1. Introduction
2. The spectral analysis
2.1. The exact 1-form
2.2. The three important eigenfunctions ${\{{{\rm{\Phi }}}_{j}(x,t,\theta )\}}_{1}^{3}$
Figure 1. The three contours η1, η2, η3 in the (x, t)-domain. |
Figure 2. The areas ωi, i = 1,…,4 division on the complex θ-plane. |
2.3. The other properties of the eigenfunctions
(Symmetries) Let ${\rm{\Phi }}(x,t,\theta )={{\rm{\Phi }}}_{j}$$(x,t,\theta ),j=1,2,3,$ then ${\rm{\Phi }}(x,t,\theta )$ admits the following symmetry relations
The eigenfunctions ${{\rm{\Phi }}}_{j}(x,t,\theta )\,=({[{{\rm{\Phi }}}_{j}]}_{1}(x,t,\theta ),$${[{{\rm{\Phi }}}_{j}]}_{2}(x,t,\theta )),j\,=\,1,2,3$ admit the following properties
• | $\det {{\rm{\Phi }}}_{j}(x,t,\theta )=1,j\,=\,1,2,3$, |
• | ${[{{\rm{\Phi }}}_{1}]}_{1}$ is analytical for $\theta \in {{\rm{\Omega }}}_{4}$, as well as continuous to ${\overline{{\rm{\Omega }}}}_{4},$ ${[{{\rm{\Phi }}}_{1}]}_{2}$ is analytical for $\theta \in {{\rm{\Omega }}}_{2},$ as well as continuous to ${\overline{{\rm{\Omega }}}}_{2},$ |
• | ${[{{\rm{\Phi }}}_{2}]}_{1}$ is analytical for $\theta \in {{\rm{\Omega }}}_{3}$, as well as continuous to ${\overline{{\rm{\Omega }}}}_{3},$ ${[{{\rm{\Phi }}}_{2}]}_{2}$ is analytical for $\theta \in {{\rm{\Omega }}}_{1},$ as well as continuous to ${\overline{{\rm{\Omega }}}}_{1},$ |
• | ${[{{\rm{\Phi }}}_{3}]}_{1}$ is analytical for $\theta \in {{\mathbb{C}}}_{+}$, as well as continuous to ${{\mathbb{C}}}_{+}\cup \mathrm{Re}\theta ,$ ${[{{\rm{\Phi }}}_{3}]}_{2}$ is analytical for $\theta \in {{\mathbb{C}}}_{-}$, as well as continuous to ${{\mathbb{C}}}_{-}\cup \mathrm{Re}\theta ,$ |
• | ${[{{\rm{\Phi }}}_{j}]}_{1}{(x,t,\theta )\to (1,0)}^{T}$, ${[{{\rm{\Phi }}}_{j}]}_{2}{(x,t,\theta )\to (0,1)}^{T},$ as $\theta \to \infty $. |
It follows from equations (
• | $\left(\begin{array}{c}z(\theta )\\ y(\theta )\end{array}\right)={\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(0,0,\theta )=\left(\begin{array}{c}{\left({{\rm{\Phi }}}_{3}\right)}_{12}^{{{\mathbb{C}}}_{-}}(0,0,\theta )\\ {\left({{\rm{\Phi }}}_{3}\right)}_{22}^{{{\mathbb{C}}}_{-}}(0,0,\theta )\\ \end{array}\right).$ |
• | $\left(\begin{array}{c}-{{\rm{e}}}^{32{\rm{i}}\kappa {\theta }^{5}T}Z(\theta )\\ \overline{Y(\bar{\theta })})\end{array}\right)={\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )=\left(\begin{array}{c}{\left({{\rm{\Phi }}}_{1}\right)}_{12}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )\\ {\left({{\rm{\Phi }}}_{1}\right)}_{22}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )\\ \end{array}\right).$ |
• | $y(-\theta )$ $=\overline{y(\bar{\theta })}$, $z(-\theta )=\overline{z(\bar{\theta })}$. |
• | $Y(-\theta )$ $=\overline{Y(\bar{\theta })}$, $Z(-\theta )=\overline{Z(\bar{\theta })}$. |
• | $\det f(\theta )$ $=y(\theta )\overline{y(\bar{\theta })}+z(\theta )\overline{z(\bar{\theta })}=1,$ for $\theta \in {\mathbb{R}}.$ |
• | $\det g(\theta )=Y(\theta )\overline{Y(\bar{\theta })}+Z(\theta )\overline{Z(\bar{\theta })}=1,$ for $\theta \in {\mathbb{C}}(\mathrm{Im}{\theta }^{5}=0,{if}\,T=\infty ).$ |
• | $y(\theta )$ $=1+{\rm{O}}({\theta }^{-1}),\,z(\theta )={\rm{O}}({\theta }^{-1}),$ as $\theta \to \infty ,\mathrm{Im}\theta \gt 0.$ |
• | $Y(\theta )$ $=1+{\rm{O}}({\theta }^{-1}),\,Z(\theta )={\rm{O}}({\theta }^{-1}),$ as $\theta \to \infty ,\mathrm{Im}{\theta }^{5}\gt 0.$ |
2.4. The basic RH problem
• | $S(-\theta )=\overline{S(\bar{\theta })}$, $s(-\theta )=\overline{s(\bar{\theta })}$. |
• | ${g}^{-1}(\theta )f(\theta )=\left(\begin{array}{cc}\overline{\alpha (\bar{\theta })} & \beta (\theta )\\ -\overline{\beta (\bar{\theta })} & \alpha (\theta )\end{array}\right)$, |
• | $\alpha (-\theta )=\overline{\alpha (\bar{\theta })}$, $\beta (-\theta )=\overline{\beta (\bar{\theta })}$. |
• | $\det [{g}^{-1}(\theta )f(\theta )]=\alpha (\theta )\overline{\alpha (\bar{\theta })}+\beta (\theta )\overline{\beta (\bar{\theta })}=1$, |
• | $\alpha (\theta )=1\,+\,O\left(\tfrac{1}{\theta }\right),\beta (\theta )=O\left(\tfrac{1}{\theta }\right){as}\,\theta \to \infty $. |
Let $u(x,t)\in {\mathbb{S}}$, on curve ${\bar{{\rm{\Omega }}}}_{i},i=1,\ldots ,4$, the function $H(x,t,\theta )$ defined by equation (
Figure 3. The contour for the RH problem on the complex θ-plane. |
Suppose that
• | $y(\theta )$ enjoys λ simple zeros ${\{{\gamma }_{k}\}}_{k=1}^{\lambda }$, $\lambda =2{\lambda }_{1}$, as well as ${\{{\gamma }_{k}\}}_{1}^{\lambda }\in {{\rm{\Omega }}}_{4}$, and ${\{{\bar{\gamma }}_{k}\}}_{1}^{\lambda }\in {{\rm{\Omega }}}_{2}$. |
• | $\alpha (\theta )$ enjoys ξ simple zeros ${\{{\delta }_{k}\}}_{k=1}^{\xi }$, $\xi =2{\xi }_{1}+{\xi }_{2}$, as well as ${\{{\delta }_{k}\}}_{1}^{\xi }\in {{\rm{\Omega }}}_{3}$, and ${\{{\bar{\delta }}_{k}\}}_{1}^{\xi }\in {{\rm{\Omega }}}_{1}$. |
• | None of the zeros of $y(\theta )$ coincides with a zero of $\alpha (\theta )$. |
(The residue formula) Let $\dot{y}(\theta )=\tfrac{{dy}}{d\theta }$, it holds that the following residue formulae:
2.5. The global relation
3. The functions y(θ), z(θ) and Y(θ), Z(θ)
($y(\theta )$ and $z(\theta )$) Given ${u}_{0}(x)=u(x,0)\in {\mathbb{S}}$, one defines the mapping
The $y(\theta )$ and $z(\theta )$ possess the following properties
i | (i) $y(\theta ),z(\theta )$ are analytical for $\mathrm{Im}\theta \gt 0$ as well as bounded and continuous for $\mathrm{Im}\theta \geqslant 0$. |
ii | (ii) $y(\theta )=1+O\left(\tfrac{1}{\theta }\right),z(\theta )=O\left(\tfrac{1}{\theta }\right)$, $\theta \to \infty $, $\mathrm{Im}\theta \geqslant 0$. |
iii | (iii) $y(\theta )\overline{y(\bar{\theta })}+z(\theta )\overline{z(\bar{\theta })}=1$, $\theta \in {\mathbb{R}}$. |
iv | (iv) $y(-\theta )=\overline{y(\bar{\theta })},z(-\theta )=-\overline{z(\bar{\theta })}$, $\mathrm{Im}\theta \geqslant 0$. |
v | (v)The mapping ${\varphi }_{1}^{-1}={\phi }_{1}:\{y(\theta ),z(\theta )\}\to \{{u}_{0}(x)\}$, inverse to ${\varphi }_{1}$, is defined by $\begin{eqnarray*}{u}_{0}(x)=-2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\theta \to \infty }{\left(\theta {H}^{(x)}(x,\theta )\right)}_{12},\end{eqnarray*}$ where ${H}^{(x)}(x,\theta )$ is the unique solution to the RH problem as follows |
• | ${H}^{(x)}(x,\theta )=\left\{\begin{array}{l}{H}_{-}^{(x)}(x,\theta ),\mathrm{Im}\theta \leqslant 0,\\ {H}_{+}^{(x)}(x,\theta ),\mathrm{Im}\theta \geqslant 0,\end{array}\right.$ is a sectionally analytical function. |
• | ${H}_{+}^{(x)}(x,\theta )={H}_{-}^{(x)}(x,\theta ){L}^{(x)}(x,\theta )$, $\theta \in {\mathbb{R}}$, where $\begin{eqnarray}{L}^{(x)}(x,\theta )=\left(\begin{array}{cc}1 & -\displaystyle \frac{z(\theta )}{\overline{y(\bar{\theta })}}{{\rm{e}}}^{-2{\rm{i}}\theta x}\\ -\displaystyle \frac{\overline{z(\bar{\theta })}}{y(\theta )}{{\rm{e}}}^{2{\rm{i}}\theta x} & \displaystyle \frac{1}{y(\theta )\overline{y(\bar{\theta })}}\end{array}\right).\end{eqnarray}$ |
• | ${H}^{(x)}(x,\theta )={\rm{I}}+O(\tfrac{1}{\theta }),\theta \to \infty .$ |
• | y(θ) has λ simple zeros ${\{{\gamma }_{k}\}}_{1}^{\lambda }$, λ = 2λ1, such that $\mathrm{Im}{\gamma }_{k}\lt 0,k=1,2,\cdots ,\lambda $, where ${\{{\gamma }_{k}\}}_{1}^{2{\lambda }_{1}}\in {{\rm{\Omega }}}_{4}$. |
• | The first column of ${H}_{+}^{(x)}(x,\theta )$ possesses simple poles at $\theta ={\{{\bar{\gamma }}_{k}\}}_{1}^{2{\lambda }_{1}}$. The second column of ${H}_{-}^{(x)}(x,\theta )$ possesses simple poles at $\theta ={\{{\gamma }_{k}\}}_{1}^{2{\lambda }_{1}}$. The associated residues expression are $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(x)}(x,\theta )\right]}_{1},{\gamma }_{k}\}=\displaystyle \frac{{{\rm{e}}}^{2{\rm{i}}{\gamma }_{k}x}}{\dot{y}({\gamma }_{k})z({\gamma }_{k})}{\left[{H}^{(x)}(x,{\gamma }_{k})\right]}_{2},\\ k=1,2,\cdots ,2{\lambda }_{1},\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(x)}(x,\theta )\right]}_{2},{\bar{\gamma }}_{k}\}=-\displaystyle \frac{{{\rm{e}}}^{-2{\rm{i}}{\overline{\gamma }}_{k}x}}{\overline{\dot{y}({\gamma }_{k})}\overline{z({\gamma }_{k})}}{\left[{H}^{(x)}(x,{\bar{\gamma }}_{k})\right]}_{1},\\ k=1,2,\cdots ,2{\lambda }_{1}.\end{array}\end{eqnarray}$ |
($Y(\theta )$ and $Z(\theta )$). Let ${v}_{0}(t),{\{{v}_{k}(t)\}}_{1}^{4}\in {\mathbb{S}}$, the mapping
The $Y(\theta )$ and $Z(\theta )$ possess the following properties
i | (i) $Y(\theta ),Z(\theta )$ are bounded for $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$, if $T=\infty $, as well as the $Y(\theta ),Z(\theta )$ are defined only for $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$. |
ii | (ii) $Y(\theta )=1\,+\,$ $O\left(\tfrac{1}{\theta }\right),Z(\theta )$ $=O\left(\tfrac{1}{\theta }\right)$, $\theta \to \infty $, $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$. |
iii | (iii) $Y(\theta )\overline{Y(\bar{\theta })}+Z(\theta )\overline{Z(\bar{\theta })}=1$, $\theta \in {\mathbb{C}}(\kappa {\theta }^{5}\in {\mathbb{R}},$ if $T=\infty )$. |
iv | (iv) $Y(-\theta )=\overline{Y(\bar{\theta })},Z(-\theta )=-\overline{Z(\bar{\theta })}$, $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$. |
v | (v)The mapping ${\varphi }_{2}^{-1}={\phi }_{2}:\{Y(\theta ),Z(\theta )\}\to \{{v}_{0}(t),{v}_{1}(t),{v}_{2}(t),{v}_{3}(t),{v}_{4}(t)\}$, inverse to ${\varphi }_{2}$, is defined by $\begin{eqnarray}\begin{array}{rcl}{v}_{0}(t) & = & {v}_{0}(t)=-2{\rm{i}}{\phi }_{12}^{(1)}(t),\\ {v}_{1}(t) & = & 4{\phi }_{12}^{(2)}(t)-2{\rm{i}}{v}_{0}(t){\phi }_{22}^{(1)}(t)+{v}_{0}^{2}(t),\\ {v}_{2}(t) & = & 8{\rm{i}}{\phi }_{12}^{(3)}(t)+4{v}_{0}(t){\phi }_{22}^{(2)}(t)-2{\rm{i}}{v}_{1}(t){\phi }_{22}^{(1)}(t)-{v}_{0}^{3}(t),\\ {v}_{3}(t) & = & -16{\phi }_{12}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)+4{v}_{1}(t){\phi }_{22}^{(2)}(t)\\ & & -2{\rm{i}}({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(1)}(t)-5{v}_{0}^{2}(t){v}_{1}(t),\\ {v}_{4}(t) & = & -32{\rm{i}}{\phi }_{12}^{(5)}(t)-16{v}_{0}(t){\phi }_{22}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)\\ & & +\,4({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(2)}(t)-2{\rm{i}}(5{v}_{0}^{2}(t){v}_{1}(t)\\ & & +\,{v}_{3}(t)){\phi }_{22}^{(1)}(t)\\ & & amp;-(10{v}_{0}^{2}(t){v}_{1}(t)+10{v}_{0}(t){v}_{1}^{2}(t)+6{v}_{0}^{5}(t)),\end{array}\end{eqnarray}$ where the functions ${\phi }^{(j)}(t),j\,=\,1,2,3,4,5$ are determined by $\begin{eqnarray*}{H}^{(t)}(t,\theta )={\rm{I}}+\displaystyle \sum _{j=1}^{5}\displaystyle \frac{{\phi }^{(j)}(t)}{{\theta }^{j}}+O\left(\displaystyle \frac{1}{{\theta }^{6}}\right),\quad \theta \to \infty ,\end{eqnarray*}$ where ${H}^{(t)}(t,\theta )$ is the unique solution to the RH problem as follows |
• | ${H}^{(t)}(t,\theta )=\left\{\begin{array}{cc}{H}_{-}^{(t)}(t,\theta ), & \mathrm{Im}\kappa {\theta }^{5}\leqslant 0,\\ {H}_{+}^{(t)}(t,\theta ), & \mathrm{Im}\kappa {\theta }^{5}\geqslant 0,\end{array}\right.$ is a sectionally analytical function. |
• | ${H}_{-}^{(t)}(t,\theta )={H}_{+}^{(t)}(t,\theta ){L}^{(t)}(t,\theta )$, ${\theta }^{5}\in {\mathbb{R}}$, where $\begin{eqnarray}{H}^{(t)}(t,\theta )=\left(\begin{array}{cc}1 & -\displaystyle \frac{Z(\theta )}{\overline{Y(\overline{\theta })}}{{\rm{e}}}^{-32{\rm{i}}\kappa {\theta }^{5}t}\\ -\displaystyle \frac{\overline{Z(\overline{\theta })}}{Y(\theta )}{{\rm{e}}}^{32{\rm{i}}\kappa {\theta }^{5}t} & \displaystyle \frac{1}{Y(\theta )\overline{Y(\overline{\theta })}}\end{array}\right).\end{eqnarray}$ |
• | ${H}^{(t)}(t,\theta )={\rm{I}}+O\left(\tfrac{1}{\theta }\right),\theta \to \infty .$ |
• | Y(θ) has 2m simple zeros ${\{{\omega }_{k}\}}_{1}^{2m}$ such that $\mathrm{Im}{\omega }_{k}^{5}\gt 0,k=1,2,\cdots ,2m$. |
• | The first column of ${H}_{+}^{(t)}(t,\theta )$ possesses simple poles at $\theta ={\{{\bar{\omega }}_{k}\}}_{1}^{2m}$, the second column of ${H}_{-}^{(t)}(t,\theta )$ possesses simple poles at $\theta ={\{{\omega }_{k}\}}_{1}^{2m}$. The associated residues expression are $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(t)}(t,\theta )\right]}_{1},{\omega }_{k}\}=\displaystyle \frac{{{\rm{e}}}^{32{\rm{i}}\kappa {\omega }_{k}^{5}t}}{\dot{Y}({\omega }_{k})Z({\omega }_{k})}{\left[{H}^{(t)}(t,{\omega }_{k})\right]}_{2},\\ k=1,2,\cdots ,2m,\end{array}\end{eqnarray}$ $\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(t)}(t,\theta )\right]}_{2},{\bar{\omega }}_{k}\}=-\displaystyle \frac{{{\rm{e}}}^{-32{\rm{i}}\kappa {\overline{\omega }}_{k}^{5}t}}{\overline{\dot{Y}({\bar{\omega }}_{j})}\overline{Z({\bar{\omega }}_{k})}}{\left[{H}^{(t)}(t,{\bar{\omega }}_{k})\right]}_{1},\\ k=1,2,\cdots ,2m.\end{array}\end{eqnarray}$ |
4. The RH problem
Given ${u}_{0}(x)\in {\mathbb{S}}({{\rm{R}}}^{+})$, we define two pairs of spectral functions $y(\theta ),z(\theta )$ and $Y(\theta ),Z(\theta )$ by ${u}_{0}(x),{v}_{0}(t)$ and ${\{{v}_{k}(t)\}}_{1}^{4}$ according to definitions 3.1 and definitions 3.3, as well as the matrix-value functions $f(\theta )$ and $g(\theta )$ are defined by equation (
• | $H(x,t,\theta )$ is a sectionally analytical function for $\theta \in {\mathbb{C}}\setminus \{{\theta }^{5}\in {\mathbb{R}}\}$. |
• | $H(x,t,\theta )$ has the jump relation as in theorem 2.4, i.e $\begin{eqnarray*}{H}_{+}(x,t,\theta )={H}_{-}(x,t,\theta )L(x,t,\theta ),\quad {\theta }^{5}\in {\mathbb{R}},\end{eqnarray*}$ where ${H}_{\pm }(x,t,\theta )$ are defined by equations ( |
• | $H(x,t,\theta )={\rm{I}}+{\rm{O}}\left(\tfrac{1}{\theta }\right),\theta \to \infty $. |
• | $H(x,t,\theta )$ associated residues satisfy the relations in proposition |
(Vanishing Lemma) Assume that $H(x,t,\theta )\to 0$ as $\theta \to \infty $, then the 2 × 2 matrix RH problem in theorem 4.1 has only the zero solution.