1. Introduction
2. Symmetric measurements
i | (i) $\mathrm{tr}({S}_{\mu ,i})=\tfrac{d}{t}$, |
ii | (ii) $\mathrm{tr}({S}_{\mu ,i}^{2})=\chi ,$ |
iii | (iii) $\mathrm{tr}({S}_{\mu ,i}{S}_{\mu ,j})=\tfrac{d-t\chi }{t(t-1)},\quad i\ne j$, |
iv | (iv) $\mathrm{tr}({S}_{\mu ,i}{S}_{\nu ,j})=\tfrac{d}{{t}^{2}},\quad \mu \ne \nu $ |
1. | (1)a complete set of MUBs for s = d + 1, t = d and χ = 1, |
2. | (2)an equiangular tight frame for s = 1, χ = d2/t2, t ∈ {d, d + 1, …, d2}[49, 50], |
3. | (3)an SIC-POVM for s = 1, t = d2 and χ = 1/d2. |
1. | (1)s = 1 and t = d2 (GSIC-POVMs), |
2. | (2)s = d + 1 and t = d (MUMs), |
3. | (3)s = d2 − 1 and t = 2, |
4. | (4)s = d − 1 and t = d + 2. |
Table 1. The range of the parameter r and the maximum value ${\chi }_{\max }$ for the four informationally complete (s, t)-POVMs on ${{\mathbb{C}}}^{3}$. These measurements are constructed from the generalized GM operators. |
(s, t)-POVM | r | ${\chi }_{\max }$ |
---|---|---|
(1, 9) | −0.0121 ≤ r ≤ 0.0129 | 0.0583 |
(4, 3) | −0.1093 ≤ r ≤ 0.1220 | 0.5555 |
(8, 2) | −0.2536 ≤ r ≤ 0.2536 | 0.1250 |
(2, 5) | −0.0383 ≤ r ≤ 0.0388 | 0.1831 |
3. Detecting entanglement via symmetric measurements
3.1. Separability criteria for bipartite systems
With the above notation, if ρ is separable, then
3.2. Separability criteria for tripartite systems
With the above data, if a tripartite state ρ on ${{\mathbb{C}}}^{{d}_{a}}\otimes {{\mathbb{C}}}^{{d}_{b}}\otimes {{\mathbb{C}}}^{{d}_{c}}$ is fully separable, then
If a tripartite state ρ on ${{\mathbb{C}}}^{{d}_{a}}\otimes {{\mathbb{C}}}^{{d}_{b}}\otimes {{\mathbb{C}}}^{{d}_{c}}$ is fully separable, then
4. Illustration
Figure 1. Comparison of the detection power between inequalities ( |