Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Riemann-Hilbert problem for the fifth-order modified Korteweg–de Vries equation with the prescribed initial and boundary values

  • Beibei Hu 1, 2 ,
  • Ling Zhang , 2, ,
  • Ji Lin , 1, ,
  • Hanyu Wei 3
Expand
  • 1Department of Physics, Zhejiang Normal University, Jinhua 321004, China
  • 2School of Mathematics and Finance, Chuzhou University, Anhui 239000, China
  • 3College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China

Authors to whom any correspondence should be addressed.

Received date: 2022-11-29

  Revised date: 2023-04-20

  Accepted date: 2023-04-20

  Online published: 2023-06-07

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we investigate the fifth-order modified Korteweg–de Vries (mKdV) equation on the half-line via the Fokas unified transformation approach. We show that the solution u(x, t) of the fifth-order mKdV equation can be represented by the solution of the matrix Riemann-Hilbert problem constructed on the plane of complex spectral parameter θ. The jump matrix L(x, t, θ) has an explicit representation dependent on x, t and it can be represented exactly by the two pairs of spectral functions y(θ), z(θ) (obtained from the initial value u0(x)) and Y(θ), Z(θ) (obtained from the boundary conditions v0(t), ${\{{v}_{k}(t)\}}_{1}^{4}$). Furthermore, the two pairs of spectral functions y(θ), z(θ) and Y(θ), Z(θ) are not independent of each other, but are related to the compatibility condition, the so-called global relation.

Cite this article

Beibei Hu , Ling Zhang , Ji Lin , Hanyu Wei . Riemann-Hilbert problem for the fifth-order modified Korteweg–de Vries equation with the prescribed initial and boundary values[J]. Communications in Theoretical Physics, 2023 , 75(6) : 065004 . DOI: 10.1088/1572-9494/acce97

1. Introduction

In 1967, Gardner, Greene, Kruskal and Miüra [1] first proposed the classical inverse scattering transform method when they analyzed the initial value problem of the Korteweg–de Vries (KdV) equation. In 1997, Fokas [2] proposed the unified transformation approach when studying the initial-boundary value problems (IBVPs) of nonlinear partial differential equations (PDEs), which can be used to analyze the IBVPs of linear and nonlinear PDEs on the half-line or the finite interval, such as the sine-Gordon equation [3], the nonlinear Schrödinger (NLS) equation [4], the KdV equation [5], the derivative NLS equation [6], etc (see [712] and references therein).
In 2012, Lenells popularized the Fokas method [13] and analyzed the IBVPs of the integrable evolution equations with a 3 × 3 matrix Lax pair on the half-line and the finite interval, such as the Degasperis-Procesi equation [14], the Sasa-Satsuma equation [15], the Ostrovsky-Vakhnenko equation [16], the coupled NLS equations [17, 18], etc. After that, the idea was extended to study IBVPs of some integrable nonlinear evolution equations with a 4 × 4 matrix Lax pair on the half-line or the finite interval, such as the matrix Lakshmanan-Porsezian-Daniel system [19], the three-coupled Hirota system [20], the new two-component generalized Sasa-Satsuma equation [21], and the integrable spin-1 Gross–Pitaevskii equations [22] on the half-line, the integrable spin-1 Gross–Pitaevskii equations [23] and the general three-component NLS equation [24] on the finite interval.
It is well known that the modified KdV (mKdV) equation is one of the most important completely integrable nonlinear PDE [25], which has the form
$\begin{eqnarray}{u}_{t}+\alpha (6{u}^{2}{u}_{x}+{u}_{{xxx}})=0,\end{eqnarray}$
where u = u(x, t) is a real function with transverse variable x and evolution variable t. Equation (1.1) can describe internal ocean waves, waves in quantized films, transmission lines in the Schottky barrier, magnetohydrodynamic waves in plasmas, an Alfvén wave in a cold collision-free plasma, acoustic waves in certain anharmonic lattices, ultra-short pulses in nonlinear optics and other aspects [2629]. Because of these important applications in physics, a series of results for the mKdV equation (1.1) have been reported, such as the Hirota bilinear technique [30], the inverse scattering transform [31], the Darboux transformation (DT) [32], etc.
In 1990, Marchant and Smyth [33] proposed the following extended mKdV equation
$\begin{eqnarray}\begin{array}{l}{u}_{t}+\varepsilon (6{u}^{2}{u}_{x}+{u}_{{xxx}})+\kappa (30{u}^{4}{u}_{x}+10{u}_{x}^{3}\\ +\,40{{uu}}_{x}{u}_{{xx}}+10{u}^{2}{u}_{{xxx}}+{u}_{{xxxxx}})=0,\end{array}\end{eqnarray}$
where ϵ ≪ 1 and κ ≪ 1 stand for the third-order and fifth-order dispersion coefficients matching with the relevant nonlinear terms, respectively. Equation (1.2) can describe the evolution of steeper waves with shorter wavelengths than the KdV equation [34]. The Painlevé test, the multi-soliton solutions [35], the infinitely many conservation laws, the periodic, the rational solutions [36], the long-time asymptotic behavior [37], the breather-soliton molecules and the breather-positons [38], the Painlevé-type asymptotics [39], the rational positons and rogue waves [40] for equation (1.2) have been studied, when ϵ = 0, the emKdV equation (1.2) reduces to the following fifth-order mKdV equation
$\begin{eqnarray}\begin{array}{l}{u}_{t}+\kappa (30{u}^{4}{u}_{x}+10{u}_{x}^{3}+40{{uu}}_{x}{u}_{{xx}}\\ +10{u}^{2}{u}_{{xxx}}+{u}_{{xxxxx}})=0.\end{array}\end{eqnarray}$
In 2008, Kwon discussed the initial value problem of the fifth-order mKdV equation on the Sobolev spaces [41]. In 2017, Cheng et al studied the consistent Riccati expansion and nonlocal symmetry of the fifth-order mKdV equation [42]. In 2018, Kwak considered the low regularity of the Cauchy problem for the fifth-order mKdV equation on [0, 2π] [43]. Recently, the soliton and breather solutions with a nonzero background [44], the long-time asymptotic behavior in the quarter plane [45] and in low regularity spaces [46] for equation (1.3) have been discussed. In this note, our aim is to construct the spectral analysis for equation (1.3) based on its Lax pair, and to derive the limit form solution of the IBVPs through the following Fokas method.
The design structure of this paper is as follows. In section 2, we will perform a spectral analysis of the Lax pair for the fifth-order mKdV equation (1.3). In section 3, we will discuss two pairs of spectral functions y(θ), z(θ) and Y(θ), Z(θ). In section 4, we will present the RH problem of the fifth-order mKdV equation (1.3). The last sections feature some conclusions and discussions.

2. The spectral analysis

The fifth-order mKdV equation (1.3) admits the Lax pair formulation [45]
$\begin{eqnarray}{{\rm{\Psi }}}_{x}=M(x,t,\theta ){\rm{\Psi }},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{t}=N(x,t,\theta ){\rm{\Psi }},\end{eqnarray}$
where ${\rm{\Psi }}={({{\rm{\Psi }}}_{1},{{\rm{\Psi }}}_{2})}^{{\rm{T}}}$ is the vector eigenfunction and complex number θ is a spectral parameter and
$\begin{eqnarray}M(x,t,\theta )=\left(\begin{array}{cc}{\rm{i}}\theta & u\\ -u & -{\rm{i}}\theta \end{array}\right)={\rm{i}}\theta {\sigma }_{3}+U,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}N(x,t,\theta )=\kappa \left(\begin{array}{cc}{N}_{11} & {N}_{12}\\ {N}_{21} & -{N}_{11}\end{array}\right)\\ =-16{\rm{i}}\kappa {\theta }^{5}{\sigma }_{3}-16\kappa {\theta }^{4}U\\ \,-8{\rm{i}}\kappa {\theta }^{3}({U}^{2}{\sigma }_{3}-{\sigma }_{3}{U}_{x})+\kappa {\theta }^{2}(4{U}_{{xx}}-8{U}^{3})\\ \,+{\rm{i}}\kappa \theta {\sigma }_{3}(12{U}^{2}{U}_{x}-2{U}_{{xxx}})\\ \,+2{\rm{i}}\kappa \theta (2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3}\\ \,+\kappa (-6{U}^{5}+10{U}^{2}{U}_{{xx}}+10{{UU}}_{x}^{2}-{U}_{{xxxx}}),\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{l}{\sigma }_{3}=\left(\begin{array}{cc}1 & 0\\ 0 & -1\end{array}\right),\,U=\left(\begin{array}{cc}0 & u\\ -u & 0\end{array}\right),\\ {N}_{11}=-16{\rm{i}}{\theta }^{5}+8{\rm{i}}{u}^{2}{\theta }^{3}-(6{\rm{i}}{u}^{4}+4{\rm{i}}{{uu}}_{{xx}}-2{\rm{i}}{u}_{x}^{2})\theta ,\\ {N}_{12}=-16u{\theta }^{4}+8{\rm{i}}{u}_{x}{\theta }^{3}+(8{u}^{3}+4{u}_{{xx}}){\theta }^{2}\\ \,\,-(12{\rm{i}}{u}^{2}{u}_{x}+2{\rm{i}}{u}_{{xxx}})\theta \\ -6{u}^{5}-10{u}^{2}{u}_{{xx}}-10{{uu}}_{x}^{2}-{u}_{{xxxx}},\\ {N}_{21}=16u{\theta }^{4}+8{\rm{i}}{u}_{x}{\theta }^{3}-(8{u}^{3}+4{u}_{{xx}}){\theta }^{2}\\ \,-(12{\rm{i}}{u}^{2}{u}_{x}+2{\rm{i}}{u}_{{xxx}})\theta \\ +6{u}^{5}+10{u}^{2}{u}_{{xx}}+10{{uu}}_{x}^{2}+{u}_{{xxxx}}.\end{array}\end{eqnarray}$

2.1. The exact 1-form

One can rewrite equations (2.1a)–(2.1b) as
$\begin{eqnarray}{{\rm{\Psi }}}_{x}-{\rm{i}}\theta {\sigma }_{3}{\rm{\Psi }}=U{\rm{\Psi }},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Psi }}}_{t}+16{\rm{i}}\kappa {\theta }^{5}{\sigma }_{3}{\rm{\Psi }}=V{\rm{\Psi }},\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}V=-16\kappa {\theta }^{4}U+8{\rm{i}}\kappa {\theta }^{3}({\sigma }_{3}{U}_{x}-{U}^{2}{\sigma }_{3})\\ +4\kappa {\theta }^{2}({U}_{{xx}}-2{U}^{3})+10\kappa ({U}^{2}{U}_{{xx}}+{{UU}}_{x}^{2})\\ +2{\rm{i}}\kappa \theta [{\sigma }_{3}(6{U}^{2}{U}_{x}-{U}_{{xxx}})\\ +(2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3}]-6\kappa {U}^{5}-\kappa {U}_{{xxxx}},\end{array}\end{eqnarray*}$
and introduce Φ(x, t, θ) by
$\begin{eqnarray}{\rm{\Phi }}(x,t,\theta )={\rm{\Psi }}(x,t,\theta ){{\rm{e}}}^{(-{\rm{i}}\theta x+16{\rm{i}}\kappa {\theta }^{5}t){\sigma }_{3}},\end{eqnarray}$
then, one can get the following equivalent Lax pair
$\begin{eqnarray}{{\rm{\Phi }}}_{x}-{\rm{i}}\theta [{\sigma }_{3},{\rm{\Phi }}]=U{\rm{\Phi }},\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Phi }}}_{t}+16{\rm{i}}\kappa {\theta }^{5}[{\sigma }_{3},{\rm{\Phi }}]=V{\rm{\Phi }},\end{eqnarray}$
where [σ3, Φ] = σ3Φ − Φσ3, obviously, equation (2.6a)-(2.6b) can be written as the following full differential
$\begin{eqnarray}\begin{array}{l}{\rm{d}}({{\rm{e}}}^{(-{\rm{i}}\theta x+16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}{\rm{\Phi }}(x,t,\theta ))\\ =\,{{\rm{e}}}^{(-{\rm{i}}\theta x+16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}(A(x,t,\theta ){\rm{\Phi }}(x,t,\theta )),\end{array}\end{eqnarray}$
where A(x, t, θ) = U(x, t)dx + V(x, t, θ)dt, and ${\hat{\sigma }}_{3}$ is a matrix operator (see [12]).

2.2. The three important eigenfunctions ${\{{{\rm{\Phi }}}_{j}(x,t,\theta )\}}_{1}^{3}$

For (x, t) ∈ D = {(x, t)∣0 < x < + ∞ , 0 < t < T}, let $u(x,t)\in {\mathbb{S}}$. We define three solutions ${\{{{\rm{\Phi }}}_{j}(x,t,\theta )\}}_{1}^{3}$ of equation (2.6a)–(2.6b) by
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{j}(x,t,\theta )={\rm{I}}+{\displaystyle \int }_{({x}_{j},{t}_{j})}^{(x,t)}{{\rm{e}}}^{({\rm{i}}\theta x-16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}\,F(\zeta ,\tau ,\theta ),\\ j=1,2,3,\end{array}\end{eqnarray}$
where $F(x,t,\theta )={{\rm{e}}}^{(-{\rm{i}}\theta x+16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}A(x,t,\theta ){\rm{\Phi }}(x,t,\theta )$, (x1, t1) = (0, 0), (x2, t2) = (0, T), (x3, t3) = ( ∞ , t). Because the 1-form F(x, t, θ) is exact, the integral of equation (2.8) is path independent, we choose the special curves depicted in figure 1, then we have
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}(x,t,\theta )={\rm{I}}+{\displaystyle \int }_{0}^{x}{{\rm{e}}}^{{\rm{i}}\theta (x-\zeta ){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{1})(\zeta ,t,\theta ){\rm{d}}\zeta \\ +{{\rm{e}}}^{{\rm{i}}\theta x{\hat{\sigma }}_{3}}{\displaystyle \int }_{0}^{t}{{\rm{e}}}^{-16{\rm{i}}\kappa {\theta }^{5}(t-\tau ){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{1})(0,\tau ,\theta ){\rm{d}}\tau ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{2}(x,t,\theta )={\rm{I}}+{\displaystyle \int }_{0}^{x}{{\rm{e}}}^{{\rm{i}}\theta (x-\zeta ){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{2})(\zeta ,t,\theta ){\rm{d}}\zeta \\ -{{\rm{e}}}^{{\rm{i}}\theta x{\hat{\sigma }}_{3}}{\displaystyle \int }_{t}^{T}{{\rm{e}}}^{-16{\rm{i}}\kappa {\theta }^{5}(t-\tau ){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{2})(0,\tau ,\theta ){\rm{d}}\tau ,\end{array}\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Phi }}}_{3}(x,t,\theta )={\rm{I}}-{\int }_{x}^{\infty }{{\rm{e}}}^{{\rm{i}}\theta (x-\zeta ){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,t,\theta ){\rm{d}}\zeta .\end{eqnarray}$
Figure 1. The three contours η1, η2, η3 in the (x, t)-domain.
The choice of these integration paths shows that the following inequalities hold on the curves,
$\begin{eqnarray}{\eta }_{1}:x-\zeta \geqslant 0,\quad t-\tau \geqslant 0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{2}:x-\zeta \geqslant 0,\quad t-\tau \leqslant 0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{3}:x-\zeta \leqslant 0.\end{eqnarray}$
It is not difficult to find that the first column of equation (2.8) contains exp [−2iθ(xζ) + 32iκθ5(tτ)], then, the bounded and analytical areas of eigenfunctions ${\{{{\rm{\Phi }}}_{j}(x,t,\theta )\}}_{1}^{3}$ are as follows
$\begin{eqnarray}{[{{\rm{\Phi }}}_{1}]}_{1}(x,t,\theta ):\{\mathrm{Im}\theta \leqslant 0\}\cap \{\mathrm{Im}{\theta }^{5}\geqslant 0\},\end{eqnarray}$
$\begin{eqnarray}{[{{\rm{\Phi }}}_{2}]}_{1}(x,t,\theta ):\{\mathrm{Im}\theta \leqslant 0\}\cap \{\mathrm{Im}{\theta }^{5}\leqslant 0\},\end{eqnarray}$
$\begin{eqnarray}{[{{\rm{\Phi }}}_{3}]}_{1}(x,t,\theta ):\{\mathrm{Im}\theta \geqslant 0\}.\end{eqnarray}$
Similarly, we have
$\begin{eqnarray}{[{{\rm{\Phi }}}_{1}]}_{2}(x,t,\theta ):\{\mathrm{Im}\theta \geqslant 0\}\cap \{\mathrm{Im}{\theta }^{5}\leqslant 0\},\end{eqnarray}$
$\begin{eqnarray}{[{{\rm{\Phi }}}_{2}]}_{2}(x,t,\theta ):\{\mathrm{Im}\theta \geqslant 0\}\cap \{\mathrm{Im}{\theta }^{5}\geqslant 0\},\end{eqnarray}$
$\begin{eqnarray}{[{{\rm{\Phi }}}_{3}]}_{2}(x,t,\theta ):\{\mathrm{Im}\theta \leqslant 0\},\end{eqnarray}$
because the second column of equation (2.8) involves exp $[2\mathrm{i}\theta(x-\zeta)-32\mathrm{i}\kappa\theta^5(t-\tau)]$. Let ${[{{\rm{\Phi }}}_{j}]}_{k}(x,t,\theta ),k\,=\,1,2$ be k-column of Φj(x, t, θ), we have
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}(x,t,\theta )=({\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta ),{\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )),\\ {{\rm{\Phi }}}_{2}(x,t,\theta )=({\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta ),{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta )),\\ {{\rm{\Phi }}}_{3}(x,t,\theta )=({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )),\end{array}\end{eqnarray}$
where ${{\rm{\Phi }}}_{j}^{{{\rm{\Omega }}}_{i}}$ denotes that ωi is the bounded and analytical region of ${\{{{\rm{\Phi }}}_{j}\}}_{1}^{3}$, ${{\mathbb{C}}}_{+}={{\rm{\Omega }}}_{1}\cup {{\rm{\Omega }}}_{2}$ is the upper complex half-plane, ${{\mathbb{C}}}_{-}={{\rm{\Omega }}}_{3}\cup {{\rm{\Omega }}}_{4}$ is the lower complex half-plane, and ωi, i = 1, 2, 3, 4 are depicted in figure 2.
Figure 2. The areas ωi, i = 1,…,4 division on the complex θ-plane.
In order to establish the RH problem of the fifth-order mKdV equation (1.3), we must define f(θ) and g(θ) by the following relations
$\begin{eqnarray}{{\rm{\Phi }}}_{3}(x,t,\theta )={{\rm{\Phi }}}_{1}(x,t,\theta ){{\rm{e}}}^{({\rm{i}}\theta x-16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}f(\theta ),\end{eqnarray}$
$\begin{eqnarray}{{\rm{\Phi }}}_{2}(x,t,\theta )={{\rm{\Phi }}}_{1}(x,t,\theta ){{\rm{e}}}^{({\rm{i}}\theta x-16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}g(\theta ).\end{eqnarray}$
By evaluation of equation (2.14a)–(2.14b) at (x, t) = (0, 0) and (x, t) = (0, T), respectively, we obtain
$\begin{eqnarray}\begin{array}{l}g(\theta )={{\rm{\Phi }}}_{2}(0,0,\theta )=({{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}T{\hat{\sigma }}_{3}}{{\rm{\Phi }}}_{1}{\left(0,T,\theta )\right)}^{-1},\\ f(\theta )={{\rm{\Phi }}}_{3}(0,0,\theta ),\end{array}\end{eqnarray}$
thus, from equation (2.14a)–(2.14b) and equation (2.15), we have
$\begin{eqnarray}{{\rm{\Phi }}}_{2}(x,t,\theta )={{\rm{\Phi }}}_{3}(x,t,\theta ){{\rm{e}}}^{({\rm{i}}\theta x-16{\rm{i}}\kappa {\theta }^{5}t){\hat{\sigma }}_{3}}{\left(f(\theta )\right)}^{-1}g(\theta ),\end{eqnarray}$
Furthermore, we also get Φ1(x, t, θ), Φ2(x, t, θ) at x = 0
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}(0,t,\theta )=({\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{1}\cup {{\rm{\Omega }}}_{4}}(0,t,\theta ),{\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,t,\theta ))\\ ={\rm{I}}+{\displaystyle \int }_{0}^{t}{{\rm{e}}}^{-16{\rm{i}}\kappa {\theta }^{5}(t-\tau ){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{1})(0,\tau ,\theta ){\rm{d}}\tau ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{2}(0,t,\theta )=({\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,t,\theta ),{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}\cup {{\rm{\Omega }}}_{4}}(0,t,\theta ))\\ ={\rm{I}}-{\displaystyle \int }_{t}^{T}{{\rm{e}}}^{-16{\rm{i}}\kappa {\theta }^{5}(t-\tau ){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{2})(0,\tau ,\theta ){\rm{d}}\tau ,\end{array}\end{eqnarray}$
and get Φ1(x, t, θ), Φ3(x, t, θ) at t = 0
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{1}(x,0,\theta )=({\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\mathbb{C}}}_{-}}(x,0,\theta ),{\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\mathbb{C}}}_{+}}(x,0,\theta )),\\ =\,{\rm{I}}+{\displaystyle \int }_{0}^{x}{{\rm{e}}}^{{\rm{i}}\theta (x-\zeta ){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{1})(\zeta ,0,\theta ){\rm{d}}\zeta ,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{3}(x,0,\theta )=({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,0,\theta ),{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,0,\theta ))\\ =\,{\rm{I}}-{\displaystyle \int }_{x}^{\infty }{{\rm{e}}}^{{\rm{i}}\theta (x-\zeta ){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,0,\theta ){\rm{d}}\zeta ,\end{array}\end{eqnarray}$
Assume that u0(x) = u(x, t = 0), v0(t) = u(x = 0, t), v1(t) = ux(x = 0, t), v2(t) = uxx(x = 0, t), v3(t) = uxxx(x = 0, t), v4(t) = uxxxx(x = 0, t) are the initial and boundary values, then, we have
$\begin{eqnarray}\begin{array}{l}U(x,0,\theta )=\left(\begin{array}{cc}0 & {u}_{0}\\ -{u}_{0} & 0\end{array}\right),\\ V(0,t,\theta )=\left(\begin{array}{cc}{V}_{11}(0,t,\theta ) & {V}_{12}(0,t,\theta )\\ {V}_{21}(0,t,\theta ) & -{V}_{11}(0,t,\theta )\end{array}\right).\end{array}\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}{V}_{11}(0,t,\theta )={\rm{i}}\kappa \left[8{v}_{0}^{2}{\theta }^{3}-(6{v}_{0}^{4}+4{v}_{0}{v}_{2}-2{v}_{1}^{2})\theta \right],\\ {V}_{12}(0,t,\theta )=\kappa \left[-16{v}_{0}{\theta }^{4}\right.\\ +8{\rm{i}}{v}_{1}{\theta }^{3}+(8{v}_{0}^{3}+4{v}_{2}){\theta }^{2}-(12{\rm{i}}{v}_{0}^{2}{v}_{1}+2{\rm{i}}{v}_{3})\theta \\ \left.-6{v}_{0}^{5}-10{v}_{0}^{2}{v}_{2}-10{v}_{0}{v}_{1}^{2}-{v}_{4}\right],\\ {V}_{21}(0,t,\theta )=\kappa \left[16{v}_{0}{\theta }^{4}+8{\rm{i}}{v}_{1}{\theta }^{3}-(8{v}_{0}^{3}+4{v}_{2}){\theta }^{2}\right.\\ -(12{\rm{i}}{v}_{0}^{2}{v}_{1}+2{\rm{i}}{v}_{3})\theta \\ \left.+6{v}_{0}^{5}+10{v}_{0}^{2}{v}_{2}+10{v}_{0}{v}_{1}^{2}+{v}_{4}\right],\end{array}\end{eqnarray*}$

2.3. The other properties of the eigenfunctions

(Symmetries) Let ${\rm{\Phi }}(x,t,\theta )={{\rm{\Phi }}}_{j}$$(x,t,\theta ),j=1,2,3,$ then ${\rm{\Phi }}(x,t,\theta )$ admits the following symmetry relations

$\begin{eqnarray}\begin{array}{l}\overline{{\rm{\Phi }}(x,t,\bar{\theta })}={\rm{\Phi }}(x,t,-\theta )={\sigma }_{2}{\rm{\Phi }}(x,t,\theta ){\sigma }_{2},\\ {\sigma }_{2}=\left(\begin{array}{cc}0 & -{\rm{i}}\\ {\rm{i}} & 0\end{array}\right),\end{array}\end{eqnarray}$
as well as
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{11}(x,t,\theta )=\overline{{{\rm{\Phi }}}_{22}(x,t,\bar{\theta })},\\ {{\rm{\Phi }}}_{21}(x,t,\theta )=-\overline{{{\rm{\Phi }}}_{12}(x,t,\bar{\theta })}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{11}(x,t,-\theta )=-{{\rm{\Phi }}}_{11}(x,t,\theta ),\\ {{\rm{\Phi }}}_{22}(x,t,-\theta )=-{{\rm{\Phi }}}_{22}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{12}(x,t,-\theta )={{\rm{\Phi }}}_{12}(x,t,\theta ),\\ {{\rm{\Phi }}}_{21}(x,t,-\theta )={{\rm{\Phi }}}_{21}(x,t,\theta ),\end{array}\end{eqnarray}$

The eigenfunctions ${{\rm{\Phi }}}_{j}(x,t,\theta )\,=({[{{\rm{\Phi }}}_{j}]}_{1}(x,t,\theta ),$${[{{\rm{\Phi }}}_{j}]}_{2}(x,t,\theta )),j\,=\,1,2,3$ admit the following properties

$\det {{\rm{\Phi }}}_{j}(x,t,\theta )=1,j\,=\,1,2,3$,

${[{{\rm{\Phi }}}_{1}]}_{1}$ is analytical for $\theta \in {{\rm{\Omega }}}_{4}$, as well as continuous to ${\overline{{\rm{\Omega }}}}_{4},$ ${[{{\rm{\Phi }}}_{1}]}_{2}$ is analytical for $\theta \in {{\rm{\Omega }}}_{2},$ as well as continuous to ${\overline{{\rm{\Omega }}}}_{2},$

${[{{\rm{\Phi }}}_{2}]}_{1}$ is analytical for $\theta \in {{\rm{\Omega }}}_{3}$, as well as continuous to ${\overline{{\rm{\Omega }}}}_{3},$ ${[{{\rm{\Phi }}}_{2}]}_{2}$ is analytical for $\theta \in {{\rm{\Omega }}}_{1},$ as well as continuous to ${\overline{{\rm{\Omega }}}}_{1},$

${[{{\rm{\Phi }}}_{3}]}_{1}$ is analytical for $\theta \in {{\mathbb{C}}}_{+}$, as well as continuous to ${{\mathbb{C}}}_{+}\cup \mathrm{Re}\theta ,$ ${[{{\rm{\Phi }}}_{3}]}_{2}$ is analytical for $\theta \in {{\mathbb{C}}}_{-}$, as well as continuous to ${{\mathbb{C}}}_{-}\cup \mathrm{Re}\theta ,$

${[{{\rm{\Phi }}}_{j}]}_{1}{(x,t,\theta )\to (1,0)}^{T}$, ${[{{\rm{\Phi }}}_{j}]}_{2}{(x,t,\theta )\to (0,1)}^{T},$ as $\theta \to \infty $.

Indeed, according to equation (2.15), we can get the expressions for f(θ) and g(θ) as follows:
$\begin{eqnarray}f(\theta )={\rm{I}}-{\int }_{0}^{\infty }{{\rm{e}}}^{-{\rm{i}}\theta (\zeta -x){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,0,\theta ){\rm{d}}\zeta ,\end{eqnarray}$
$\begin{eqnarray}{g}^{-1}(\theta )={\rm{I}}+{\int }_{0}^{T}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}(\tau -t){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{1})(0,\tau ,\theta ){\rm{d}}\tau ,\end{eqnarray}$
then, by the symmetry of Proposition 2.1, we can define
$\begin{eqnarray}\begin{array}{l}f(\theta )=\left(\begin{array}{cc}\overline{y(\bar{\theta })} & z(\theta )\\ \overline{-z(\bar{\theta })} & y(\theta )\end{array}\right),\\ g(\theta )=\left(\begin{array}{cc}\overline{Y(\bar{\theta })} & Z(\theta )\\ \overline{-Z(\bar{\theta })} & Y(\theta )\end{array}\right).\end{array}\end{eqnarray}$

It follows from equations (2.15), (2.22a)-(2.22b) that the $y(\theta ),z(\theta )$ and $Y(\theta ),Z(\theta )$ have properties as follows

$\left(\begin{array}{c}z(\theta )\\ y(\theta )\end{array}\right)={\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(0,0,\theta )=\left(\begin{array}{c}{\left({{\rm{\Phi }}}_{3}\right)}_{12}^{{{\mathbb{C}}}_{-}}(0,0,\theta )\\ {\left({{\rm{\Phi }}}_{3}\right)}_{22}^{{{\mathbb{C}}}_{-}}(0,0,\theta )\\ \end{array}\right).$

$\left(\begin{array}{c}-{{\rm{e}}}^{32{\rm{i}}\kappa {\theta }^{5}T}Z(\theta )\\ \overline{Y(\bar{\theta })})\end{array}\right)={\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )=\left(\begin{array}{c}{\left({{\rm{\Phi }}}_{1}\right)}_{12}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )\\ {\left({{\rm{\Phi }}}_{1}\right)}_{22}^{{{\rm{\Omega }}}_{2}\cup {{\rm{\Omega }}}_{3}}(0,T,\theta )\\ \end{array}\right).$

$y(-\theta )$ $=\overline{y(\bar{\theta })}$, $z(-\theta )=\overline{z(\bar{\theta })}$.

$Y(-\theta )$ $=\overline{Y(\bar{\theta })}$, $Z(-\theta )=\overline{Z(\bar{\theta })}$.

$\det f(\theta )$ $=y(\theta )\overline{y(\bar{\theta })}+z(\theta )\overline{z(\bar{\theta })}=1,$ for $\theta \in {\mathbb{R}}.$

$\det g(\theta )=Y(\theta )\overline{Y(\bar{\theta })}+Z(\theta )\overline{Z(\bar{\theta })}=1,$ for $\theta \in {\mathbb{C}}(\mathrm{Im}{\theta }^{5}=0,{if}\,T=\infty ).$

$y(\theta )$ $=1+{\rm{O}}({\theta }^{-1}),\,z(\theta )={\rm{O}}({\theta }^{-1}),$ as $\theta \to \infty ,\mathrm{Im}\theta \gt 0.$

$Y(\theta )$ $=1+{\rm{O}}({\theta }^{-1}),\,Z(\theta )={\rm{O}}({\theta }^{-1}),$ as $\theta \to \infty ,\mathrm{Im}{\theta }^{5}\gt 0.$

2.4. The basic RH problem

For the convenience of calculation, we introduce the following expressions
$\begin{eqnarray}\begin{array}{l}\mu (\theta )=-\theta x+16\kappa {\theta }^{5}t,\\ \alpha (\theta )=y(\theta )\overline{Y(\bar{\theta })}+z(\theta )\overline{Z(\bar{\theta })},\quad \theta \in {\bar{{\rm{\Omega }}}}_{2},\\ \beta (\theta )=y(\theta )Z(\theta )-z(\theta )Y(\theta ),\quad \theta \in {\bar{{\rm{\Omega }}}}_{4},\\ S(\theta )=\displaystyle \frac{\overline{Z(\bar{\theta })}}{y(\theta )\alpha (\theta )},\quad \theta \in {\bar{{\rm{\Omega }}}}_{3},\\ s(\theta )=\displaystyle \frac{\overline{\beta (\bar{\theta })}}{\alpha (\theta )}=\displaystyle \frac{\overline{z(\bar{\theta })}}{y(\theta )}-S(\theta ),\quad \theta \in {\mathbb{R}},\end{array}\end{eqnarray}$
then, we get

$S(-\theta )=\overline{S(\bar{\theta })}$, $s(-\theta )=\overline{s(\bar{\theta })}$.

${g}^{-1}(\theta )f(\theta )=\left(\begin{array}{cc}\overline{\alpha (\bar{\theta })} & \beta (\theta )\\ -\overline{\beta (\bar{\theta })} & \alpha (\theta )\end{array}\right)$,

$\alpha (-\theta )=\overline{\alpha (\bar{\theta })}$, $\beta (-\theta )=\overline{\beta (\bar{\theta })}$.

$\det [{g}^{-1}(\theta )f(\theta )]=\alpha (\theta )\overline{\alpha (\bar{\theta })}+\beta (\theta )\overline{\beta (\bar{\theta })}=1$,

$\alpha (\theta )=1\,+\,O\left(\tfrac{1}{\theta }\right),\beta (\theta )=O\left(\tfrac{1}{\theta }\right){as}\,\theta \to \infty $.

Next, we define the function H(x, t, θ) by
$\begin{eqnarray}\begin{array}{l}{H}_{+}^{(1)}(x,t,\theta )=\left({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta )}{\overline{\alpha (\bar{\theta })}}\right),\\ \theta \in {{\rm{\Omega }}}_{1},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{H}_{-}^{(1)}(x,t,\theta )=\left({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )}{\overline{y(\bar{\theta })}}\right),\\ \theta \in {{\rm{\Omega }}}_{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{H}_{+}^{(2)}(x,t,\theta )=\left(\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )}{y(\theta )},{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\right),\\ \theta \in {{\rm{\Omega }}}_{4},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{H}_{-}^{(2)}(x,t,\theta )=\left(\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta )}{\alpha (\theta )},{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\right),\\ \theta \in {{\rm{\Omega }}}_{3}.\end{array}\end{eqnarray}$
Therefore, we have
$\begin{eqnarray}\begin{array}{ll}\det H(x,t,\theta )=1,H(x,t,\theta )\to {\rm{I}}, & \theta \to \infty .\end{array}\end{eqnarray}$

Let $u(x,t)\in {\mathbb{S}}$, on curve ${\bar{{\rm{\Omega }}}}_{i},i=1,\ldots ,4$, the function $H(x,t,\theta )$ defined by equation (2.25a)–(2.25d) satisfies the jump condition as follows

$\begin{eqnarray}\begin{array}{l}{H}_{+}(x,t,\theta )={H}_{-}(x,t,\theta )L(x,t,\theta ),\\ \theta \in {\rm{\Pi }}=\{\theta \in {\mathbb{C}}| \mathrm{Im}{\theta }^{5}=0\},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}L(x,t,\theta )=\left\{\begin{array}{l}{L}_{1}(x,t,\theta ),\quad \theta \in {\mathbb{R}},\\ {L}_{2}(x,t,\theta ),\quad \theta \in \partial {{\rm{\Omega }}}_{2},\\ {L}_{3}(x,t,\theta ),\quad \theta \in \partial {{\rm{\Omega }}}_{4},\end{array}\right.\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}{L}_{1}(x,t,\theta )=\left(\begin{array}{cc}1 & -\overline{s(\bar{\theta })}{{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}\\ s(\theta ){{\rm{e}}}^{2{\rm{i}}\mu (\theta )} & 1-s(\theta )\overline{s(\bar{\theta })}\end{array}\right),\\ {L}_{2}(x,t,\theta )=\left(\begin{array}{cc}1 & \overline{S(\bar{\theta })}{{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}\\ 0 & 1\end{array}\right),\\ {L}_{3}(x,t,\theta )=\left(\begin{array}{cc}1 & 0\\ S(\theta ){{\rm{e}}}^{2{\rm{i}}\mu (\theta )} & 1\end{array}\right).\end{array}\end{eqnarray*}$
The contour for this RH problem is shown in figure 3.

Figure 3. The contour for the RH problem on the complex θ-plane.
Proof. It follows from the equations (2.14a)–(2.14b) and equation (2.23) that
$\begin{eqnarray}\begin{array}{l}\overline{y(\bar{\theta })}{[{{\rm{\Phi }}}_{1}]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )-\overline{z(\bar{\theta })}{{\rm{e}}}^{2{\rm{i}}\mu (\theta )}\\ \times \,{[{{\rm{\Phi }}}_{1}]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )={[{{\rm{\Phi }}}_{3}]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}z(\theta ){{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}{[{{\rm{\Phi }}}_{1}]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )+y(\theta )\\ \times \,{[{{\rm{\Phi }}}_{1}]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )={[{{\rm{\Phi }}}_{3}]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta ),\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{l}\overline{Y(\bar{\theta })}{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )-\overline{Z(\bar{\theta })}{{\rm{e}}}^{2{\rm{i}}\mu (\theta )}\\ \times \,[{{\rm{\Phi }}}_{1}{]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )={\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}Z(\theta ){{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )+Y(\theta )\\ \times \,[{{\rm{\Phi }}}_{1}{]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )={\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta ),\end{array}\end{eqnarray}$
then, the equations (2.29a)–(2.30b) and equation (2.24) show that
$\begin{eqnarray}\begin{array}{l}\alpha (\theta ){\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta )-\overline{\beta (\bar{\theta })}{{\rm{e}}}^{2{\rm{i}}\mu (\theta )}{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\\ \,=\,{\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-\beta (\theta ){{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}{\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta )+\overline{\alpha (\bar{\theta })}{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\\ \,=\,{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta ).\end{array}\end{eqnarray}$
By equations (2.25a)–(2.25d) and equation (2.27), we have
$\begin{eqnarray}\begin{array}{l}\left({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta )}{\overline{\alpha (\bar{\theta })}}\right)\\ =\left(\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta )}{\alpha (\theta )},{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\right){L}_{1}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{2}^{{{\rm{\Omega }}}_{1}}(x,t,\theta )}{\overline{\alpha (\bar{\theta })}}\right)\\ =\left({\left[{{\rm{\Phi }}}_{3}\right]}_{1}^{{{\mathbb{C}}}_{+}}(x,t,\theta ),\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{2}^{{{\rm{\Omega }}}_{2}}(x,t,\theta )}{\overline{y(\bar{\theta })}}\right){L}_{2}(x,t,\theta ),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left(\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )}{y(\theta )},{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\right)\\ =\left(\displaystyle \frac{{\left[{{\rm{\Phi }}}_{2}\right]}_{1}^{{{\rm{\Omega }}}_{3}}(x,t,\theta )}{\alpha (\theta )},{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,\theta )\right){L}_{3}(x,t,\theta ).\end{array}\end{eqnarray}$
Therefore, the equations (2.32a)–(2.32c) give rise to the jump matrices ${\{{L}_{j}(x,t,\theta )\}}_{1}^{3}$ defined by equation (2.28).
Furthermore, we can get the jump relation between ${H}_{+}^{(2)}(x,t,\theta )$ and ${H}_{-}^{(1)}(x,t,\theta )$ as follows
$\begin{eqnarray*}\begin{array}{l}{H}_{+}^{(2)}(x,t,\theta )={H}_{-}^{(1)}(x,t,\theta ){L}_{4}(x,t,\theta )\\ \,=\,{H}_{-}^{(1)}({L}_{3}^{-1}{L}_{1}{L}_{2}^{-1})(x,t,\theta ),\end{array}\end{eqnarray*}$
where
$\begin{eqnarray*}{L}_{4}(x,t,\theta )=\left(\begin{array}{cc}1 & -\displaystyle \frac{z(\theta )}{\overline{y(\bar{\theta })}}{{\rm{e}}}^{-2{\rm{i}}\mu (\theta )}\\ -\displaystyle \frac{\overline{z(\bar{\theta })}}{y(\theta )}{{\rm{e}}}^{2{\rm{i}}\mu (\theta )} & \displaystyle \frac{1}{y(\theta )\overline{y(\bar{\theta })}}\end{array}\right).\end{eqnarray*}$

Suppose that

$y(\theta )$ enjoys λ simple zeros ${\{{\gamma }_{k}\}}_{k=1}^{\lambda }$, $\lambda =2{\lambda }_{1}$, as well as ${\{{\gamma }_{k}\}}_{1}^{\lambda }\in {{\rm{\Omega }}}_{4}$, and ${\{{\bar{\gamma }}_{k}\}}_{1}^{\lambda }\in {{\rm{\Omega }}}_{2}$.

$\alpha (\theta )$ enjoys ξ simple zeros ${\{{\delta }_{k}\}}_{k=1}^{\xi }$, $\xi =2{\xi }_{1}+{\xi }_{2}$, as well as ${\{{\delta }_{k}\}}_{1}^{\xi }\in {{\rm{\Omega }}}_{3}$, and ${\{{\bar{\delta }}_{k}\}}_{1}^{\xi }\in {{\rm{\Omega }}}_{1}$.

None of the zeros of $y(\theta )$ coincides with a zero of $\alpha (\theta )$.

(The residue formula) Let $\dot{y}(\theta )=\tfrac{{dy}}{d\theta }$, it holds that the following residue formulae:

$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[H(x,t,\theta )\right]}_{1},{\gamma }_{k}\}=\displaystyle \frac{1}{z({\gamma }_{k})\dot{y}({\gamma }_{k})}{{\rm{e}}}^{2{\rm{i}}\mu ({\gamma }_{k})}{\left[H(x,t,{\gamma }_{k})\right]}_{2},\\ k=1,\cdots ,2{\lambda }_{1}.\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[H(x,t,\theta )\right]}_{2},{\bar{\gamma }}_{k}\}=-\displaystyle \frac{1}{\overline{z({\gamma }_{k})}\overline{\dot{y}({\gamma }_{k})}}{{\rm{e}}}^{-2{\rm{i}}\mu ({\bar{\gamma }}_{k})}\\ \,\times \,{\left[H(x,t,{\bar{\gamma }}_{k})\right]}_{1},k=1,\cdots ,2{\lambda }_{1}.\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[H(x,t,\theta )\right]}_{1},{\delta }_{k}\}=-\displaystyle \frac{\overline{Z({\bar{\delta }}_{k})}}{y({\delta }_{k})\dot{\alpha }({\delta }_{k})}{{\rm{e}}}^{2{\rm{i}}\mu ({\delta }_{k})}{\left[H(x,t,{\delta }_{k})\right]}_{1},\\ k=1,\cdots ,\xi .\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[H(x,t,\theta )\right]}_{2},{\bar{\delta }}_{k}\}=\displaystyle \frac{Z({\bar{\delta }}_{k})}{\overline{y({\delta }_{k})}\overline{\dot{\alpha }({\delta }_{k})}}{{\rm{e}}}^{-2{\rm{i}}\mu ({\bar{\delta }}_{k})}{\left[H(x,t,{\bar{\delta }}_{k})\right]}_{2},\\ k=1,\cdots ,\xi .\end{array}\end{eqnarray}$

Proof. We shall only prove equation (2.33a). the proofs of equation (2.33b)–(2.33d) are analogous. It follows from $H(x,t,\theta )=(\tfrac{[{{\rm{\Phi }}}_{1}{]}_{1}^{{{\rm{\Omega }}}_{4}}}{y(\theta )},[{{\rm{\Phi }}}_{3}{]}_{2}^{{{\mathbb{C}}}_{-}})$ that the zeros ${\{{\gamma }_{k}\}}_{1}^{2{\lambda }_{1}}$ of y(θ) are the poles of $\tfrac{[{{\rm{\Phi }}}_{1}{]}_{1}^{{{\rm{\Omega }}}_{4}}}{y(\theta )}$, therefore, we have
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\left\{\displaystyle \frac{{{\rm{\Phi }}}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )}{y(\theta )},{\gamma }_{k}\right\}=\mathop{\mathrm{lim}}\limits_{\theta \to {\gamma }_{k}}(\theta -{\gamma }_{k})\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )}{y(\theta )}\\ \,=\,\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,{\gamma }_{k})}{\dot{y}({\gamma }_{k})},\end{array}\end{eqnarray}$
taking θ = γk into the equation (2.29b) yields
$\begin{eqnarray}{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,{\gamma }_{k})=\displaystyle \frac{1}{z({\gamma }_{k})}{{\rm{e}}}^{2{\rm{i}}\mu ({\gamma }_{k})}{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,{\gamma }_{k}),\end{eqnarray}$
thus, equation (2.34) and equation (2.35) give rise to
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\left\{\displaystyle \frac{{\left[{{\rm{\Phi }}}_{1}\right]}_{1}^{{{\rm{\Omega }}}_{4}}(x,t,\theta )}{y(\theta )},{\gamma }_{k}\right\}\\ =\displaystyle \frac{1}{z({\gamma }_{k})\dot{y}({\gamma }_{k})}{{\rm{e}}}^{2{\rm{i}}\mu ({\gamma }_{k})}{\left[{{\rm{\Phi }}}_{3}\right]}_{2}^{{{\mathbb{C}}}_{-}}(x,t,{\gamma }_{k}),\end{array}\end{eqnarray}$
which can lead to equation (2.33a).

2.5. The global relation

In this subsection, we show that y(θ), z(θ), Y(θ), Z(θ) are not independent but admit a significant relationship. In fact, the integral of the 1-form A(ζ, τ, θ) defined by the equation (2.7) is vanished for the boundary of the region (ζ, τ): 0 < ζ < ∞ , 0 < τ < t. Let Φ(ζ, τ, θ) = Φ3(ζ, τ, θ) in the 1-form A(ζ, τ, θ), we have
$\begin{eqnarray}\begin{array}{l}{\displaystyle \int }_{\infty }^{0}{{\rm{e}}}^{-{\rm{i}}\theta \zeta {\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,0,\theta ){\rm{d}}\zeta \\ +{\displaystyle \int }_{0}^{t}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{3})(0,\tau ,\theta ){\rm{d}}\tau \\ +{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}t{\hat{\sigma }}_{3}}{\displaystyle \int }_{0}^{\infty }{{\rm{e}}}^{-{\rm{i}}\theta \zeta {\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,t,\theta ){\rm{d}}\zeta \\ =\mathop{\mathrm{lim}}\limits_{x\to \infty }{{\rm{e}}}^{-{\rm{i}}\theta x{\hat{\sigma }}_{3}}{\displaystyle \int }_{0}^{t}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{3})(x,\tau ,\theta ){\rm{d}}\tau .\end{array}\end{eqnarray}$
Since f(θ) = Φ3(0, 0, θ), equation (2.18b) mean that
$\begin{eqnarray*}{\int }_{\infty }^{0}{{\rm{e}}}^{-{\rm{i}}\theta \zeta {\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,0,\theta ){\rm{d}}\zeta =f(\theta )-{\rm{I}}.\end{eqnarray*}$
Evaluation of equation (2.14a) at x = 0 gives the expressions
$\begin{eqnarray}{{\rm{\Phi }}}_{3}(0,\tau ,\theta )={{\rm{\Phi }}}_{1}(0,\tau ,\theta ){{\rm{e}}}^{-16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}f(\theta ),\end{eqnarray}$
as well as
$\begin{eqnarray}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{3})(0,\tau ,\theta )=[{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{1})(0,\tau ,\theta )]f(\theta ).\end{eqnarray}$
Furthermore, equation (2.39) and equation (2.17a) imply that
$\begin{eqnarray*}\begin{array}{l}{\displaystyle \int }_{0}^{t}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}\tau {\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{3})(0,\tau ,\theta ){\rm{d}}\tau \\ =[{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}t{\hat{\sigma }}_{3}}{{\rm{\Phi }}}_{1}(0,t,\theta )-{\rm{I}}]f(\theta ).\end{array}\end{eqnarray*}$
Let $u(x,t)\in {\mathbb{S}}$ for x → ∞ , we find that equation (2.37) becomes
$\begin{eqnarray}\begin{array}{l}{g}^{-1}(t,\theta )f(\theta )+{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}t{\hat{\sigma }}_{3}}\\ \times {\displaystyle \int }_{0}^{\infty }{{\rm{e}}}^{-{\rm{i}}\theta \zeta {\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,t,\theta ){\rm{d}}\zeta ={\rm{I}},\end{array}\end{eqnarray}$
where the first column of equation (2.40) is valid for $\theta \in {{\mathbb{C}}}_{-}$, the second column of equation (2.40) is valid for $\theta \in {{\mathbb{C}}}_{-}$ and
$\begin{eqnarray*}{g}^{-1}(t,\theta )={{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}t{\hat{\sigma }}_{3}}{{\rm{\Phi }}}_{1}(0,t,\theta ).\end{eqnarray*}$
Due to g(θ) = g(T, θ) and denoting t = T, equation (2.40) becomes
$\begin{eqnarray}\begin{array}{l}{g}^{-1}(\theta )f(\theta )+{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}T{\hat{\sigma }}_{3}}\\ \times {\displaystyle \int }_{0}^{\infty }{{\rm{e}}}^{-{\rm{i}}\theta \zeta {\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,T,\theta ){\rm{d}}\zeta ={\rm{I}}.\end{array}\end{eqnarray}$
Hence, the (12)-component of equation (2.41) is
$\begin{eqnarray}y(\theta )Z(\theta )-Y(\theta )z(\theta )={{\rm{e}}}^{32{\rm{i}}\kappa {\theta }^{5}T}J(\theta ),\end{eqnarray}$
where
$\begin{eqnarray}J(\theta )={\int }_{0}^{\infty }{{\rm{e}}}^{-2{\rm{i}}\theta \zeta }{\left(U{{\rm{\Phi }}}_{3}\right)}_{12}(\zeta ,T,\theta ){\rm{d}}\zeta ,\end{eqnarray}$
Indeed, equation (2.42) and equation (2.43) are the so-called global relation.

3. The functions y(θ), z(θ) and Y(θ), Z(θ)

($y(\theta )$ and $z(\theta )$) Given ${u}_{0}(x)=u(x,0)\in {\mathbb{S}}$, one defines the mapping

$\begin{eqnarray*}{\varphi }_{1}:\{{u}_{0}(x)\}\to \{y(\theta ),z(\theta )\},\end{eqnarray*}$
by
$\begin{eqnarray*}{\left(z(\theta ),y(\theta )\right)}^{T}={[{{\rm{\Phi }}}_{3}]}_{2}^{{{\mathbb{C}}}_{-}}(x,0,\theta ),\end{eqnarray*}$
where ${{\rm{\Phi }}}_{3}(x,0,\theta )$ is the unique solution of the following Volterra integral equation
$\begin{eqnarray*}{{\rm{\Phi }}}_{3}(x,0,\theta )={\rm{I}}-{\int }_{x}^{\infty }{{\rm{e}}}^{-{\rm{i}}\theta (\zeta -x){\hat{\sigma }}_{3}}(U{{\rm{\Phi }}}_{3})(\zeta ,0,\theta ){\rm{d}}\zeta ,\end{eqnarray*}$
where $U(x,0,\theta )$ is given in terms of ${u}_{0}(t)$ expressed by equation (2.19)

The $y(\theta )$ and $z(\theta )$ possess the following properties

i

(i) $y(\theta ),z(\theta )$ are analytical for $\mathrm{Im}\theta \gt 0$ as well as bounded and continuous for $\mathrm{Im}\theta \geqslant 0$.

ii

(ii) $y(\theta )=1+O\left(\tfrac{1}{\theta }\right),z(\theta )=O\left(\tfrac{1}{\theta }\right)$, $\theta \to \infty $, $\mathrm{Im}\theta \geqslant 0$.

iii

(iii) $y(\theta )\overline{y(\bar{\theta })}+z(\theta )\overline{z(\bar{\theta })}=1$, $\theta \in {\mathbb{R}}$.

iv

(iv) $y(-\theta )=\overline{y(\bar{\theta })},z(-\theta )=-\overline{z(\bar{\theta })}$, $\mathrm{Im}\theta \geqslant 0$.

v

(v)The mapping ${\varphi }_{1}^{-1}={\phi }_{1}:\{y(\theta ),z(\theta )\}\to \{{u}_{0}(x)\}$, inverse to ${\varphi }_{1}$, is defined by

$\begin{eqnarray*}{u}_{0}(x)=-2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\theta \to \infty }{\left(\theta {H}^{(x)}(x,\theta )\right)}_{12},\end{eqnarray*}$
where ${H}^{(x)}(x,\theta )$ is the unique solution to the RH problem as follows

${H}^{(x)}(x,\theta )=\left\{\begin{array}{l}{H}_{-}^{(x)}(x,\theta ),\mathrm{Im}\theta \leqslant 0,\\ {H}_{+}^{(x)}(x,\theta ),\mathrm{Im}\theta \geqslant 0,\end{array}\right.$ is a sectionally analytical function.

${H}_{+}^{(x)}(x,\theta )={H}_{-}^{(x)}(x,\theta ){L}^{(x)}(x,\theta )$, $\theta \in {\mathbb{R}}$, where

$\begin{eqnarray}{L}^{(x)}(x,\theta )=\left(\begin{array}{cc}1 & -\displaystyle \frac{z(\theta )}{\overline{y(\bar{\theta })}}{{\rm{e}}}^{-2{\rm{i}}\theta x}\\ -\displaystyle \frac{\overline{z(\bar{\theta })}}{y(\theta )}{{\rm{e}}}^{2{\rm{i}}\theta x} & \displaystyle \frac{1}{y(\theta )\overline{y(\bar{\theta })}}\end{array}\right).\end{eqnarray}$

${H}^{(x)}(x,\theta )={\rm{I}}+O(\tfrac{1}{\theta }),\theta \to \infty .$

y(θ) has λ simple zeros ${\{{\gamma }_{k}\}}_{1}^{\lambda }$, λ = 2λ1, such that $\mathrm{Im}{\gamma }_{k}\lt 0,k=1,2,\cdots ,\lambda $, where ${\{{\gamma }_{k}\}}_{1}^{2{\lambda }_{1}}\in {{\rm{\Omega }}}_{4}$.

The first column of ${H}_{+}^{(x)}(x,\theta )$ possesses simple poles at $\theta ={\{{\bar{\gamma }}_{k}\}}_{1}^{2{\lambda }_{1}}$. The second column of ${H}_{-}^{(x)}(x,\theta )$ possesses simple poles at $\theta ={\{{\gamma }_{k}\}}_{1}^{2{\lambda }_{1}}$. The associated residues expression are

$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(x)}(x,\theta )\right]}_{1},{\gamma }_{k}\}=\displaystyle \frac{{{\rm{e}}}^{2{\rm{i}}{\gamma }_{k}x}}{\dot{y}({\gamma }_{k})z({\gamma }_{k})}{\left[{H}^{(x)}(x,{\gamma }_{k})\right]}_{2},\\ k=1,2,\cdots ,2{\lambda }_{1},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(x)}(x,\theta )\right]}_{2},{\bar{\gamma }}_{k}\}=-\displaystyle \frac{{{\rm{e}}}^{-2{\rm{i}}{\overline{\gamma }}_{k}x}}{\overline{\dot{y}({\gamma }_{k})}\overline{z({\gamma }_{k})}}{\left[{H}^{(x)}(x,{\bar{\gamma }}_{k})\right]}_{1},\\ k=1,2,\cdots ,2{\lambda }_{1}.\end{array}\end{eqnarray}$

Proof. (i)–(iv) follow from the analysis in section 2.3, and the deduction of (v) can be obtained like [6], where the derivation of u0(x) is given in the appendix.

($Y(\theta )$ and $Z(\theta )$). Let ${v}_{0}(t),{\{{v}_{k}(t)\}}_{1}^{4}\in {\mathbb{S}}$, the mapping

$\begin{eqnarray*}{\varphi }_{2}:\{{v}_{0}(t),{v}_{1}(t),{v}_{2}(t),{v}_{3}(t),{v}_{4}(t)\}\to \{Y(\theta ),Z(\theta )\},\end{eqnarray*}$
in terms of
$\begin{eqnarray*}{\left(Z(\theta ),Y(\theta )\right)}^{T}={[{{\rm{\Phi }}}_{1}]}_{2}^{{{\rm{\Omega }}}_{2}}(0,t,\theta ),\end{eqnarray*}$
where ${{\rm{\Phi }}}_{1}(0,t,\theta )$ is the unique solution of the following Volterra integral equation
$\begin{eqnarray*}{{\rm{\Phi }}}_{1}(0,t,\theta )={\rm{I}}-{\int }_{t}^{T}{{\rm{e}}}^{16{\rm{i}}\kappa {\theta }^{5}(\tau -t){\hat{\sigma }}_{3}}(V{{\rm{\Phi }}}_{1})(0,\tau ,\theta ){\rm{d}}\tau ,\end{eqnarray*}$
and $V(0,t,\theta )$ is given in terms of $\{{v}_{0}(t),{v}_{1}(t),{v}_{2}(t),{v}_{3}(t),{v}_{4}(t)\}$ expressed by equation (2.19).

The $Y(\theta )$ and $Z(\theta )$ possess the following properties

i

(i) $Y(\theta ),Z(\theta )$ are bounded for $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$, if $T=\infty $, as well as the $Y(\theta ),Z(\theta )$ are defined only for $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$.

ii

(ii) $Y(\theta )=1\,+\,$ $O\left(\tfrac{1}{\theta }\right),Z(\theta )$ $=O\left(\tfrac{1}{\theta }\right)$, $\theta \to \infty $, $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$.

iii

(iii) $Y(\theta )\overline{Y(\bar{\theta })}+Z(\theta )\overline{Z(\bar{\theta })}=1$, $\theta \in {\mathbb{C}}(\kappa {\theta }^{5}\in {\mathbb{R}},$ if $T=\infty )$.

iv

(iv) $Y(-\theta )=\overline{Y(\bar{\theta })},Z(-\theta )=-\overline{Z(\bar{\theta })}$, $\mathrm{Im}\kappa {\theta }^{5}\geqslant 0$.

v

(v)The mapping ${\varphi }_{2}^{-1}={\phi }_{2}:\{Y(\theta ),Z(\theta )\}\to \{{v}_{0}(t),{v}_{1}(t),{v}_{2}(t),{v}_{3}(t),{v}_{4}(t)\}$, inverse to ${\varphi }_{2}$, is defined by

$\begin{eqnarray}\begin{array}{rcl}{v}_{0}(t) & = & {v}_{0}(t)=-2{\rm{i}}{\phi }_{12}^{(1)}(t),\\ {v}_{1}(t) & = & 4{\phi }_{12}^{(2)}(t)-2{\rm{i}}{v}_{0}(t){\phi }_{22}^{(1)}(t)+{v}_{0}^{2}(t),\\ {v}_{2}(t) & = & 8{\rm{i}}{\phi }_{12}^{(3)}(t)+4{v}_{0}(t){\phi }_{22}^{(2)}(t)-2{\rm{i}}{v}_{1}(t){\phi }_{22}^{(1)}(t)-{v}_{0}^{3}(t),\\ {v}_{3}(t) & = & -16{\phi }_{12}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)+4{v}_{1}(t){\phi }_{22}^{(2)}(t)\\ & & -2{\rm{i}}({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(1)}(t)-5{v}_{0}^{2}(t){v}_{1}(t),\\ {v}_{4}(t) & = & -32{\rm{i}}{\phi }_{12}^{(5)}(t)-16{v}_{0}(t){\phi }_{22}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)\\ & & +\,4({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(2)}(t)-2{\rm{i}}(5{v}_{0}^{2}(t){v}_{1}(t)\\ & & +\,{v}_{3}(t)){\phi }_{22}^{(1)}(t)\\ & & amp;-(10{v}_{0}^{2}(t){v}_{1}(t)+10{v}_{0}(t){v}_{1}^{2}(t)+6{v}_{0}^{5}(t)),\end{array}\end{eqnarray}$
where the functions ${\phi }^{(j)}(t),j\,=\,1,2,3,4,5$ are determined by
$\begin{eqnarray*}{H}^{(t)}(t,\theta )={\rm{I}}+\displaystyle \sum _{j=1}^{5}\displaystyle \frac{{\phi }^{(j)}(t)}{{\theta }^{j}}+O\left(\displaystyle \frac{1}{{\theta }^{6}}\right),\quad \theta \to \infty ,\end{eqnarray*}$
where ${H}^{(t)}(t,\theta )$ is the unique solution to the RH problem as follows

${H}^{(t)}(t,\theta )=\left\{\begin{array}{cc}{H}_{-}^{(t)}(t,\theta ), & \mathrm{Im}\kappa {\theta }^{5}\leqslant 0,\\ {H}_{+}^{(t)}(t,\theta ), & \mathrm{Im}\kappa {\theta }^{5}\geqslant 0,\end{array}\right.$ is a sectionally analytical function.

${H}_{-}^{(t)}(t,\theta )={H}_{+}^{(t)}(t,\theta ){L}^{(t)}(t,\theta )$, ${\theta }^{5}\in {\mathbb{R}}$, where

$\begin{eqnarray}{H}^{(t)}(t,\theta )=\left(\begin{array}{cc}1 & -\displaystyle \frac{Z(\theta )}{\overline{Y(\overline{\theta })}}{{\rm{e}}}^{-32{\rm{i}}\kappa {\theta }^{5}t}\\ -\displaystyle \frac{\overline{Z(\overline{\theta })}}{Y(\theta )}{{\rm{e}}}^{32{\rm{i}}\kappa {\theta }^{5}t} & \displaystyle \frac{1}{Y(\theta )\overline{Y(\overline{\theta })}}\end{array}\right).\end{eqnarray}$

${H}^{(t)}(t,\theta )={\rm{I}}+O\left(\tfrac{1}{\theta }\right),\theta \to \infty .$

Y(θ) has 2m simple zeros ${\{{\omega }_{k}\}}_{1}^{2m}$ such that $\mathrm{Im}{\omega }_{k}^{5}\gt 0,k=1,2,\cdots ,2m$.

The first column of ${H}_{+}^{(t)}(t,\theta )$ possesses simple poles at $\theta ={\{{\bar{\omega }}_{k}\}}_{1}^{2m}$, the second column of ${H}_{-}^{(t)}(t,\theta )$ possesses simple poles at $\theta ={\{{\omega }_{k}\}}_{1}^{2m}$. The associated residues expression are

$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(t)}(t,\theta )\right]}_{1},{\omega }_{k}\}=\displaystyle \frac{{{\rm{e}}}^{32{\rm{i}}\kappa {\omega }_{k}^{5}t}}{\dot{Y}({\omega }_{k})Z({\omega }_{k})}{\left[{H}^{(t)}(t,{\omega }_{k})\right]}_{2},\\ k=1,2,\cdots ,2m,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\mathrm{Res}\{{\left[{H}^{(t)}(t,\theta )\right]}_{2},{\bar{\omega }}_{k}\}=-\displaystyle \frac{{{\rm{e}}}^{-32{\rm{i}}\kappa {\overline{\omega }}_{k}^{5}t}}{\overline{\dot{Y}({\bar{\omega }}_{j})}\overline{Z({\bar{\omega }}_{k})}}{\left[{H}^{(t)}(t,{\bar{\omega }}_{k})\right]}_{1},\\ k=1,2,\cdots ,2m.\end{array}\end{eqnarray}$

Proof. (i)–(iv) follow from the analysis in section 2.3, and the deduction of (v) can be obtained like [6], where the derivation of v0(t), v1(t), v2(t), v3(t) and v4(t) are given in the appendix.

4. The RH problem

Given ${u}_{0}(x)\in {\mathbb{S}}({{\rm{R}}}^{+})$, we define two pairs of spectral functions $y(\theta ),z(\theta )$ and $Y(\theta ),Z(\theta )$ by ${u}_{0}(x),{v}_{0}(t)$ and ${\{{v}_{k}(t)\}}_{1}^{4}$ according to definitions 3.1 and definitions 3.3, as well as the matrix-value functions $f(\theta )$ and $g(\theta )$ are defined by equation (2.23) in terms of $y(\theta ),z(\theta )$ and $Y(\theta ),Z(\theta )$, respectively. Suppose that the possible simple zeros ${\{{\gamma }_{k}\}}_{k=1}^{\lambda }$ of $y(\theta )$ and ${\{{\delta }_{k}\}}_{k=1}^{\xi }$ of $\alpha (\theta )$ are as in assumption 2.5 so that we can establish the matrix-value function $H(x,t,\theta )$ as the solution of the 2 × 2 matrix RH problem as follows:

$H(x,t,\theta )$ is a sectionally analytical function for $\theta \in {\mathbb{C}}\setminus \{{\theta }^{5}\in {\mathbb{R}}\}$.

$H(x,t,\theta )$ has the jump relation as in theorem 2.4, i.e

$\begin{eqnarray*}{H}_{+}(x,t,\theta )={H}_{-}(x,t,\theta )L(x,t,\theta ),\quad {\theta }^{5}\in {\mathbb{R}},\end{eqnarray*}$
where ${H}_{\pm }(x,t,\theta )$ are defined by equations (2.25a)–(2.25d), and $L(x,t,\theta )$ is a jump matrix expressed by equation (2.28).

$H(x,t,\theta )={\rm{I}}+{\rm{O}}\left(\tfrac{1}{\theta }\right),\theta \to \infty $.

$H(x,t,\theta )$ associated residues satisfy the relations in proposition 2.6.

Therefore, the matrix-value function $H(x,t,\theta )$ exists and is unique. Hence, the potential function $u(x,t)$ is a solution of the fifth-order mKdV equation (1.3) in terms of $H(x,t,\theta )$ by
$\begin{eqnarray}u(x,t)=-2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\theta \to \infty }{\left(\theta H(x,t,\theta )\right)}_{12}.\end{eqnarray}$
Furthermore, $u(x,0)={u}_{0}(x)$, $u(0,t)={v}_{0}(t)$, ${u}_{x}(0,t)\,={v}_{1}(t),$ ${u}_{{xx}}(0,t)={v}_{2}(t)$, ${u}_{{xxx}}(0,t)={v}_{3}(t),$ ${u}_{{xxxx}}(0,t)={v}_{4}(t).$

Proof. Firstly, it is not difficult to find that equation (4.1) can be obtained by the large θ asymptotic property of the characteristic functions in the appendix. Secondly, when y(θ) and α(θ) have no zeros, H(x, t, θ) can be reduced to a non-regular RH problem, so we can get that H(x, t, θ) is unique from the following Vanishing Lemma. Finally, when y(θ) and α(θ) have zeros, H(x, t, θ) is a regular RH problem, which can be mapped to an algebraic equation without zeros, and the uniqueness can be obtained by solving this algebraic equation.
Therefore, we have the Vanishing lemma as follows

(Vanishing Lemma) Assume that $H(x,t,\theta )\to 0$ as $\theta \to \infty $, then the 2 × 2 matrix RH problem in theorem 4.1 has only the zero solution.

Proof Assume that H(x, t, θ) is the solution to the RH problem given by Theorem 4.1, and H±(x, t, θ) → 0 when θ → ∞ . Define
$\begin{eqnarray}\begin{array}{rcl}{W}_{+}(\theta ) & = & {H}_{+}(\theta ){H}_{-}^{\dagger }(-\bar{\theta }),\mathrm{Im}\kappa {\theta }^{5}\geqslant 0,\\ {W}_{-}(\theta ) & = & {H}_{-}(\theta ){H}_{+}^{\dagger }(-\bar{\theta }),\mathrm{Im}\kappa {\theta }^{5}\leqslant 0,\end{array}\end{eqnarray}$
where ${H}_{\pm }^{\dagger }$ denote the complex conjugate transposition of the 2 × 2 matrix H±, the x and t are dependent. Then, W+(θ) is analytic in $\{\theta \in {\mathbb{C}}\setminus \mathrm{Im}\kappa {\theta }^{5}\gt 0\}$, and W(θ) is analytic in $\{\theta \in {\mathbb{C}}\setminus \mathrm{Im}\kappa {\theta }^{5}\lt 0\}$. Combining the symmetry property $y(-\theta )=\overline{y(\bar{\theta })},z(-\theta )=\overline{z(\bar{\theta })},$ $Y(-\theta )=\overline{Y(\bar{\theta })},Z(-\theta )=\overline{Z(\bar{\theta })}$ in because the RH problem is equivalent to Proposition 2.3 and equation (2.28), we have
$\begin{eqnarray}{L}_{4}^{\dagger }(-\bar{\theta })={L}_{1}(\theta ),{L}_{3}^{\dagger }(-\bar{\theta })={L}_{3}(\theta ),{L}_{2}^{\dagger }(-\bar{\theta })={L}_{2}(\theta ).\end{eqnarray}$
Therefore
$\begin{eqnarray}\begin{array}{rcl}{W}_{+}(\theta ) & = & {H}_{-}(\theta )L(\theta ){H}_{-}^{\dagger }(-\bar{\theta }),\mathrm{Im}\kappa {\theta }^{5}\in {\mathbb{R}},\\ {W}_{-}(\theta ) & = & {H}_{-}(\theta ){L}^{\dagger }(-\bar{\theta }){H}_{-}^{\dagger }(-\bar{\theta }),\mathrm{Im}\kappa {\theta }^{5}\in {\mathbb{R}}.\end{array}\end{eqnarray}$
For $\mathrm{Im}\kappa {\theta }^{5}\in {\mathbb{R}}$, equation (4.3) and equation (4.4) mean that W+(θ) = W(θ). Thus, W+(θ) and W(θ) are defined by an entire function vanishing at infinity, and W±(θ) = 0. Since ${L}_{1}({\rm{i}}\varepsilon )(\varepsilon \in {\mathbb{R}})$ is a Hermitian matrix with unit determinant and (2, 2) entry 1 for any $\varepsilon \in {\mathbb{R}}$. Therefore, ${L}_{1}({\rm{i}}\varepsilon )(\varepsilon \in {\mathbb{R}})$ is a positive definite matrix, and because W+(ϵ) vanishes identically for $\varepsilon \in {\rm{i}}{\mathbb{R}}$, this shows that
$\begin{eqnarray}{H}_{-}({\rm{i}}\varepsilon ){L}_{1}({\rm{i}}\varepsilon ){H}_{-}^{\dagger }({\rm{i}}\varepsilon )=0,\varepsilon \in {\mathbb{R}}.\end{eqnarray}$
Furthermore, equation (4.5) means H(iϵ) = 0 for $\varepsilon \in {\mathbb{R}}$. Thus, H+(θ) and H(θ) are vanish identically.

5. Conclusions and discussions

In [45], the RH problem of the fifth-order mKdV equation (1.3) in the quarter plane was presented and the asymptotic behavior of the solution using the Deift-Zhou method (see [47, 48]) was analyzed. In this paper, we have discussed the IBVPs of the fifth-order mKdV equation (1.3) on the half-line. Compared with the results in [45], the difference is that we get the two pairs of spectral functions y(θ), z(θ) and Y(θ), Z(θ) admitting the global relation equation (2.42) is not the same, and we can also investigate the IBVPs of the fifth-order mKdV equation (1.3) on a finite interval. Furthermore, because the RH problem is equivalent to Gel’fand–Levitan–Marchenko (GLM) theory, we can get the soliton solution of the fifth-order mKdV equation (1.3) by solving the GLM equation following [49], these questions are the subject of our future research.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 12147115 and 11835011, the Natural Science Foundation of Anhui Province under Grant No. 2108085QA09, the University Natural Science Research Project of Anhui Province under Grant No. KJ2021A1094, China Postdoctoral Science Foundation under Grant No. 2022M712833, the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No. 22HASTIT019, and the Natural Science Foundation of Henan Province under Grant No. 202300410524.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix. Recovering v0(t) and ${\{{v}_{j}(t)\}}_{1}^{4}$

In this appendix, we will give a proof of equation (3.3), i.e., derive v0(t) and vj(t), j = 1, 2, 3, 4 from H(t). Assume that Φ(x, t, θ) is a solution of equation (2.6a)–(2.6b) and Φ(x, t, θ) has the following asymptotic expansion
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Phi }}(x,t,\theta ) & = & {{\rm{\Phi }}}_{0}+\displaystyle \frac{{{\rm{\Phi }}}_{1}}{\theta }+\displaystyle \frac{{{\rm{\Phi }}}_{2}}{{\theta }^{2}}+\displaystyle \frac{{{\rm{\Phi }}}_{3}}{{\theta }^{3}}+\displaystyle \frac{{{\rm{\Phi }}}_{4}}{{\theta }^{4}}+\displaystyle \frac{{{\rm{\Phi }}}_{5}}{{\theta }^{5}}\\ & & +O\left(\displaystyle \frac{1}{{\theta }^{6}}\right),\theta \to \infty ,\end{array}\end{eqnarray}$
substituting equation (A.1) into equation (2.6a) and comparing the coefficients for θk, we get
$\begin{eqnarray}\begin{array}{l}O({\theta }^{1}):{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{0}]=0,\\ O({\theta }^{0}):{{\rm{\Phi }}}_{0x}-{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{1}]=U{{\rm{\Phi }}}_{0}.\end{array}\end{eqnarray}$
From O(θ1) and O(θ0), one find that Φ0 enjoys a diagonal matrix form denoting as
$\begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{0}=\left(\begin{array}{cc}{{\rm{\Phi }}}_{0}^{11} & 0\\ 0 & {{\rm{\Phi }}}_{0}^{22}\end{array}\right),\,{{\rm{\Phi }}}_{1}^{({od})}=\displaystyle \frac{{\rm{i}}}{2}{\sigma }_{3}U{{\rm{\Phi }}}_{0}=\left(\begin{array}{cc} & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{0}^{22}\\ \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{0}^{11} & \end{array}\right),\\ {{\rm{\Phi }}}_{0x}=0,\end{array}\end{eqnarray}$
where ${{\rm{\Phi }}}_{1}^{({od})}$ denotes the off-diagonal part of Φ1.
At the same time, substituting equation (A.1) into equation (2.6b) and comparing the coefficient for θk yields
$\begin{eqnarray}\begin{array}{rcl}O({\theta }^{5}):16{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{0}] & = & 0,\\ O({\theta }^{4}):16{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{1}] & = & -16U{{\rm{\Phi }}}_{0},\\ O({\theta }^{3}):16{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{2}] & = & -16U{{\rm{\Phi }}}_{1}+8{\rm{i}}({\sigma }_{3}{U}_{x}-{U}^{2}{\sigma }_{3}){{\rm{\Phi }}}_{0},\\ O({\theta }^{2}):16{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{3}] & = & -16U{{\rm{\Phi }}}_{2}+8{\rm{i}}({\sigma }_{3}{U}_{x}-{U}^{2}{\sigma }_{3}){{\rm{\Phi }}}_{1}\\ & & +\,4({U}_{{xx}}-2{U}^{3}){{\rm{\Phi }}}_{0},\\ O({\theta }^{1}):16{\rm{i}}[{\sigma }_{3},{{\rm{\Phi }}}_{4}] & = & -16U{{\rm{\Phi }}}_{3}+8{\rm{i}}({\sigma }_{3}{U}_{x}-{U}^{2}{\sigma }_{3}){{\rm{\Phi }}}_{2}\\ & & +\,4({U}_{{xx}}-2{U}^{3}){{\rm{\Phi }}}_{1}\\ & & +\,2{\rm{i}}[{\sigma }_{3}(6{U}^{2}{U}_{x}-{U}_{{xxx}})\\ & & +(2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3}]{{\rm{\Phi }}}_{0},\\ O({\theta }^{0}):{{\rm{\Phi }}}_{0t}+16{\rm{i}}\kappa [{\sigma }_{3},{{\rm{\Phi }}}_{5}] & = & \kappa \{-16U{{\rm{\Phi }}}_{4}\\ & & +8{\rm{i}}({\sigma }_{3}{U}_{x}-{U}^{2}{\sigma }_{3}){{\rm{\Phi }}}_{3}\\ & & +\,4({U}_{{xx}}-2{U}^{3}){{\rm{\Phi }}}_{2}\\ & & +\,2{\rm{i}}[{\sigma }_{3}(6{U}^{2}{U}_{x}-{U}_{{xxx}})\\ & & +(2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3}]{{\rm{\Phi }}}_{1}\\ & & +[10({U}^{2}{U}_{{xx}}\\ & & +{{UU}}_{x}^{2})-6{U}^{5}-{U}_{{xxxx}}]{{\rm{\Phi }}}_{0}\}.\end{array}\end{eqnarray}$
Through tedious calculation, we have
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Phi }}}_{2}^{12} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{1}^{22}+\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{0}^{22},\qquad {{\rm{\Phi }}}_{2}^{21}=\displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{1}^{11}-\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{0}^{11},\\ {{\rm{\Phi }}}_{3}^{12} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{2}^{22}+\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{1}^{22}-\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{0}^{22},\\ {{\rm{\Phi }}}_{3}^{21} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{2}^{11}-\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{1}^{11}-\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{0}^{11},\\ {{\rm{\Phi }}}_{4}^{12} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{3}^{22}+\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{2}^{22}\\ & & -\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{1}^{22}-\displaystyle \frac{1}{16}(5{u}^{2}{u}_{x}+{u}_{{xxx}}){{\rm{\Phi }}}_{0}^{22},\\ {{\rm{\Phi }}}_{4}^{21} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{3}^{11}-\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{2}^{11}-\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{1}^{11}\\ & & +\,\displaystyle \frac{1}{16}(5{u}^{2}{u}_{x}+{u}_{{xxx}}){{\rm{\Phi }}}_{0}^{11},\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{5}^{12} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{4}^{22}+\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{3}^{22}-\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{2}^{22}\\ & & -\,\displaystyle \frac{1}{16}(5{u}^{2}{u}_{x}+{u}_{{xxx}}){{\rm{\Phi }}}_{1}^{22}\\ & & +\displaystyle \frac{{\rm{i}}}{32}(10{u}^{2}{u}_{{xx}}+10{{uu}}_{x}^{2}+6{u}^{5}+{u}_{{xxxx}}){{\rm{\Phi }}}_{0}^{22},\\ {{\rm{\Phi }}}_{5}^{21} & = & \displaystyle \frac{{\rm{i}}}{2}u{{\rm{\Phi }}}_{4}^{11}-\displaystyle \frac{1}{4}{u}_{x}{{\rm{\Phi }}}_{3}^{11}-\displaystyle \frac{{\rm{i}}}{8}({u}_{{xx}}+{u}^{3}){{\rm{\Phi }}}_{2}^{11}\\ & & +\,\displaystyle \frac{1}{16}(5{u}^{2}{u}_{x}+{u}_{{xxx}}){{\rm{\Phi }}}_{1}^{11}\\ & & +\displaystyle \frac{{\rm{i}}}{32}(10{u}^{2}{u}_{{xx}}+10{{uu}}_{x}^{2}+6{u}^{5}+{u}_{{xxxx}}){{\rm{\Phi }}}_{0}^{11},\\ {{\rm{\Phi }}}_{0t} & = & 0.\end{array}\end{eqnarray}$
Let Φ0 = I, according to equation (A.5), we obtain
$\begin{eqnarray}{\sigma }_{3}{U}_{x}=4{\sigma }_{3}{{\rm{\Phi }}}_{2}^{({od})}-2{\rm{i}}U{{\rm{\Phi }}}_{1}^{(d)}+{U}^{2}{\sigma }_{3},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{U}_{{xx}}=8{\rm{i}}{\sigma }_{3}{{\rm{\Phi }}}_{3}^{({od})}+4U{{\rm{\Phi }}}_{2}^{(d)}-2{\rm{i}}{\sigma }_{3}{U}_{x}{{\rm{\Phi }}}_{1}^{(d)}\\ +2{\rm{i}}{U}^{2}{\sigma }_{3}{{\rm{\Phi }}}_{1}^{({od})}+2{U}^{3},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{3}{U}_{{xxx}} & = & 16{\sigma }_{3}{{\rm{\Phi }}}_{4}^{({od})}+8{\rm{i}}U{{\rm{\Phi }}}_{3}^{(d)}+4{\sigma }_{3}{U}_{x}{{\rm{\Phi }}}_{2}^{(d)}-4{U}^{2}{\sigma }_{3}{{\rm{\Phi }}}_{2}^{({od})}\\ & & -2{\rm{i}}({U}_{{xx}}-2{U}^{3}){{\rm{\Phi }}}_{1}^{(d)}\\ & & +6{\sigma }_{3}{U}^{2}{U}_{x}+(2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{U}_{{xxxx}} & = & -32{\rm{i}}{\sigma }_{3}{{\rm{\Phi }}}_{5}^{({od})}-16U{{\rm{\Phi }}}_{4}^{(d)}+8{\rm{i}}{\sigma }_{3}{U}_{x}{{\rm{\Phi }}}_{3}^{(d)}\\ & & -8{\rm{i}}{U}^{2}{\sigma }_{3}{{\rm{\Phi }}}_{3}^{({od})}\\ & & +\,4({U}_{{xx}}-2{U}^{3}){{\rm{\Phi }}}_{2}^{(d)}+2{\rm{i}}{\sigma }_{3}(6{U}^{2}{U}_{x}-{U}_{{xxx}}){{\rm{\Phi }}}_{3}^{(d)}\\ & & +2{\rm{i}}(2{{UU}}_{{xx}}-{U}_{x}^{2}-3{U}^{4}){\sigma }_{3}{{\rm{\Phi }}}_{1}^{({od})}\\ & & +10({U}^{2}{U}_{{xx}}+{{UU}}_{x}^{2})-6{U}^{5},\end{array}\end{eqnarray}$
where Φ(x, t, θ) is the solution of equation (2.7). Let
$\begin{eqnarray}\begin{array}{l}{\rm{\Phi }}(x,t,\theta )={\rm{I}}+\displaystyle \frac{{\phi }^{(1)}}{\theta }+\displaystyle \frac{{\phi }^{(2)}}{{\theta }^{2}}+\displaystyle \frac{{\phi }^{(3)}}{{\theta }^{3}}\\ +\displaystyle \frac{{\phi }^{(4)}}{{\theta }^{4}}+\displaystyle \frac{{\phi }^{(5)}}{{\theta }^{5}}+O(\displaystyle \frac{1}{{\theta }^{6}}),\theta \to \infty ,\end{array}\end{eqnarray}$
the (12)-entry of equation (A.6a)–(A.6d) gives rise to
$\begin{eqnarray}{u}_{x}=4{\phi }_{12}^{(2)}-2{\rm{i}}u{\phi }_{22}^{(1)}+{u}^{2},\end{eqnarray}$
$\begin{eqnarray}{u}_{{xx}}=8{\rm{i}}{\phi }_{12}^{(3)}+4u{\phi }_{22}^{(2)}-2{\rm{i}}{u}_{x}{\phi }_{22}^{(1)}-{u}^{3},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{u}_{{xxx}}=-16{\phi }_{12}^{(4)}+8{\rm{i}}u{\phi }_{22}^{(3)}+4{u}_{x}{\phi }_{22}^{(2)}-2{\rm{i}}({u}_{{xx}}+{u}^{3}){\phi }_{22}^{(1)}\\ -5{u}^{2}{u}_{x},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{u}_{{xxxx}} & = & -32{\rm{i}}{\phi }_{12}^{(5)}-16u{\phi }_{22}^{(4)}+8{\rm{i}}u{\phi }_{22}^{(3)}+4({u}_{{xx}}+{u}^{3}){\phi }_{22}^{(2)}\\ & & -2{\rm{i}}(5{u}^{2}{u}_{x}+{u}_{{xxx}}){\phi }_{22}^{(1)}-(10{u}^{2}{u}_{{xx}}+10{{uu}}_{x}^{2}+6{u}^{5}).\end{array}\end{eqnarray}$
Furthermore, equation (A.3) implies that
$\begin{eqnarray}u(x,t)=-2{\rm{i}}\phi (x,t)=-2{\rm{i}}\mathop{\mathrm{lim}}\limits_{\theta \to \infty }{\left(\theta {\rm{\Phi }}(x,t,\theta )\right)}_{12},\end{eqnarray}$
then, we have
$\begin{eqnarray}u(x,t)=-2{\rm{i}}{\phi }_{12}^{(1)}(x,t).\end{eqnarray}$
Evaluating equations (A.8a)–(A.8d), (A.10) at x = 0 gives the expressions
$\begin{eqnarray}{v}_{0}(t)=-2{\rm{i}}{\phi }_{12}^{(1)}(t),\end{eqnarray}$
$\begin{eqnarray}{v}_{1}(t)=4{\phi }_{12}^{(2)}(t)-2{\rm{i}}{v}_{0}(t){\phi }_{22}^{(1)}(t)+{v}_{0}^{2}(t),\end{eqnarray}$
$\begin{eqnarray}{v}_{2}(t)=8{\rm{i}}{\phi }_{12}^{(3)}(t)+4{v}_{0}(t){\phi }_{22}^{(2)}(t)-2{\rm{i}}{v}_{1}(t){\phi }_{22}^{(1)}(t)-{v}_{0}^{3}(t),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{v}_{3}(t) & = & -16{\phi }_{12}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)+4{v}_{1}(t){\phi }_{22}^{(2)}(t)\\ & & -2{\rm{i}}({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(1)}(t)-5{v}_{0}^{2}(t){v}_{1}(t),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{v}_{4}(t) & = & -32{\rm{i}}{\phi }_{12}^{(5)}(t)-16{v}_{0}(t){\phi }_{22}^{(4)}(t)+8{\rm{i}}{v}_{0}(t){\phi }_{22}^{(3)}(t)\\ & & +4({v}_{2}(t)+{v}_{0}^{3}(t)){\phi }_{22}^{(2)}(t)-2{\rm{i}}(5{v}_{0}^{2}(t){v}_{1}(t)\\ & & +{v}_{3}(t)){\phi }_{22}^{(1)}(t)\\ & & -(10{v}_{0}^{2}(t){v}_{1}(t)+10{v}_{0}(t){v}_{1}^{2}(t)+6{v}_{0}^{5}(t)),\end{array}\end{eqnarray}$
where φ(j)(t), j = 1, 2, 3, 4, 5 are determined by
$\begin{eqnarray}{H}^{(t)}(t,\theta )={\rm{I}}+\displaystyle \sum _{j=1}^{5}\displaystyle \frac{{\phi }^{(j)}(t)}{{\theta }^{j}}+O\left(\displaystyle \frac{1}{{\theta }^{6}}\right),\quad \theta \to \infty .\end{eqnarray}$
1
Gardner C S Green J M Kruskal M D Miüra R M 1967 Method for solving the Korteweg-de Vries equation Phys. Rev. Lett. 19 1095 1097

DOI

2
Fokas A S 1997 A unified transform method for solving linear and certain nonlinear PDEs Proc. R. Soc. Lond. A 453 1411 1443

DOI

3
Pelloni B 2005 The asymptotic behavior of the solution of boundary value problems for the sine-Gordon equation on a finite interval J. Nonlinear Math. Phys. 12 518 529

DOI

4
Fokas A S Its A R Sung L Y 2005 The nonlinear Schrödinger equation on the half-line Nonlinearity 18 1771 1822

DOI

5
Treharne P A Fokas A S 2008 The generalized Dirichlet to Neumann map for the KdV equation on the half-line J. Nonlinear Sci. 18 191 217

DOI

6
Lenells J 2008 The derivative nonlinear Schrödinger equation on the half-line Physica D 237 3008 3019

DOI

7
Lenells J 2011 Boundary value problems for the stationary axisymmetric Einstein equations: a disk rotating around a black hole Comm. Math. Phys. 304 585 635

DOI

8
Xu J Fan E G 2014 A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equation Acta Math. Sci. 34 973 994

DOI

9
Xia B Q Fokas A S 2018 Initial-boundary value problems associated with the Ablowitz-Ladik system Physica D 364 27 61

DOI

10
Zhang Y S Rao J G Cheng Y He J S 2019 Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order pole Physica D 399 173 185

DOI

11
Huang L 2020 The initial-boundary-value problems for the Hirota equation on the half-line Chin. Ann. Math. Ser. B 41 117 132

DOI

12
Hu B B Zhang L Zhang N 2021 On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation J. Comput. Appl. Math. 390 113393

DOI

13
Lenells J 2012 Initial-boundary value problems for integrable evolution equations with 3 ×3 Lax pairs Physica D 241 857 875

DOI

14
Monvel A B Shepelsky D 2013 A Riemann-Hilbert approach for the Degasperis-Procesi equation Nonlinearity 26 2081 2107

DOI

15
Xu J Fan E G 2013 The unified method for the Sasa-Satsuma equation on the half-line Proc. R. Soc. Lond. A 469 20130068

DOI

16
Monvel A B Shepelsky D 2015 The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach J. Phys. A: Math. Theor. 48 035204

DOI

17
Geng X G Liu H Zhu J Y 2015 Initial-boundary value problems for the coupled nonlinear Schrödinger equation on the half-line Stud. Appl. Math. 135 310 346

DOI

18
Tian S F 2019 Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method J. Differ. Equations 262 506 558

DOI

19
Hu B B Yu X M Zhang L 2022 On the Riemann-Hilbert problem of the matrix Lakshmanan-Porsezian-Daniel system with a 4 × 4 AKNS-type matrix Lax pair Theor. Math. Phys. 210 337 352

DOI

20
Hu B B Lin J Zhang L 2022 On the Riemann-Hilbert problem for the integrable three-coupled Hirota system with a 4 × 4 matrix Lax pair Appl. Math. Comput. 428 127202

DOI

21
Hu B B Zhang L Lin J 2022 The initial-boundary value problems of the new two-component generalized Sasa-Satsuma equation with a 4 × 4 matrix Lax pair Anal. Math. Phys. 12 109

DOI

22
Yan Z Y 2017 An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 × 4 Lax pair on the half-line Chaos 27 053117

DOI

23
Yan Z Y 2019 Initial-boundary value problem for an integrable spin-1 Gross-Pitaevskii system with a 4 × 4 Lax pair on a finite interval J. Math. Phys. 60 83511

DOI

24
Yan Z Y 2021 An initial-boundary value problem for the general three-component nonlinear Schrödinger equations on a finite interval IMA J. Appl. Math. 86 427 489

DOI

25
Wadati M 1973 The modified Korteweg-de Vries equation J. Phys. Soc. Jpn. 34 1289 1296

DOI

26
Yajima N Oikawa M 1975 A class of exactly solvable nonlinear evolution equations Prog. Theor. phys. 54 1576 1577

DOI

27
Athorne C Fordy A P 1987 Generalised KdV and MKdV equations associated with symmetric spaces J. Phys. A: Math. Gen. 20 1377 1386

DOI

28
Habibullin I T 2000 An initial-boundary value problem on the half-line for the MKdV equation Funct. Anal. Appl. 34 52 59

DOI

29
Wang D S Li Q Wen X Y Liu L 2020 Matrix spectral problems and integrability aspects of the Błaszak-Marciniak lattice equations Rep. Math. Phys. 86 325 353

DOI

30
Hirota R 1973 Exact envelope-soliton solutions of a nonlinear wave equation J. Math. Phys. 14 805 879

DOI

31
Luo X D 2019 Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg-de Vries equation with nonzero boundary conditions and constant phase shift Chaos 29 073118

DOI

32
Qiu D Q Liu Q P 2020 Darboux transformation of the generalized mixed nonlinear Schrödinger equation revisited Chaos 30 123111

DOI

33
Marchant T R Smyth N F 1990 The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography J. Fluid Mech. 221 263 288

DOI

34
Marchant T R Smyth N F 1996 Soliton interaction for the extended Korteweg-de Vries equation IMA J. Appl. Math. 56 157 176

DOI

35
Wazwaz A M Xu G Q 2016 An extended modified KdV equation and its Painlevé integrability Nonlinear Dyn. 86 1455 1460

DOI

36
Wang X Zhang J L Wang L 2018 Conservation laws, periodic and rational solutions for an extended modified Korteweg-de Vries equation Nonlinear Dyn. 92 1507 1516

DOI

37
Liu N Guo B L Wang D S Wang Y F 2019 Long-time asymptotic behavior for an extended modified Korteweg-de Vries equation Commun. Math. Sci. 17 1877 1913

DOI

38
Lv N N Huang L 2022 Breather-soliton molecules and breather-positons for the extended complex modified KdV equation Commun. Nonlinear Sci. Numer. Simulat. 107 106148

DOI

39
Liu N Guo B L 2021 Painlevé-type asymptotics of an extended modified KdV equation in transition regions J. Differ Equ. 280 203 235

DOI

40
Huang L Lv N N 2021 Soliton molecules, rational positons and rogue waves for the extended complex modified KdV equation Nonlinear Dyn. 105 3475 3487

DOI

41
Kwon S 2008 Well-posedness and ill-posedness of the fifth-order modified KdV equation Electr. J. Differ Equ. 2008 1 15

DOI

42
Cheng W G Qiu D Q Yu B 2017 CRE solvability, nonlocal symmetry and exact interaction solutions of the fifth-order modified Korteweg-de Vries equation Commun. Theor. Phys. 67 637 642

DOI

43
Kwak C 2018 Low regularity Cauchy problem for the fifth-order modified KdV equations on ${\mathbb{T}}$ J. Hyperbolic Differ. Equ. 15 463 557

DOI

44
Liu N 2020 Soliton and breather solutions for a fifth-order modified KdV equation with a nonzero background Appl. Math. Lett. 104 106256

DOI

45
Liu N Guo B L 2021 Asymptotics of solutions to a fifth-order modified Korteweg-de Vries equation in the quarter plane Anal. Appl. 19 575 620

DOI

46
Liu N Chen M J Guo B L 2021 Long-time asymptotic behavior of the fifth-order modified KdV equation in low regularity spaces Stud. Appl. Math. 147 230 299

DOI

47
Deift P A Zhou X 1993 A steepest descent method for oscillatory Riemann-Hilbert problems Ann. Math. 137 295 368

DOI

48
Wang D S Guo B L Wang X L 2019 Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions J. Differ Equ. 266 5209 5253

DOI

49
Zhang Y S Xu S W 2020 The soliton solutions for the Wadati-Konno-Ichikawa equation Appl. Math. Lett. 99 105995

DOI

Outlines

/