark QQ is infinitely heavy (MQQ → ∞ ) and L · Sqq becomes diagonal. As such, one can employ the jj coupling to find the formula for mass splitting ΔM by diagonalizing L · Sqq and treating other interactions in equation (11) proportional to a2, b and c perturbatively. The results for ΔM(J, j) are listed in table 4. Given the matrices in table 4, one can use the lowest perturbation theory to find the mass splitting ΔM(J, j) of the DH tetraquarks in the P-wave. The result is
$\begin{eqnarray}{\rm{\Delta }}M(0,0)=-{a}_{1}-{a}_{2}-2b-c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(1,0)=-2{a}_{2}+\displaystyle \frac{4}{135}b+\displaystyle \frac{1}{27}c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(1,1)=-{a}_{1}-\displaystyle \frac{1}{2}{a}_{2}-\displaystyle \frac{47}{45}b-\displaystyle \frac{5}{9}c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(1,2)={a}_{1}-\displaystyle \frac{3}{2}{a}_{2}+\displaystyle \frac{83}{135}b-\displaystyle \frac{40}{27}c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(2,1)=-{a}_{1}+\displaystyle \frac{1}{2}{a}_{2}+b+\displaystyle \frac{1}{2}c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(2,2)={a}_{1}-\displaystyle \frac{1}{2}{a}_{2}+\displaystyle \frac{1}{5}b-\displaystyle \frac{1}{2}c,\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}M(3,2)={a}_{1}+{a}_{2}-\displaystyle \frac{2}{5}b+c,\end{eqnarray}$
which express the TQQ mass splitting in terms of four parameters (a1, a2, b, c) of the spin couplings. Adding the spin-dependent $\bar{M}=\bar{M}(1P)$, one obtains the respective mass formula $M(J,j)=\bar{M}(1P)+{\rm{\Delta }}M(J,j)$ for the TQQ in P-wave. Here, one can check that the spin-weighted sum of these mass shifts is zero:
$\begin{eqnarray}\displaystyle \sum _{J}(2J+1){\rm{\Delta }}M(J,j)=0.\end{eqnarray}$
Table 4. The matrix elements of the mass splitting operators in the P-wave TQQ state in the jj coupling.
(J, j) $\left\langle {\bf{L}}\cdot {{\bf{S}}}_{{qq}}\right\rangle $ $\left\langle {\bf{L}}\cdot {{\bf{S}}}_{{QQ}}\right\rangle $ $\left\langle {S}_{12}\right\rangle $ $\left\langle {{\bf{S}}}_{{qq}}\cdot {{\bf{S}}}_{{QQ}}\right\rangle $
(0, 0) −1 −1 −2 −1

(1, 0) −2 0 4/135 1/27
(1, 1) −1 −1/2 −47/45 −5/9
(1, 2) 1 −2/3 83/135 −40/27

(2, 1) −1 1/2 1 1/2
(2, 2) 1 −1/2 1/5 −1/2

(3, 2) 1 1 −2/5 1
To evaluate spin coupling parameters (a1, a2, b, c) in equation (19) through equation (25), we use the following mass scaling,
$\begin{eqnarray}{a}_{1}[{QQ}(\bar{q}\bar{q})]=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{s}}{{m}_{({qq})}}\cdot {a}_{1}\left({D}_{s}\right),\end{eqnarray}$
$\begin{eqnarray}{a}_{2}[{QQ}(\bar{q}\bar{q})]=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{s}}{1+{m}_{({qq})/{M}_{c}}}\cdot {a}_{2}\left({D}_{s}\right),\end{eqnarray}$
$\begin{eqnarray}b[{QQ}(\bar{q}\bar{q})]=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{s}}{1+{m}_{({qq})/{m}_{s}}}\cdot b\left({D}_{s}\right),\end{eqnarray}$
$\begin{eqnarray}c[{QQ}(\bar{q}\bar{q})]=\displaystyle \frac{{M}_{c}}{{M}_{{QQ}}}\cdot \displaystyle \frac{{m}_{{ss}}}{{m}_{({qq})}}\cdot c\left({{\rm{\Omega }}}_{c}\right),\end{eqnarray}$
which apply successfully to the singly-heavy baryons [14, 16]. For this, we list the parameters of spin couplings for the Ds and Ωc in [14, 16, 29] and the effective masses of mss and ms in [14, 29] collectively in equation (31).
$\begin{eqnarray}\left\{\begin{array}{c}{a}_{1}({D}_{s})=89.36\ \ \mathrm{MeV},{a}_{2}({D}_{s})=40.7\ \ \mathrm{MeV},b({D}_{s})=65.6\ \ \mathrm{MeV},\\ c({{\rm{\Omega }}}_{c})=4.04\ \ \mathrm{MeV},{m}_{s}=328\ \ \mathrm{MeV},{m}_{{ss}}=991\ \ \mathrm{MeV},\end{array}\right\}\end{eqnarray}$
Putting the data in equation (31) and tables 3 and 1 into equations (27)–(30), one obtains the spin couplings for the doubly heavy tetraquarks TQQ, with the results listed collectively in table 5.
Table 5. Spin-coupling parameters (in MeV) in the spin interaction (11) of the doubly heavy tetraquark TQQ with vector diquark $\{\bar{n}\bar{n}\}$.
TQQ ${cc}\{\bar{u}\bar{d}\}$ ${bb}\{\bar{u}\bar{d}\}$ ${bc}\{\bar{u}\bar{d}\}$ ${cc}\{\bar{u}\bar{s}\}$ ${bb}\{\bar{u}\bar{s}\}$ ${bc}\{\bar{u}\bar{s}\}$ ${cc}\{\bar{s}\bar{s}\}$ ${bb}\{\bar{s}\bar{s}\}$ ${bc}\{\bar{s}\bar{s}\}$
a1 19.77 6.35 9.61 16.89 5.43 8.21 14.86 4.78 7.23
a2 13.48 4.33 6.56 12.74 4.09 6.20 12.12 3.89 5.89
b 10.08 3.42 4.90 9.01 2.90 4.38 8.20 2.63 3.99
c 2.70 0.87 1.31 2.31 0.74 1.12 2.03 0.65 0.99
a

(b) SD = 1,${S}_{\bar{D}}=0$. There are three states with J = 0, 1, 2, corresponding to mass shifts of the spin interaction as follows

$\begin{eqnarray}{\rm{\Delta }}{M}_{J=0}=-2{a}_{2},\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}{M}_{J=1}=-{a}_{2},\end{eqnarray}$
$\begin{eqnarray}{\rm{\Delta }}{M}_{J=2}={a}_{2},\end{eqnarray}$
for which ∑J(2J + 1)ΔMJ = 0 (appendix). Using the data in equation (31) and tables 3 and 1, equation (28) enables us to compute the spin coupling a2, listed below:
$\begin{eqnarray}\left\{\begin{array}{c}{a}_{2}({cc}[\bar{u}\bar{d}])=14.91\ \ \mathrm{MeV},{a}_{2}({bb}[\bar{u}\bar{d}])=4.79\ \ \mathrm{MeV},{a}_{2}({bc}[\bar{u}\bar{d}])=7.25\ \ \mathrm{MeV},\\ {a}_{2}({cc}[\bar{u}\bar{s}])=13.65\ \ \mathrm{MeV},{a}_{2}({bb}[\bar{u}\bar{s}])=4.39\ \ \mathrm{MeV},{a}_{2}({bc}[\bar{u}\bar{s}])=6.64\ \ \mathrm{MeV},\end{array}\right\}\end{eqnarray}$

3. Numerical results and discussions

Based on section 2.2, one can calculate spin-dependent mass ΔM corresponding to the spin-dependent interaction. Adding these masses to the spin-averaged masses discussed in section 2.1, one can find the mass $M={\bar{M}}_{L}+{\rm{\Delta }}M$ of a given DH tetraquark. In tables 610, we list the mass results for the double heavy tetraquarks in 1S and 1P waves.
Table 6. Ground-state masses M of the cc tetraquarks, the lowest threshold T for its decaying into two D($c\bar{q}$) mesons and Δ = MT. All values are given in MeV.
System IJP M T Δ [31] [32] [3] [33] [4] [25]
$({cc})(\bar{u}\bar{d})$ 01+ 3997 3871 126 3935 3947 3978
10+ 4163 3729 434 4056 4111 4146
11+ 4185 3871 314 4079 4133 4167 4117 4201 4268
12+ 4229 4041 188 4118 4177 4210 4179 4271 4318

$({cc})(\bar{u}\bar{s})$ $\tfrac{1}{2}{1}^{+}$ 4180 3975 205 4143 4124 4156
$\tfrac{1}{2}{0}^{+}$ 4297 3833 464 4221 4232
$\tfrac{1}{2}{1}^{+}$ 4315 3975 340 4239 4254 4314 4363 4394
$\tfrac{1}{2}{2}^{+}$ 4352 4119 233 4271 4298 4305 4434 4440

$({cc})(\bar{s}\bar{s})$ 00+ 4420 3936 484 4359 4352
01+ 4436 4080 356 4375 4374 4382 4526 4493
02+ 4470 4224 246 4402 4418 4433 4597 4536
Table 7. Ground-state masses M of the bb tetraquarks, the lowest threshold T for its decaying into two B($b\bar{q}$) mesons and Δ = MT. All values are in MeV.
System IJP M T Δ [31] [32] [3] [33] [4] [25]
$({bb})(\bar{u}\bar{d})$ 01+ 10530 10604 −74 10502 10471 10482
10+ 10726 10588 168 10648 10664 10674
11+ 10733 10604 129 10657 10671 10681 10854 10875 10779
12+ 10747 10650 97 10673 10685 10695 10878 10897 10799

$({bb})(\bar{u}\bar{s})$ $\tfrac{1}{2}{1}^{+}$ 10713 10693 20 10706 10644 10643
$\tfrac{1}{2}{0}^{+}$ 10855 10649 208 10802 10781
$\tfrac{1}{2}{1}^{+}$ 10861 10693 168 10809 10788 10974 11010 10897
$\tfrac{1}{2}{2}^{+}$ 10873 10742 131 10823 10802 10997 11060 10915

$({bb})(\bar{s}\bar{s})$ 00+ 10976 10739 237 10932 10898
01+ 10981 10786 195 10939 10905 11099 11199 10986
02+ 10991 10833 158 10950 10919 11119 11224 11004
It is seen from tables 68 that our mass predictions of the DH tetraquarks are compatible with most other calculations cited. In the nonstrange sector, our predictions for the P wave masses are higher than the ground-state mass about 300 MeV for the cc tetraquarks, about 300–400 MeV for the bb tetraquarks and about 220 MeV for the bc tetraquarks. In the strange sector, our predictions for the P wave masses are higher than the ground-state mass about 300 MeV for the cc tetraquarks, about 270 MeV for the bb tetraquarks and about 300 MeV for the bc tetraquarks. It turns out that the monotonous suppression of the S-P wave splitting of tetraquark masses by heavy diquark mass MQQ breaks when light diquark becomes more strange.
Table 8. Ground-state masses M of bc tetraquarks, lowest threshold T for its decaying into B and D mesons and Δ = MT. All values are in MeV.
System IJP M T Δ [31] [32] [3] [33] [4] [25]
$({bc})(\bar{u}\bar{d})$ 00+ 7268 7144 154 7239 7248 7229
01+ 7269 7190 79 7246 7289 7272
11+ 7478 7190 288 7403 7455 7439
10+ 7458 7114 344 7383 7460 7461
11+ 7469 7190 279 7396 7474 7472
12+ 7490 7332 158 7422 7503 7493 7586 7531 7582

$({bc})(\bar{u}\bar{s})$ $\tfrac{1}{2}{0}^{+}$ 7451 7232 219 7444 7422 7406
$\tfrac{1}{2}{1}^{+}$ 7452 7277 175 7451 7456 7445
$\tfrac{1}{2}{1}^{+}$ 7605 7277 328 7555 7573
$\tfrac{1}{2}{0}^{+}$ 7558 7232 356 7540 7578
$\tfrac{1}{2}{1}^{+}$ 7579 7277 320 7552 7592
$\tfrac{1}{2}{2}^{+}$ 7616 7420 196 7572 7621 7705

$({bc})(\bar{s}\bar{s})$ 01+ 7710 7336 374 7673 4696
01+ 7724 7381 343 7684 7691
10+ 7717 7381 336 7683 7710
11+ 7733 7525 208 7701 7739 7779 7908 7798
Regarding our calculations on the spectra of DH tetraquarks, we make the following remarks:
i

(i) The ground state masses of the DH tetraquarks increase mostly with the quantum number JP of the states listed, as shown in table 6 through table 8. A few exceptions are the IJP = 01+ and 10+ states of the nonstrange tetraquarks $({cc})(\bar{u}\bar{d})$ and $({bb})(\bar{u}\bar{d})$, the IJP = (1/2)0+ and (1/2)1+ states of the strange bc-tetraquarks $({bc})(\bar{u}\bar{s})$ and the IJP = 01+ and 10+ states of the double-strange bc-tetraquarks $({bc})(\bar{s}\bar{s})$.

ii

(ii) The state number of the excited DH tetraquarks is far less than that allowed by the four-body quark systems. As such, some P-wave excited states have not been predicted in tables 9 and 10, which are associated with the internal excitations of the light or heavy diquarks.

iii

(iii) Generally, a multiquark state may form a mixture of all possible colour components, including the colour singlets and hidden colour configurations. For example, the ${T}_{{cc}}^{+}$ state $| {\bar{3}}_{c},{3}_{c}\rangle $ (with colour structure ${\bar{3}}_{c}\times {3}_{c}$) with IJP = 01+ can in principle mix with the tetraquark $| {6}_{c},{\bar{6}}_{c}\rangle $ (colour structure ${6}_{c}\times {\bar{6}}_{c}$) with IJP = 01+ to form the two states ∣1c, 1c⟩ and ∣8c, 8c⟩:

$\begin{eqnarray}| {1}_{c},{1}_{c}\rangle =-\displaystyle \frac{1}{\sqrt{3}}| {\bar{3}}_{c},{3}_{c}\rangle +\sqrt{\displaystyle \frac{2}{3}}| {6}_{c},{\bar{6}}_{c}\rangle ,\end{eqnarray}$
$\begin{eqnarray}| {8}_{c},{8}_{c}\rangle =\sqrt{\displaystyle \frac{2}{3}}| {\bar{3}}_{c},{3}_{c}\rangle +\displaystyle \frac{1}{\sqrt{3}}| {6}_{c},{\bar{6}}_{c}\rangle .\end{eqnarray}$

Table 9. P wave masses (MeV) of the DH tetraquarks TQQ with configuration ${QQ}\{\bar{q}\bar{q}\}$.
JP ${cc}\{\bar{u}\bar{d}\}$ ${bb}\{\bar{u}\bar{d}\}$ ${bc}\{\bar{u}\bar{d}\}$ ${cc}\{\bar{u}\bar{s}\}$ ${bb}\{\bar{u}\bar{s}\}$ ${bc}\{\bar{u}\bar{s}\}$ ${cc}\{\bar{s}\bar{s}\}$ ${bb}\{\bar{s}\bar{s}\}$ ${bc}\{\bar{s}\bar{s}\}$
0 4429 10941 7687 4563 11110 7855 4696 11201 7959
1 4446 10946 7695 4579 11116 7863 4711 11206 7966
1 4447 10946 7696 4579 11116 7863 4710 11206 7966
1 4487 10959 7715 4613 11127 7879 4739 11215 7980
2 4484 10958 7714 4612 11126 7879 4741 11216 7981
2 4499 10963 7721 4624 11130 7884 4751 11219 7985
3 4517 10969 7730 4641 11136 7893 4766 11224 7993
Table 10. P wave masses (MeV) of the DH tetraquark with configurations ${QQ}[\bar{u}\bar{d}]$ and ${QQ}[\bar{u}\bar{s}]$.
JP Mass (MeV)
${cc}[\bar{u}\bar{d}]$ ${bb}[\bar{u}\bar{d}]$ ${bc}[\bar{u}\bar{d}]$ ${cc}[\bar{u}\bar{s}]$ ${bb}[\bar{u}\bar{s}]$ ${bc}[\bar{u}\bar{s}]$
0 4253 10764 7520 4458 10983 7735
1 4268 10769 7528 4472 10988 7741
2 4298 10779 7542 4499 10996 7754
Another possibility is that the ${T}_{{cc}}^{+}$ state is a mixture of the two colour singlets (molecule states) DD* and D*D*, and two colour octets ${D}_{8}{D}_{8}^{* }$ and ${D}_{8}^{* }{D}_{8}^{* }$. These possible mixture effects as well as the coupling with the molecule channels of the DD* and D*D* may shift the ground-state mass prediction 3997 MeV of the state $| {\bar{3}}_{c},{3}_{c}\rangle $ (table 6) down to be near the measured mass (about 3874.7 MeV).

4. Summary and remarks

In this work, we utilize linear Regge relation, which is derived from the QCD string model, and mass scaling with respect to the D(Ds) mesons to study low-lying excited mass spectra of the doubly heavy tetraquark in the heavy diquark-antidiquark picture. For the spin-independent masses of the DH tetraquarks, the measured data of the Ξcc baryon and other compatible estimates of ground-state masses of doubly heavy baryons are used to extract the trajectory parameters, including the heavy diquark MQQ (Q = c, b). For the spin-dependent masses, we employ the D/Ds meson masses in relation to mass scaling to determine the hyperfine mass splitting. We find that except for the ground states of doubly bottom tetraquarks Tbb(${bb}\bar{u}\bar{d}$ 1S with IJP = 01+), all DH tetraquarks are not stable against strong decays, provided that the DH tetraquarks are in the pure state of compact exotic hadrons.
The heavy quark pair in diquark QQ in ${\bar{3}}_{c}$ may (when MQ is very large) stay close to each other to form a compact core due to the strong Coulomb interaction, with the light quarks moving around the QQ -core [4], while it is also possible (when MQ is comparable with 1/ΛQCD ≈ 3 GeV−1 ) that Q attracts $\bar{q}$ to bind into a colourless clustering (in 1c) and other pair of ${Q}^{{\prime} }$ and ${\bar{q}}^{{\prime} }$ binds into another colourless clustering (in 1c), giving a molecular system $(Q\bar{q})({Q}^{{\prime} }{\bar{q}}^{{\prime} })$. In the former case, DH tetraquarks mimic the helium-like QCD-atom, while in the latter case, DH tetraquarks resemble the hydrogen-like QCD molecules. In the real world with finite heavy-quark mass, especially in the case of the cc tetraquark state, a DH tetraquark may form exotic states of a compact tetraquark, or form an exotic molecular state consisting of two heavy mesons, or a mixture of both structures [34].
We stress that our picture of an antiquark−heavy-diquark relies on the diquark size ⟨R⟩ compared to the scale 1/ΛQCD, as two heavy quarks Q and ${Q}^{{\prime} }$ in colour antitriplet (${\bar{3}}_{c}$) in DH tetraquark may not act as a compact colour source when ⟨R⟩ ≫ 1/ΛQCD. The explicit size of the diquark depends on two-quark dynamics [3537] and the mixing of the molecule components in DH tetraquarks is of interest and remains to be explored.

Acknowledgments

D J is supported by the National Natural Science Foundation of China under No. 12165017. Y S thanks Wen-Xuan Zhang for many discussions.

Appendix

For a system composed of a heavy-diquark QQ and a light antidiquark $\bar{q}\bar{q}$, the matrix elements of L · Sqq, L · SQQ, $\widehat{{\bf{B}}}$ and SQQ · Sqq may be evaluated by explicit construction of the tetraquark states with a given J3 as linear combinations of states $\left|{S}_{{QQ}3},{S}_{{qq}3},{L}_{3}\right\rangle $, where ${S}_{{qq}3}+{S}_{{QQ}3}+{L}_{3}={S}_{\bar{D}3}\,+{S}_{D3}+{L}_{3}={J}_{3}$. Due to the rotation invariance of the matrix elements, it suffices to use a single J3 for each and, one can use
$\begin{eqnarray}{\bf{L}}\cdot {{\bf{S}}}_{i}=\displaystyle \frac{1}{2}\left[{L}_{+}{S}_{i-}+{L}_{-}{S}_{i+}\right]+{L}_{3}{S}_{i3},\end{eqnarray}$
to find their elements by applying L · Si on the third components of angular momenta, where $i=D,\bar{D}$. In the $\left|J,{J}_{3}\right\rangle $ representation in the LS coupling, these components are given by the following basis states(when ${S}_{D}={S}_{\bar{D}}=1$ )
$\begin{eqnarray}\begin{array}{l}\left|{}^{3}{P}_{0},J=0\right\rangle =\displaystyle \frac{1}{\sqrt{6}}| 1,-1,0\rangle \\ \quad +\displaystyle \frac{1}{\sqrt{6}}| 0,1,-1\rangle -\displaystyle \frac{1}{\sqrt{6}}| -1,1,0\rangle \\ \quad -\displaystyle \frac{1}{\sqrt{6}}| 1,0,-1\rangle -\displaystyle \frac{1}{\sqrt{6}}| 0,-1,1\rangle +\displaystyle \frac{1}{\sqrt{6}}| -1,0,1\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|{}^{1}{P}_{1},J=1\right\rangle =\displaystyle \frac{1}{\sqrt{3}}| 1,-1,1\rangle \\ \quad -\displaystyle \frac{1}{\sqrt{3}}| 0,0,1\rangle +\displaystyle \frac{1}{\sqrt{3}}| -1,1,0\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|{}^{3}{P}_{1},J=1\right\rangle =\displaystyle \frac{1}{2}| 1,-1,1\rangle \\ \quad -\displaystyle \frac{1}{2}| -1,1,1\rangle -\displaystyle \frac{1}{2}| 1,0,0\rangle +\displaystyle \frac{1}{2}| 0,1,0\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|{}^{5}{P}_{1},J=1\right\rangle =\displaystyle \frac{1}{2\sqrt{15}}| 1,-1,1\rangle \\ \quad +\displaystyle \frac{1}{\sqrt{15}}| 0,0,1\rangle +\displaystyle \frac{1}{2\sqrt{15}}| -1,1,1\rangle \\ \quad -\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{3}{5}}| 1,0,0\rangle -\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{3}{5}}| 0,1,0\rangle \\ \quad +\sqrt{\displaystyle \frac{3}{5}}| 1,1,-1\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\left|{}^{3}{P}_{2},J=2\right\rangle =\displaystyle \frac{1}{\sqrt{2}}| 1,0,-1\rangle +\displaystyle \frac{1}{\sqrt{2}}| 0,1,1\rangle ,\end{eqnarray}$
$\begin{eqnarray}\left|{}^{5}{P}_{2},J=2\right\rangle =\displaystyle \frac{1}{\sqrt{6}}| 1,0,1\rangle +\displaystyle \frac{1}{\sqrt{6}}| 0,1,1\rangle -\sqrt{\displaystyle \frac{2}{3}}| 1,1,0\rangle ,\end{eqnarray}$
$\begin{eqnarray}\left|{}^{5}{P}_{3},J=3\right\rangle =| 1,1,1\rangle ,\end{eqnarray}$
In the state subspace of J = 1, using the basis $\left[{}^{1}{P}_{1},{}^{1}{P}_{1}\right]$, $\left[{}^{1}{P}_{1},{}^{3}{P}_{1}\right]$, $\left[{}^{1}{P}_{1},{}^{5}{P}_{1}\right]$ and $\left[{}^{3}{P}_{1},{}^{3}{P}_{1}\right]$, $\left[{}^{3}{P}_{1},{}^{5}{P}_{1}\right]$, $\left[{}^{5}{P}_{1},{}^{5}{P}_{1}\right]$, one can compute the matrix elements of L · Si, B and ${{\bf{S}}}_{\bar{D}}\cdot {{\bf{S}}}_{D}$,
$\begin{eqnarray}\begin{array}{rcl}{\left\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}\right\rangle }_{J=1} & = & \left[\begin{array}{ccc}0 & \displaystyle \frac{2}{\sqrt{3}} & 0\\ \displaystyle \frac{2}{\sqrt{3}} & -\displaystyle \frac{1}{2} & \displaystyle \frac{\sqrt{15}}{6}\\ 0 & \displaystyle \frac{\sqrt{15}}{6} & -\displaystyle \frac{3}{2}\end{array}\right],\\ {\left\langle {\bf{L}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=1} & = & \left[\begin{array}{ccc}0 & -\displaystyle \frac{2}{\sqrt{3}} & 0\\ -\displaystyle \frac{2}{\sqrt{3}} & -\displaystyle \frac{1}{2} & -\displaystyle \frac{\sqrt{15}}{6}\\ 0 & -\displaystyle \frac{\sqrt{15}}{6} & -\displaystyle \frac{3}{2}\end{array}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\left\langle {{\bf{S}}}_{\bar{D}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=1} & = & \left[\begin{array}{ccc}-2 & 0 & \displaystyle \frac{1}{6\sqrt{5}}\\ 0 & -1 & 0\\ \displaystyle \frac{1}{6\sqrt{5}} & 0 & 1\end{array}\right],\\ \langle {\bf{B}}{\rangle }_{J=1} & = & \left[\begin{array}{ccc}0 & 0 & \displaystyle \frac{32}{15\sqrt{5}}\\ 0 & 1 & 0\\ \displaystyle \frac{32}{15\sqrt{5}} & 0 & -\displaystyle \frac{7}{5}\end{array}\right],\end{array}\end{eqnarray}$
In the subspace of J = 2, one finds
$\begin{eqnarray}\begin{array}{rcl}{\left\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}\right\rangle }_{J=2} & = & \left[\begin{array}{cc}\displaystyle \frac{1}{2} & \displaystyle \frac{\sqrt{3}}{2}\\ \displaystyle \frac{\sqrt{3}}{2} & -\displaystyle \frac{1}{2}\end{array}\right],\\ {\left\langle {\bf{L}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=2} & = & \left[\begin{array}{cc}\displaystyle \frac{1}{2} & -\displaystyle \frac{\sqrt{3}}{2}\\ -\displaystyle \frac{\sqrt{3}}{2} & -\displaystyle \frac{1}{2}\end{array}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\left\langle {{\bf{S}}}_{\bar{D}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=2} & = & \left[\begin{array}{cc}-1 & 0\\ 0 & 1\end{array}\right],\\ \langle {\bf{B}}{\rangle }_{J=2} & = & \left[\begin{array}{cc}-\displaystyle \frac{1}{5} & 0\\ 0 & \displaystyle \frac{7}{5}\end{array}\right],\end{array}\end{eqnarray}$
In the subspace of J = 0, the matrix elements are
$\begin{eqnarray}\begin{array}{rcl}\langle {\bf{L}}\cdot {{\bf{S}}}_{}{\rangle }_{J=0} & = & -1,\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}{\rangle }_{J=0}=-1,\\ {\left\langle {{\bf{S}}}_{\bar{D}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=0} & = & -1,\quad \langle {\bf{B}}{\rangle }_{J=0}=-2,\end{array}\end{eqnarray}$
In the subspace of J = 3, the results are
$\begin{eqnarray}\begin{array}{rcl}\langle {\bf{L}}\cdot {{\bf{S}}}_{}{\rangle }_{J=3} & = & 1,\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}{\rangle }_{J=3}=1,\\ {\left\langle {{\bf{S}}}_{\bar{D}}\cdot {{\bf{S}}}_{D}\right\rangle }_{J=3} & = & 1,\quad \langle {\bf{B}}{\rangle }_{J=3}=-\displaystyle \frac{2}{5},\end{array}\end{eqnarray}$
Given the above matrices, one can solve eigenvalues λ of L · Sqq and the corresponding eigenvectors for a given J, and for that J one can write the hadron states $\left|J,j\right\rangle $ in the jj coupling. Then, these hadron states can be expressed to be the linear combinations of LS bases $\left|{}^{2S+1}{P}_{J}\right\rangle $:
$\begin{eqnarray}\lambda =+1:| J=0,j=0\rangle =\left|1{}^{3}{P}_{0}\right\rangle ,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\lambda =-2:| J & = & 1,j=0\rangle =\displaystyle \frac{1}{3}\left|{1}^{1}{P}_{1}\right\rangle \\ & & -\displaystyle \frac{1}{\sqrt{3}}\left|{1}^{3}{P}_{1}\right\rangle +\displaystyle \frac{\sqrt{5}}{3}\left|{1}^{1}{P}_{1}\right\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\lambda & = & -1:| J=1,j=1\rangle =\displaystyle \frac{1}{\sqrt{3}}\left|{1}^{1}{P}_{1}\right\rangle -\displaystyle \frac{1}{2}\left|{1}^{3}{P}_{1}\right\rangle \\ & & -\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{5}{3}}\left|{1}^{1}{P}_{1}\right\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}\lambda & = & 1:| J=1,j=2\rangle =\displaystyle \frac{\sqrt{5}}{3}\left|{1}^{1}{P}_{1}\right\rangle \\ & & -\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{5}{3}}\left|{1}^{3}{P}_{1}\right\rangle +\displaystyle \frac{1}{6}\left|{1}^{1}{P}_{1}\right\rangle ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\lambda =-1:| J=2,j=1\rangle =\displaystyle \frac{1}{2}\left|{1}^{3}{P}_{2}\right\rangle -\displaystyle \frac{\sqrt{3}}{2}\left|{1}^{5}{P}_{2}\right\rangle ,\end{eqnarray}$
$\begin{eqnarray}\lambda =1:| J=2,j=2\rangle =\displaystyle \frac{\sqrt{3}}{2}\left|{1}^{3}{P}_{2}\right\rangle -\displaystyle \frac{1}{2}\left|{1}^{5}{P}_{2}\right\rangle ,\end{eqnarray}$
$\begin{eqnarray}\lambda =+1:| J=3,j=2\rangle =\left|{1}^{5}{P}_{3}\right\rangle .\end{eqnarray}$
This gives the required baryon states in the heavy-diquark limit, by which the diagonal matrix elements of L · SQQ, $\widehat{{\bf{B}}}$ and SQQ · Sqq can be obtained.
In the $\left|J,{J}_{3}\right\rangle $ representation in the LS coupling, these components are given by the following basis states(for SD = 1, ${S}_{\bar{D}}=0$)
$\begin{eqnarray}\begin{array}{l}\left|{}^{3}{P}_{0},J=0\right\rangle =\displaystyle \frac{1}{\sqrt{3}}| 0,1,-1\rangle \\ +\displaystyle \frac{1}{\sqrt{3}}| 0,-1,1\rangle -\displaystyle \frac{1}{\sqrt{3}}| 0,0,0\rangle ,\\ \left|{}^{3}{P}_{0},J=1\right\rangle =\displaystyle \frac{1}{\sqrt{2}}| 0,1,0\rangle -\displaystyle \frac{1}{\sqrt{2}}| 0,0,1\rangle ,\\ \left|{}^{3}{P}_{2},J=2\right\rangle =| 0,1,1\rangle ,\end{array}\end{eqnarray}$
In the following, we write only the nonzero matrix elements for the spin–orbit coupling operators with J = 0, 1:
$\begin{eqnarray}\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}{\rangle }_{J=0}=-2(J=0)\end{eqnarray}$
$\begin{eqnarray}\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}{\rangle }_{J=1}=-1(J=1)\end{eqnarray}$
$\begin{eqnarray}\langle {\bf{L}}\cdot {{\bf{S}}}_{\bar{D}}{\rangle }_{J=2}=1,(J=1).\end{eqnarray}$
with the results collected in table 4.
1
Aaij R (LHCb Collaboration) 2022 Observation of an exotic narrow doubly charmed tetraquark Nat. Phys. 18 751 754

DOI

2
Karliner M Rosner J L 2017 Discovery of doubly-charmed Ξcc baryon implies a stable (${bb}\bar{u}\bar{d}$) tetraquark Phys.Rev.Lett. 119 202001

DOI

3
Eichten E J Quigg C 2017 Heavy-quark symmetry implies stable heavy tetraquark mesons ${Q}_{i}{Q}_{j}\bar{{q}_{k}}\bar{{q}_{l}}$ Phys. Rev. Lett. 119 202002

DOI

4
Lou S Q Chen K Liu X Liu Y R Zhi S L 2017 Exotic tetraquark states with the ${qq}\bar{Q}\bar{Q}$, configuration Eur. Phys. J. C 77 709

DOI

5
Mehen T 2017 Implications of heavy quark-diquark symmetry for excited doubly heavy baryons and tetraquarks Phys. Rev. D 96 094028

DOI

6
Meng Q Hiyama E Hosaka A Okad M Gublerd P Can K U Takahashi T T Zong H S 2021 Stable double-heavy tetraquarks: Spectrum and structure Phys. Lett. B 814 136095

DOI

7
Meng Q Harada M Hiyama E Hosaka A Oka M 2022 Doubly heavy tetraquark resonant states Phys. Lett. B 824 136800

DOI

8
Aaij R (LHCb collaboration) 2020 Precision measurement of the ${{\rm{\Xi }}}_{{cc}}^{++}$ mass J. High Energy Phys. JHEP02(2020)049

DOI

9
Ebert D Faustov R N Galkin V O Martynenko A P 2002 Mass spectra of doubly heavy baryons in the relativistic quark model Phys. Rev. D 66 014008

DOI

10
Karliner M Rosner J L 2014 Baryons with two heavy quarks: Masses, production, decays, and detection Phys. Rev. D 90 094007

DOI

11
Aaij R (LHCb Collaboration) 2020 Observation of structure in the J/$\Psi$-pair mass spectrum Sci. Bull. 65 1983

DOI

12
Yi Y (CMS Collaboration) 2022 Recent CMS results on exotic resonances, ICHEP 2022 XLI Int. Conf. on High Energy Physics, Bologna, Italy

13
Thacker E B (ATLAS Collaboration) 2022 ATLAS results on exotic hadronic resonances, ICHEP 2022 XLI Int. Conf. High Energy Physics, Bologna, Italy

14
Jia D Liu W N Hosaka A 2020 Regge behaviors in orbitally excited spectroscopy of charmed and bottom baryons Phys. Rev. D 101 034016

DOI

15
Workman R L (Particle Data Group) 2022 Review of particle physics (2022) Prog. Theor. Exp. Phys. 2022 083C01

DOI

16
Karliner M Rosner J L 2015 Prospects for observing the lowest-lying odd-parity Σc and Σb baryons Phys. Rev. D 92 074026

DOI

17
Collins P D D 1971 Regge theory and particle physics Phys. Rep. 1 103

DOI

18
Song Y Jia D Zhang W Hosaka A 2023 Low-lying mass spectra of excited doubly heavy baryons: Regge relation and mass scaling Eur. Phys. J. C 83 1

DOI

19
Ader J P Richard J M Taxil P 1982 Do narrow heavy multi-quark states exist? Phys. Rev. D 25 2370

DOI

20
Zouzou S Silvestre-Brac B Gignoux C Richard J 1986 Four-quark bound states Z. Phys. C 30 457

DOI

21
Manohar A V Wise M B 1993 Exotic ${QQ}\bar{q}\bar{q}$ states in QCD Nucl. Phys. B 399 17

DOI

22
Bicudo P Cichy K Peters A Wagenbach B Wagner M 2015 Evidence for the existence of ${ud}\bar{b}\bar{b}$ and the nonexistence of ${ss}\bar{b}\bar{b}$ and ${cc}\bar{b}\bar{b}$ tetraquarks from lattice QCD Phys. Rev. D 92 014507

DOI

23
Bicudo P Scheunert J Wagner M 2017 Including heavy spin effects in the prediction of a $\bar{b}\bar{b}{ud}$ tetraquark with lattice QCD potentials Phys. Rev. D 95 034502

DOI

24
Junnarkar P Mathur N Padmanath M 2019 Study of doubly heavy tetraquarks in lattice QCD Phys. Rev. D 99 034507

DOI

25
Q F Chen D Y Dong Y B 2020 Masses of doubly heavy tetraquarks TQQ0 in a relativized quark model Phys. Rev. D 102 034012

DOI

26
Lebed R F Mitchell R E Swanson E S 2017 Heavy-quark QCD exotica Prog. Part. Nucl. Phys. 93 143

DOI

Esposito A Pilloni A Polosa A D 2017 Multiquark resonances Phys. Rep. 668 1

DOI

Ali A Lange J S Stone S 2017 Exotics: heavy pentaquarks and tetraquarks Prog. Part. Nucl. Phys. 97 123

DOI

27
Ali A Maiani L Polosa A D 2019 Multiquark Hadrons NY Cambrige Univ. Press

28
Chen H-X Chen W Liu X Liu Y-R Zhu S-L 2023 An updated review of the new hadron states Rep. Prog. Phys. 86 026201

DOI

29
Jia D Pan J H Pang C Q 2021 A mixing coupling scheme for spectra of singly heavy baryons with spin-1 diquarks in p-waves Eur. Phys. J. C 81 434

DOI

30
Ebert D Faustov R N Galkin V O 2011 Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons Eur. Phys. J. C 71 1825

DOI

31
Ebert D Faustov R N Galkin V O Lucha W 2007 Masses of tetraquarks with two heavy quarks in the relativistic quark model Phys. Rev. D 76 114015

DOI

32
Braaten E He L P Mohapatra A 2021 Masses of doubly heavy tetraquarks with error bars Phys. Rev. D 103 016001

DOI

33
Zhang W X Xu H Jia D 2021 Masses and magnetic moments of hadrons with one and two open heavy quarks: Heavy baryons and tetraquarks Phys. Rev. D 104 114011

DOI

34
Deng C-R Zhu S-L 2022 Decoding the double heavy tetraquark state ${T}_{{cc}}^{+}$ Sci. Bull. 67 1522

DOI

35
Bicudo P Wagner M (European Twisted Mass Collaboration) 2013 Lattice QCD signal for a bottom-bottom tetraquark Phys. Rev. D 87 114511

DOI

36
Giron J F Lebed R F Peterson C T 2019 The dynamical diquark model: first numerical results J. High Energy Phys. JHEP05(2019)061

DOI

37
Karliner M Nussinov S 2013 The doubly heavies: $\bar{Q}Q\bar{q}q$ and ${QQ}\bar{q}\bar{q}$ tetraquarks and QQq baryons J. High Energy Phys. JHEP07(2013)153

DOI

Outlines

/