Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Soliton solutions for a two-component generalized Sasa-Satsuma equation

  • Lian-li Feng ,
  • Zuo-nong Zhu ,
Expand
  • School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

Author to whom any correspondence should be addressed.

Received date: 2023-03-28

  Revised date: 2023-05-11

  Accepted date: 2023-05-11

  Online published: 2023-06-26

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

As is well known, the Sasa-Satsuma equation is an important integrable high order nonlinear Schrödinger equation. In this paper, a two-component generalized Sasa-Satsuma (gSS) equation is investigated. We construct the n-fold Darboux transformation for the two-component gSS equation. Based on the Darboux transformation, we obtain some interesting solutions, such as a breather soliton solution, kink solution, anti-soliton solution and a periodic-like solution.

Cite this article

Lian-li Feng , Zuo-nong Zhu . Soliton solutions for a two-component generalized Sasa-Satsuma equation[J]. Communications in Theoretical Physics, 2023 , 75(7) : 075004 . DOI: 10.1088/1572-9494/acd43f

1. Introduction

A higher order nonlinear Schrödinger (NLS) equation
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{T}+\displaystyle \frac{1}{2}{q}_{{XX}}+| q{| }^{2}q+{\rm{i}}\epsilon \left({\beta }_{1}{q}_{{XXX}}\right.\\ \quad \left.+{\beta }_{2}| q{| }^{2}{q}_{X}+{\beta }_{3}q{\left(| q{| }^{2}\right)}_{X}\right)=0\end{array}\end{eqnarray}$
was proposed by Kodama and Hasegawa [1, 2], where βj are real constants, and ε is a small parameter. It is originally presented as a model for the femtosecond pulse propagation in a monomode fiber. In the general case, equation (1) is not integrable. But when choosing some appropriate parameters, it can be shown that equation (1) is integrable by inverse scattering transform. Equation (1) can be converted to several integrable equations, such as the derivative NLS equation, the Hirota equation and the Sasa-Satsuma equation [36].
Let us write the Sasa-Satsuma equation
$\begin{eqnarray}{\rm{i}}{q}_{T}+\displaystyle \frac{1}{2}{q}_{{XX}}+| q{| }^{2}q+{\rm{i}}\left({q}_{{XXX}}+6| q{| }^{2}{q}_{X}+3q{\left(| q{| }^{2}\right)}_{X}\right)=0.\end{eqnarray}$
By introducing variable transformations
$\begin{eqnarray}\begin{array}{rcl}u(x,t) & = & q(X,T)\exp \left\{\displaystyle \frac{-{\rm{i}}}{6}\left(X-\displaystyle \frac{T}{18}\right)\right\},\\ t & = & T,\,\,\,x\,=\,X-\displaystyle \frac{T}{12},\end{array}\end{eqnarray}$
Equation (2) changes into a complex modified KdV-type equation
$\begin{eqnarray}{u}_{t}+{u}_{{xxx}}+6| u{| }^{2}{u}_{x}+3u{\left(| u{| }^{2}\right)}_{x}=0,\end{eqnarray}$
which is also called a Sasa-Satsuma equation. Equation (4) has been extensively studied by different methods, such as inverse scattering transform [7, 8], Darboux transformation [914] and Hirota bilinear method [15, 16].
Based on equation (4), a two-component Sasa-Satsuma equation is proposed in [17, 18],
$\begin{eqnarray}\begin{array}{rcl}{u}_{t} & = & {u}_{{xxx}}+6| u{| }^{2}{u}_{x}+3u{\left(| u{| }^{2}\right)}_{x}+3v{\left({uv}\right)}_{x},\\ {v}_{t} & = & {v}_{{xxx}}+6| u{| }^{2}{v}_{x}+3v{\left(| u{| }^{2}\right)}_{x}+3v{\left({v}^{2}\right)}_{x}.\end{array}\end{eqnarray}$
Soliton solutions of equation (5) are obtained by Darboux transformation and the Riemann-Hilbert approach.
In this paper, inspired by equation (5), we introduce a two-component generalized Sasa-Satsuma (gSS) equation
$\begin{eqnarray}\begin{array}{rcl}{u}_{t} & = & {u}_{{xxx}}-6a| u{| }^{2}{u}_{x}-3{au}{\left(| u{| }^{2}\right)}_{x}\\ & & -3{{bu}}^{* }{\left(| u{| }^{2}\right)}_{x}-3{b}^{* }u{\left({u}^{2}\right)}_{x}+3v{\left({uv}\right)}_{x},\\ {v}_{t} & = & {v}_{{xxx}}-6a| u{| }^{2}{v}_{x}-3{av}{\left(| u{| }^{2}\right)}_{x}\\ & & -3{{bu}}^{* }{\left({{vu}}^{* }\right)}_{x}-3{b}^{* }u{\left({vu}\right)}_{x}+3v{\left({v}^{2}\right)}_{x},\end{array}\end{eqnarray}$
where u(x, t) is a complex function, a is a real constant, b is a complex constant, and * denotes the complex conjugate. In equation (6), v(x, t) can be either a complex function or a real function. If the reduction is taken as $v={\rm{i}}\sqrt{{b}^{* }}u$, then equation (6) changes to
$\begin{eqnarray}\begin{array}{rcl}{u}_{t} & = & {u}_{{xxx}}-6a| u{| }^{2}{u}_{x}-3{au}{\left(| u{| }^{2}\right)}_{x}-3{{bu}}^{* }{\left(| u{| }^{2}\right)}_{x}\\ & & -6{b}^{* }u{\left({u}^{2}\right)}_{x}.\end{array}\end{eqnarray}$
Equation (7) is a gSS equation. We thus can see that it is interesting to study the equation (6). It is obvious that when b = 0, the equation (6) is reduced to equation (5).
In this paper, we will show that the two-component gSS equation (6) is Lax integrable. We will construct its n-fold Darboux transformation. Soliton solutions including a breather soliton solution, kink solution and periodic-like solution will also be constructed.

2. Lax pair for the two-component gSS equation

In this section, we give the following Lax pair of equation (6):
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{x} & = & U{\rm{\Phi }}=\left(-{\rm{i}}\lambda \sigma +Q\right){\rm{\Phi }},\\ {{\rm{\Phi }}}_{t} & = & V{\rm{\Phi }}=\left(4{\rm{i}}{\lambda }^{3}\sigma -4{\lambda }^{2}Q+2{\rm{i}}\lambda \left({Q}_{x}+{Q}^{2}\right)\sigma \right.\\ & & \left.+{Q}_{{xx}}-2{Q}^{3}-{Q}_{x}Q+{{QQ}}_{x}\right){\rm{\Phi }},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}Q & = & \left(\begin{array}{cccc}0 & {au}+{{bu}}^{* } & {{au}}^{* }+{b}^{* }u & -v\\ {u}^{* } & 0 & 0 & 0\\ u & 0 & 0 & 0\\ v & 0 & 0 & 0\end{array}\right),\\ \sigma & = & \left(\begin{array}{cccc}-1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{array}\right).\end{array}\end{eqnarray}$
It can directly verify that the zero-curvature equation UtVx + [U, V] = 0 yields the two-component gSS equation (6).
We take ${\rm{\Phi }}={\left({\phi }_{1},{\phi }_{2},{\phi }_{3},{\phi }_{4}\right)}^{T}$ is an eigenfunction of Lax pair (8) at λ. Note that ${\rm{\Psi }}={\left({\phi }_{1}^{* },{\phi }_{3}^{* },{\phi }_{2}^{* },{\phi }_{4}^{* }\right)}^{T}$ is an eigenfunction of Lax pair (8) at −λ* if v is a real function. Thus we can construct the matrix solution of Lax pair (8)
$\begin{eqnarray}\begin{array}{rcl}{\theta }_{x} & = & -{\rm{i}}\sigma \theta {\rm{\Lambda }}+Q\theta ,\\ {\theta }_{t} & = & 4{\rm{i}}\sigma \theta {{\rm{\Lambda }}}^{3}-4Q\theta {{\rm{\Lambda }}}^{2}+2{\rm{i}}\left({Q}_{x}+{Q}^{2}\right)\sigma \theta {\rm{\Lambda }}\\ & & +\left({Q}_{{xx}}-2{Q}^{3}-{Q}_{x}Q+{{QQ}}_{x}\right)\theta ,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\theta =({\rm{\Phi }},{\rm{\Psi }})=\left(\begin{array}{cc}{\phi }_{1} & {\phi }_{1}^{* }\\ {\phi }_{2} & {\phi }_{3}^{* }\\ {\phi }_{3} & {\phi }_{2}^{* }\\ {\phi }_{4} & {\phi }_{4}^{* }\end{array}\right),\,\,\,\,\,\,\,{\rm{\Lambda }}=\left(\begin{array}{cc}\lambda & 0\\ 0 & -{\lambda }^{* }\end{array}\right).\end{eqnarray}$

3. Darboux transformation of the two-component gSS equation

In this section, we construct the Darboux transformation to the two-component gSS equation (6). Firstly, the adjoint problem of Lax pair (8) is
$\begin{eqnarray}{{\rm{\Xi }}}_{x}=-{\rm{\Xi }}U,\,\,\,\,\,\,\,\,{{\rm{\Xi }}}_{t}=-{\rm{\Xi }}V.\end{eqnarray}$
Assuming that θ1(x, t) is an eigenfunction of the Lax pair (8) at λ = λ1, we can verify that ${\theta }_{1}^{\dagger }(x,t)M$ is an eigenfunction of equation (12) at $\lambda =-{\lambda }_{1}^{* }$, where
$\begin{eqnarray}M=\left(\begin{array}{cccc}-1 & 0 & 0 & 0\\ 0 & a & {b}^{* } & 0\\ 0 & b & a & 0\\ 0 & 0 & 0 & -1\end{array}\right).\end{eqnarray}$
Based on the [912], we take the transformation
$\begin{eqnarray}{\rm{\Phi }}[1]=T{\rm{\Phi }},\end{eqnarray}$
where
$\begin{eqnarray}T\,=\,I-{\theta }_{1}{\rm{\Omega }}{\left({\theta }_{1},{\theta }_{1}\right)}^{-1}{\left(\lambda I-{{\rm{\Lambda }}}^{* }\right)}^{-1}{\theta }_{1}^{\dagger }M,\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Omega }}\left({\theta }_{1},{\theta }_{1}\right) & = & \left(\begin{array}{cc}\displaystyle \frac{{{\rm{\Phi }}}_{1}^{\dagger }M{{\rm{\Phi }}}_{1}}{{\lambda }_{1}-{\lambda }_{1}^{* }} & \displaystyle \frac{{{\rm{\Phi }}}_{1}^{\dagger }M{{\rm{\Psi }}}_{1}}{-2{\lambda }_{1}^{* }}\\ \displaystyle \frac{{{\rm{\Psi }}}_{1}^{\dagger }M{{\rm{\Phi }}}_{1}}{2{\lambda }_{1}} & \displaystyle \frac{{{\rm{\Psi }}}_{1}^{\dagger }M{{\rm{\Psi }}}_{1}}{{\lambda }_{1}-{\lambda }_{1}^{* }}\end{array}\right),\\ {{\rm{\Phi }}}^{\dagger } & = & ({\phi }_{1}^{* },{\phi }_{2}^{* },{\phi }_{3}^{* },{\phi }_{4}^{* }),\,\,\,\,{{\rm{\Psi }}}^{\dagger }=({\phi }_{1},{\phi }_{3},{\phi }_{2},{\phi }_{4}).\end{array}\end{eqnarray}$
It is obvious that under the transformation (14) linear spectral equation (8) changes to
$\begin{eqnarray}{\rm{\Phi }}{\left[1\right]}_{x}=U[1]{\rm{\Phi }}[1],\,\,\,\,\,\,\,\,{\rm{\Phi }}{\left[1\right]}_{t}=V[1]{\rm{\Phi }}[1],\end{eqnarray}$
where
$\begin{eqnarray}U[1]=\left({T}_{x}+{TU}\right){T}^{-1},\,\,\,\,V[1]=\left({T}_{t}+{TV}\right){T}^{-1}.\end{eqnarray}$
We can show the matrix U[1] and V[1] have the same structures with the matrix U and V, that is
$\begin{eqnarray}\begin{array}{rcl}U[1] & = & -{\rm{i}}\lambda \sigma +Q[1],\\ V[1] & = & 4{\rm{i}}{\lambda }^{3}\sigma -4{\lambda }^{2}Q[1]+2{\rm{i}}\lambda \left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma \\ & & +Q{\left[1\right]}_{{xx}}-2Q{\left[1\right]}^{3}-Q{\left[1\right]}_{x}Q[1]+Q[1]Q{\left[1\right]}_{x},\end{array}\end{eqnarray}$
where the relation between the new potential and the old one is
$\begin{eqnarray}Q[1]=Q+{\rm{i}}\left[{\theta }_{1}{\rm{\Omega }}{\left({\theta }_{1},{\theta }_{1}\right)}^{-1}{\theta }_{1}^{\dagger }M,\sigma \right].\end{eqnarray}$
Let us show the conclusion that the matrix U[1] and V[1] have the same structure as the matrix U and V. The matrix T can be rewritten as
$\begin{eqnarray}\begin{array}{rcl}T & = & I-\displaystyle \frac{1}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left(\displaystyle \frac{\left({X}_{11}{{\rm{\Phi }}}_{1}-{Y}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Phi }}}_{1}^{\dagger }M}{\lambda -{\lambda }_{1}^{* }}\right.\\ & & \left.+\displaystyle \frac{\left({Y}_{11}^{* }{{\rm{\Phi }}}_{1}+{X}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Psi }}}_{1}^{\dagger }M}{\lambda +{\lambda }_{1}}\right),\end{array}\end{eqnarray}$
where the functions ${X}_{11}=\tfrac{{{\rm{\Phi }}}_{1}^{\dagger }M{{\rm{\Phi }}}_{1}}{{\lambda }_{1}-{\lambda }_{1}^{* }},{Y}_{11}=\tfrac{{{\rm{\Psi }}}_{1}^{\dagger }M{{\rm{\Phi }}}_{1}}{2{\lambda }_{1}}$ . We rewrite the last equation as
$\begin{eqnarray}\begin{array}{l}\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right)T=\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right)I\\ \quad -\displaystyle \frac{1}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left(\lambda {S}_{1}+{S}_{2}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}{S}_{1}=\left({X}_{11}{{\rm{\Phi }}}_{1}-{Y}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Phi }}}_{1}^{\dagger }M+\left({Y}_{11}^{* }{{\rm{\Phi }}}_{1}+{X}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Psi }}}_{1}^{\dagger }M,\end{eqnarray}$
$\begin{eqnarray}{S}_{2}={\lambda }_{1}\left({X}_{11}{{\rm{\Phi }}}_{1}-{Y}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Phi }}}_{1}^{\dagger }M-{\lambda }_{1}^{* }\left({Y}_{11}^{* }{{\rm{\Phi }}}_{1}+{X}_{11}{{\rm{\Psi }}}_{1}\right){{\rm{\Psi }}}_{1}^{\dagger }M.\end{eqnarray}$
We hope to check that the following equations hold
$\begin{eqnarray}\begin{array}{l}\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right){T}_{x}+\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right){TU}\\ \quad =\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right)U[1]T,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right){T}_{t}+\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right){TV}\\ \quad =\left(\lambda +{\lambda }_{1}\right)\left(\lambda -{\lambda }_{1}^{* }\right)V[1]T.\end{array}\end{eqnarray}$
Supposing
$\begin{eqnarray}U[1]={\left({u}_{{ij}}\right)}_{4\,\times \,4},\end{eqnarray}$
and substituting equation (27) into equation (25), we obtain
$\begin{eqnarray*}\begin{array}{rcl}{u}_{14} & = & -v[1],\,\,{u}_{21}={u}^{* }[1],\,\,{u}_{31}=u[1],\,\,{u}_{41}=v[1],\\ {u}_{12} & = & {au}[1]+{{bu}}^{* }[1],{u}_{13}={{au}}^{* }[1]+{b}^{* }u[1],\\ {u}_{11} & = & {\rm{i}}\lambda ,\,\,{u}_{22}={u}_{33}={u}_{44}=-{\rm{i}}\lambda ,\\ {u}_{23} & = & {u}_{24}={u}_{32}={u}_{34}={u}_{42}={u}_{43}=0,\end{array}\end{eqnarray*}$
where
$\begin{eqnarray}\begin{array}{l}u[1]=u-\displaystyle \frac{2{\rm{i}}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left[-{X}_{11}\left({\phi }_{3}{\phi }_{1}^{* }+{\phi }_{1}{\phi }_{2}^{* }\right)\right.\\ \quad \left.+{Y}_{11}{\phi }_{1}^{* }{\phi }_{2}^{* }-{Y}_{11}^{* }{\phi }_{1}{\phi }_{3}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}v[1]=v-\displaystyle \frac{2{\rm{i}}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left[-{X}_{11}\left({\phi }_{1}{\phi }_{4}^{* }+{\phi }_{4}{\phi }_{1}^{* }\right)\right.\\ \quad \left.+{Y}_{11}{\phi }_{1}^{* }{\phi }_{4}^{* }-{Y}_{11}^{* }{\phi }_{1}{\phi }_{4}\right].\end{array}\end{eqnarray}$
Thus matrices U[1] and U have the same structures. Since the structure of V[1] is too complex, we directly show the equation (26) holds. We have the following equations:
$\begin{eqnarray*}\begin{array}{l}{\lambda }^{4}:\qquad Q+\displaystyle \frac{{\rm{i}}{S}_{1}\sigma }{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}=Q[1]+\displaystyle \frac{{\rm{i}}\sigma {S}_{1}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\\ {\lambda }^{3}:\qquad 2{\rm{i}}\left({Q}_{x}+{Q}^{2}\right)\sigma -4\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)Q\\ \quad -\displaystyle \frac{\left(-4{S}_{1}Q+4{\rm{i}}{S}_{2}\sigma \right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\\ \quad =2{\rm{i}}\left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma -4\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)Q[1]\\ \quad -\displaystyle \frac{\left(-4Q[1]{S}_{1}+4{\rm{i}}\sigma {S}_{2}\right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\\ {\lambda }^{2}:\qquad {S}_{3}+2{\rm{i}}\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)\left({Q}_{x}+{Q}^{2}\right)\sigma +4{\lambda }_{1}{\lambda }_{1}^{* }Q\\ \quad +\displaystyle \frac{\left(4{S}_{2}Q-2{\rm{i}}{S}_{1}\left({Q}_{x}+{Q}^{2}\right)\sigma \right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\\ \quad ={S}_{3}[1]+2{\rm{i}}\left({\lambda }_{1}-{\lambda }_{1}^{* }\right)\left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma +4{\lambda }_{1}{\lambda }_{1}^{* }Q[1]\\ \quad +\displaystyle \frac{\left(4Q[1]{S}_{2}-2{\rm{i}}\left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma {S}_{1}\right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\\ {\lambda }^{1}:\qquad -\displaystyle \frac{{S}_{1,t}\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)-{S}_{1}{\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)}_{t}}{{\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)}^{2}}\\ \quad +\left({\lambda }_{1}-{\lambda }_{1}^{* }\right){S}_{3}-2{\rm{i}}{\lambda }_{1}{\lambda }_{1}^{* }\left({Q}_{x}+{Q}^{2}\right)\sigma \\ \quad -\displaystyle \frac{\left({S}_{1}{S}_{3}+2{\rm{i}}{S}_{2}\left({Q}_{x}+{Q}^{2}\right)\sigma \right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\\ \quad =\left({\lambda }_{1}-{\lambda }_{1}^{* }\right){S}_{3}[1]-2{\rm{i}}{\lambda }_{1}{\lambda }_{1}^{* }\left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma \\ \quad -\displaystyle \frac{\left({S}_{3}[1]{S}_{1}+2{\rm{i}}\left(Q{\left[1\right]}_{x}+Q{\left[1\right]}^{2}\right)\sigma {S}_{2}\right)}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\\ {\lambda }^{0}:\qquad \displaystyle \frac{{S}_{2,t}\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)-{S}_{2}{\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)}_{t}}{{\left({X}_{11}^{2}+| {Y}_{11}{| }^{2}\right)}^{2}}+{\lambda }_{1}{\lambda }_{1}^{* }{S}_{3}\\ \quad +\displaystyle \frac{{S}_{2}{S}_{3}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}={\lambda }_{1}{\lambda }_{1}^{* }{S}_{3}[1]+\displaystyle \frac{{S}_{3}[1]{S}_{2}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\end{array}\end{eqnarray*}$
where
$\begin{eqnarray}\begin{array}{rcl}{S}_{3} & = & {Q}_{{xx}}-2{Q}^{3}-{Q}_{x}Q+{{QQ}}_{x},\\ {S}_{3}[1] & = & Q{\left[1\right]}_{{xx}}-2Q{\left[1\right]}^{3}-Q{\left[1\right]}_{x}Q[1]+Q[1]Q{\left[1\right]}_{x}.\end{array}\end{eqnarray}$
According to the coefficient of λ4, we have
$\begin{eqnarray}Q[1]=Q+\displaystyle \frac{{\rm{i}}({S}_{1}\sigma -\sigma {S}_{1})}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}},\end{eqnarray}$
which is equivalent to equation (20). By substituting equation (31) into the coefficients of λ3, λ2, we can know that the coefficients of λ3, λ2 are zero. From the coefficients of λ3 we can know the representation of S3[1]. Substituting the S3[1] into the coefficients of λ1, λ0, and with the help of maple, we can verify that the coefficients of λ1, λ0 are also zero.
Further, we can derive n-fold DT:
$\begin{eqnarray}{\rm{\Phi }}[n]={\rm{\Phi }}-{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }}),\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Theta }} & = & ({\theta }_{1},{\theta }_{2},\ldots ,{\theta }_{n}),\,\,\,\,\,\,\,{\rm{\Omega }}({\theta }_{j},{\rm{\Phi }})=\left(\begin{array}{c}\displaystyle \frac{{{\rm{\Phi }}}_{j}^{\dagger }M{\rm{\Phi }}}{\lambda -{\lambda }_{j}^{* }}\\ \displaystyle \frac{{{\rm{\Psi }}}_{j}^{\dagger }M{\rm{\Phi }}}{\lambda +{\lambda }_{j}}\end{array}\right),\\ {\rm{\Omega }}({\theta }_{k},{\theta }_{j}) & = & \left(\begin{array}{cc}\displaystyle \frac{{{\rm{\Phi }}}_{j}^{\dagger }M{{\rm{\Phi }}}_{k}}{{\lambda }_{k}-{\lambda }_{j}^{* }} & \displaystyle \frac{{{\rm{\Phi }}}_{j}^{\dagger }M{{\rm{\Psi }}}_{k}}{-{\lambda }_{k}^{* }-{\lambda }_{j}^{* }}\\ \displaystyle \frac{{{\rm{\Psi }}}_{j}^{\dagger }M{{\rm{\Phi }}}_{k}}{{\lambda }_{k}+{\lambda }_{j}} & \displaystyle \frac{{{\rm{\Psi }}}_{j}^{\dagger }M{{\rm{\Psi }}}_{k}}{-{\lambda }_{k}^{* }+{\lambda }_{j}}\end{array}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }}) & = & \left(\begin{array}{c}{\rm{\Omega }}({\theta }_{1},{\rm{\Phi }})\\ {\rm{\Omega }}({\theta }_{2},{\rm{\Phi }})\\ \vdots \\ {\rm{\Omega }}({\theta }_{n},{\rm{\Phi }})\end{array}\right),\\ {\rm{\Omega }}({\rm{\Theta }},{\rm{\Theta }}) & = & \left(\begin{array}{cccc}{\rm{\Omega }}({\theta }_{1},{\theta }_{1}) & {\rm{\Omega }}({\theta }_{2},{\theta }_{1}) & \ldots & {\rm{\Omega }}({\theta }_{n},{\theta }_{1})\\ {\rm{\Omega }}({\theta }_{1},{\theta }_{2}) & {\rm{\Omega }}({\theta }_{2},{\theta }_{2}) & \ldots & {\rm{\Omega }}({\theta }_{n},{\theta }_{2})\\ \vdots & \vdots & \vdots & \vdots \\ {\rm{\Omega }}({\theta }_{1},{\theta }_{n}) & {\rm{\Omega }}({\theta }_{2},{\theta }_{n}) & \ldots & {\rm{\Omega }}({\theta }_{n},{\theta }_{n})\end{array}\right),\end{array}\end{eqnarray}$
the relationship between new potential and old one is given by
$\begin{eqnarray}Q[n]=Q+{\rm{i}}\left[{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M,\sigma \right].\end{eqnarray}$
In fact, we have
$\begin{eqnarray*}\begin{array}{l}{\rm{\Phi }}{\left[n\right]}_{x}={{\rm{\Phi }}}_{x}-{{\rm{\Theta }}}_{x}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}_{x}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad -{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}{\left({\rm{\Phi }},{\rm{\Theta }}\right)}_{x}\\ \quad =\left(-{\rm{i}}\lambda \sigma +Q\right){\rm{\Phi }}-\left(-{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Lambda }}+Q{\rm{\Theta }}\right){\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad -{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Phi }}\\ \quad =\left(-{\rm{i}}\lambda \sigma +Q\right){\rm{\Phi }}-Q{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad -{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Phi }}\\ \quad +{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Lambda }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})-{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M{\rm{\Phi }}\\ \quad +{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}(\lambda I-{{\rm{\Lambda }}}^{* }){\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad =\left(-{\rm{i}}\lambda \sigma +Q\right){\rm{\Phi }}-Q{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad -{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Phi }}\\ \quad -{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M{\rm{\Phi }}\\ \quad +{\rm{i}}\lambda \sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Lambda }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})-{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Lambda }}}^{* }{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}\quad =\left(-{\rm{i}}\lambda \sigma +Q\right){\rm{\Phi }}-(-{\rm{i}}\lambda \sigma +Q){\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad -{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad +{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma {\rm{\Phi }}-{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M{\rm{\Phi }}\\ \quad +{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\\ \quad =\left(-{\rm{i}}\lambda \sigma +Q-{\rm{i}}\sigma {\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\right.\\ \quad \left.+{\rm{i}}{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{{\rm{\Theta }}}^{\dagger }M\sigma \right)\\ \quad \left({\rm{\Phi }}-{\rm{\Theta }}{\rm{\Omega }}{\left({\rm{\Theta }},{\rm{\Theta }}\right)}^{-1}{\rm{\Omega }}({\rm{\Phi }},{\rm{\Theta }})\right)\\ \quad =\left(-{\rm{i}}\lambda \sigma +Q[n]\right){\rm{\Phi }}[n].\end{array}\end{eqnarray*}$
Here we use the two formulas of ΘMΦ = (λI − Λ*)ω(Φ, Θ) and ΘMΘ = ω(Θ, Θ)Λ − Λ*ω(Θ, Θ). Because the computation is too complicated, a detailed proof of ${\rm{\Phi }}{\left[n\right]}_{t}=V[n]{\rm{\Phi }}[n]$ is not given here.

4. Soliton solutions of the gSS equation

In this section, we consider different types of soliton solutions of equation (6) from zero seed solution and nonzero seed solution, respectively. From equation (20) we have
$\begin{eqnarray}\begin{array}{rcl}u[1] & = & u-\displaystyle \frac{2{\rm{i}}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left[-{X}_{11}\left({\phi }_{3}{\phi }_{1}^{* }+{\phi }_{1}{\phi }_{2}^{* }\right)\right.\\ & & \left.+{Y}_{11}{\phi }_{1}^{* }{\phi }_{2}^{* }-{Y}_{11}^{* }{\phi }_{1}{\phi }_{3}\right],\\ v[1] & = & v-\displaystyle \frac{2{\rm{i}}}{{X}_{11}^{2}+| {Y}_{11}{| }^{2}}\left[-{X}_{11}\left({\phi }_{1}{\phi }_{4}^{* }+{\phi }_{4}{\phi }_{1}^{* }\right)\right.\\ & & \left.+{Y}_{11}{\phi }_{1}^{* }{\phi }_{4}^{* }-{Y}_{11}^{* }{\phi }_{1}{\phi }_{4}\right],\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{rcl}{X}_{11} & = & \displaystyle \frac{1}{{\lambda }_{1}-{\lambda }_{1}^{* }}\left[a\left(| {\phi }_{2}{| }^{2}+| {\phi }_{3}{| }^{2}\right)+b{\phi }_{2}{\phi }_{3}^{* }\right.\\ & & \left.+{b}^{* }{\phi }_{3}{\phi }_{2}^{* }-| {\phi }_{1}{| }^{2}-| {\phi }_{4}{| }^{2}\right],\\ {Y}_{11} & = & \displaystyle \frac{1}{2{\lambda }_{1}}\left(2a{\phi }_{2}{\phi }_{3}+b{\phi }_{2}^{2}+{b}^{* }{\phi }_{3}^{2}-{\phi }_{1}^{2}-{\phi }_{4}^{2}\right).\end{array}\end{eqnarray}$

4.1. Soliton solution from zero seed solution

Setting zero seed solutions u = 0, v = 0 of the gSS equation (6) and solving the Lax pair (8) at λ = λ1, we obtain
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{1} & = & \left({c}_{1}{{\rm{e}}}^{{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)},{c}_{2}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)},{c}_{3}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)},\right.\\ & & {\left.{c}_{4}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)}\right)}^{T},\\ {\lambda }_{1} & = & \xi +{\rm{i}}\eta ,\end{array}\end{eqnarray}$
where ck(k = 1, 2, 3, 4) are all complex constants. Substituting the equation (38) into solution (36), we obtain
$\begin{eqnarray}\begin{array}{l}u[1]=\\ -4\eta \displaystyle \frac{{g}_{1}{{\rm{e}}}^{-2{\varsigma }_{1}-2{\rm{i}}{d}_{1}}-{g}_{2}{{\rm{e}}}^{-2{\varsigma }_{1}+2{\rm{i}}{d}_{1}}+{g}_{3}{{\rm{e}}}^{2{\varsigma }_{1}-2{\rm{i}}{d}_{1}}+{g}_{4}{{\rm{e}}}^{2{\varsigma }_{1}+2{\rm{i}}{d}_{1}}}{{f}_{1}{{\rm{e}}}^{-4{\varsigma }_{1}}-{f}_{2}{{\rm{e}}}^{4{\varsigma }_{1}}+{f}_{3}-{\eta }^{2}\left({f}_{4}{{\rm{e}}}^{-4{\rm{i}}{d}_{1}}+{f}_{4}^{* }{{\rm{e}}}^{4{\rm{i}}{d}_{1}}\right)},\\ v[1]=\\ -4\eta \displaystyle \frac{{h}_{1}{{\rm{e}}}^{-2{\varsigma }_{1}-2{\rm{i}}{d}_{1}}+{h}_{1}^{* }{{\rm{e}}}^{-2{\varsigma }_{1}+2{\rm{i}}{d}_{1}}+{h}_{2}{{\rm{e}}}^{2{\varsigma }_{1}-2{\rm{i}}{d}_{1}}+{h}_{2}^{* }{{\rm{e}}}^{2{\varsigma }_{1}+2{\rm{i}}{d}_{1}}}{{f}_{1}{{\rm{e}}}^{-4{\varsigma }_{1}}-{f}_{2}{{\rm{e}}}^{4{\varsigma }_{1}}+{f}_{3}-{\eta }^{2}\left({f}_{4}{{\rm{e}}}^{-4{\rm{i}}{d}_{1}}+{f}_{4}^{* }{{\rm{e}}}^{4{\rm{i}}{d}_{1}}\right)},\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{\varsigma }_{1} & = & -\eta x+4\eta \left(3{\xi }^{2}-{\eta }^{2}\right)t,\,\,\,\,\,\,{d}_{1}=\xi x+4\xi \left(3{\eta }^{2}-{\xi }^{2}\right)t,\\ {g}_{1} & = & {\rm{i}}{\alpha }_{2}\eta {c}_{1}^{* }{c}_{2}^{* }(\xi -{\rm{i}}\eta )-{\alpha }_{1}{c}_{3}{c}_{1}^{* }({\xi }^{2}+{\eta }^{2}),\\ {g}_{3} & = & {c}_{3}{c}_{1}{\left({c}_{1}^{* }\right)}^{2}\xi (\xi +{\rm{i}}\eta ),\\ {g}_{2} & = & {\alpha }_{1}{c}_{1}{c}_{2}^{* }({\xi }^{2}+{\eta }^{2})+{\rm{i}}{\alpha }_{2}^{* }\eta (\xi +{\rm{i}}\eta ){c}_{1}{c}_{3},\\ {g}_{4} & = & {c}_{1}^{2}{c}_{1}^{* }{c}_{2}^{* }\xi (\xi -{\rm{i}}\eta ),\\ {h}_{1} & = & {\rm{i}}{\alpha }_{2}{c}_{1}^{* }{c}_{4}^{* }\eta (\xi -{\rm{i}}\eta )-{\alpha }_{1}{c}_{1}^{* }{c}_{4}({\xi }^{2}+{\eta }^{2}),\\ {h}_{2} & = & {\left({c}_{1}^{* }\right)}^{2}{c}_{1}{c}_{4}\xi (\xi +{\rm{i}}\eta ),\\ {f}_{1} & = & {\eta }^{2}| {\alpha }_{2}{| }^{2}-({\xi }^{2}+{\eta }^{2}){\alpha }_{1}^{2},\,\,{f}_{2}={\xi }^{2}| {c}_{1}{| }^{4},\\ {f}_{3} & = & 2{\alpha }_{1}| {c}_{1}{| }^{2}({\xi }^{2}+{\eta }^{2}),\,\,\,{f}_{4}={\alpha }_{2}{\left({c}_{1}^{* }\right)}^{2},\\ {\alpha }_{1} & = & a\left(| {c}_{2}{| }^{2}+| {c}_{3}{| }^{2}\right)+2\mathrm{Re}({{bc}}_{2}{c}_{3}^{* })-| {c}_{4}{| }^{2},\\ {\alpha }_{2} & = & 2{{ac}}_{2}{c}_{3}+{{bc}}_{2}^{2}+{b}^{* }{c}_{3}^{2}-{c}_{4}^{2}.\end{array}\end{eqnarray*}$
Solution (39) represents the breather solution which is shown in figure 1. When ξ = 0, the breather solution becomes to soliton solution
$\begin{eqnarray}\begin{array}{rcl}u[1] & = & \displaystyle \frac{-2\eta {\delta }_{1}}{\sqrt{| {\beta }_{1}{\beta }_{2}| }}{\rm{sech}} \left(\displaystyle \frac{1}{2}\mathrm{ln}\left|\displaystyle \frac{{\beta }_{2}}{{\beta }_{1}}\right|+2{\omega }_{1}\right),\\ v[1] & = & \displaystyle \frac{-2\eta {\delta }_{2}}{\sqrt{| {\beta }_{1}{\beta }_{2}| }}{\rm{sech}} \left(\displaystyle \frac{1}{2}\mathrm{ln}\left|\displaystyle \frac{{\beta }_{2}}{{\beta }_{1}}\right|+2{\omega }_{1}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{\omega }_{1} & = & -\eta x-4{\eta }^{3}t,\\ {\alpha }_{1} & = & a\left(| {c}_{2}{| }^{2}+| {c}_{3}{| }^{2}\right)+2\mathrm{Re}\left({{bc}}_{2}{c}_{3}^{* }\right)-| {c}_{4}{| }^{2},\\ {\alpha }_{2} & = & 2{{ac}}_{2}{c}_{3}+{{bc}}_{2}^{2}+{b}^{* }{c}_{3}^{2}-{c}_{4}^{2},\\ {\beta }_{1} & = & | {\alpha }_{2}{| }^{2}-{\alpha }_{1}^{2},\,\,\,\,\,{\beta }_{2}=2{\alpha }_{1}| {c}_{1}{| }^{2}-2\mathrm{Re}({\alpha }_{2}^{* }{c}_{1}^{2}),\\ {\delta }_{1} & = & -{\alpha }_{1}\left({c}_{3}{c}_{1}^{* }+{c}_{1}{c}_{2}^{* }\right)+{\alpha }_{2}{c}_{1}^{* }{c}_{2}^{* }+{\alpha }_{2}^{* }{c}_{1}{c}_{3},\\ {\delta }_{2} & = & -2{\alpha }_{1}\mathrm{Re}({c}_{1}{c}_{4}^{* })+2\mathrm{Re}\left({\alpha }_{2}{c}_{1}^{* }{c}_{4}^{* }\right).\end{array}\end{eqnarray*}$
The solutions u[1] and v[1] given by (40) represent soliton solutions that propagate with the same velocity 4η2. The amplitude of ∣u[1]∣ is $\left|\tfrac{2\eta {\delta }_{1}}{\sqrt{| {\beta }_{1}{\beta }_{2}| }}\right|$ and it is localized at the line $\tfrac{1}{2}\mathrm{ln}\left|\tfrac{{\beta }_{2}}{{\beta }_{1}}\right|+2{\omega }_{1}=0$. The amplitude of v[1] is $\tfrac{2\eta {\delta }_{2}}{\sqrt{| {\beta }_{1}{\beta }_{2}| }}$ and it is localized at the line $\tfrac{1}{2}\mathrm{ln}\left|\tfrac{{\beta }_{2}}{{\beta }_{1}}\right|+2{\omega }_{1}=0$. It should be pointed out that the case of a = b, ckR(k = 1, 2, 3, 4) cannot appear simultaneously, otherwise the solutions have singularity. Because the plots of ∣u[1]∣ and v[1] are similar, we only exhibit the evolution of soliton solution ∣u[1]∣ given by (40)in figure 2.
Figure 1. The evolution of the breather solution (39) with the parameters: $\xi =\tfrac{1}{2},\eta =\tfrac{1}{2},{c}_{1}={c}_{2}={c}_{4}=1,{c}_{3}=1+\tfrac{{\rm{i}}}{2},a=-\tfrac{1}{2},b=\tfrac{1}{3}$. (a) − (b) show the ∣u[1]∣. (c) − (d) show the v[1].
Figure 2. The evolution of the soliton solution (40) with the parameters : $\eta =\tfrac{1}{2},{c}_{1}={c}_{2}={c}_{4}=1,{c}_{3}=1+\tfrac{{\rm{i}}}{2},a=-\tfrac{1}{2},b=\tfrac{1}{3}$.

4.2. Soliton solution from nonzero seed solution

Substituting nonzero seed solutions u = s, v = r, where s and r are two constants, into the Lax pair (8), we get
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1} & = & {d}_{3}{{\rm{e}}}^{\tau x\,+\,{mt}}+{d}_{4}{{\rm{e}}}^{-\tau x-{mt}},\\ {\phi }_{2} & = & \left({{as}}^{* }+{b}^{* }s\right){d}_{1}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)}+\displaystyle \frac{{s}^{* }}{{\rm{i}}{\lambda }_{1}+\tau }{d}_{3}{{\rm{e}}}^{\tau x+{mt}}\\ & & +\displaystyle \frac{{s}^{* }}{{\rm{i}}{\lambda }_{1}-\tau }{d}_{4}{{\rm{e}}}^{-\tau x-{mt}},\\ {\phi }_{3} & = & \left[-\left({as}+{{bs}}^{* }\right){d}_{1}+{{rd}}_{2}\right]{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)}\\ & & +\displaystyle \frac{s}{{\rm{i}}{\lambda }_{1}+\tau }{d}_{3}{{\rm{e}}}^{\tau x\,+\,{mt}}+\displaystyle \frac{s}{{\rm{i}}{\lambda }_{1}-\tau }{d}_{4}{{\rm{e}}}^{-\tau x-{mt}},\\ {\phi }_{4} & = & \left({{as}}^{* }+{b}^{* }s\right){d}_{2}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{1}(x-4{\lambda }_{1}^{2}t)}\\ & & +\displaystyle \frac{r}{{\rm{i}}{\lambda }_{1}+\tau }{d}_{3}{{\rm{e}}}^{\tau x+{mt}}+\displaystyle \frac{r}{{\rm{i}}{\lambda }_{1}-\tau }{d}_{4}{{\rm{e}}}^{-\tau x-{mt}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}\tau & = & \sqrt{2a| s{| }^{2}+2\mathrm{Re}({b}^{* }{s}^{2})-{r}^{2}-{\lambda }_{1}^{2}},\\ m & = & -\tau \left[4a| s{| }^{2}+4\mathrm{Re}({b}^{* }{s}^{2})-2{r}^{2}+4{\lambda }_{1}^{2}\right].\end{array}\end{eqnarray}$
Let us consider the following two cases where we set $s=r=1,a=-\tfrac{1}{2}$.
Case 1: τR, i.e. $2a| s{| }^{2}+2\mathrm{Re}({b}^{* }{s}^{2})-{r}^{2}-{\lambda }_{1}^{2}\gt 0$.
(i) Let ${d}_{3}={d}_{4}=1,{d}_{2}=\tfrac{{\rm{i}}}{2},b=\tfrac{1}{3}$. We have
$\begin{eqnarray}u[1]=\displaystyle \frac{{K}_{1}}{K},\,\,\,\,\,\,v[1]=\displaystyle \frac{{K}_{2}}{K},\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}{K}_{1} & = & -48\sqrt{3}\cosh \left(\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{3\sqrt{3}+\sqrt{11}}{4}\right)+2{R}_{2}\right)\\ & & +(45+18{\rm{i}}){{\rm{e}}}^{{R}_{1}}\cosh {R}_{2}+\displaystyle \frac{5}{8}{{\rm{e}}}^{2{R}_{1}}-152,\\ {K}_{2} & = & -48\sqrt{3}\cosh \left(\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{3\sqrt{3}+\sqrt{11}}{4}\right)+2{R}_{2}\right)\\ & & -15{{\rm{e}}}^{2{R}_{1}}\cosh {R}_{2}+\displaystyle \frac{5}{8}{{\rm{e}}}^{2{R}_{1}}-152,\\ K & = & 48\sqrt{3}\cosh \left(\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{3\sqrt{3}+\sqrt{11}}{4}\right)+2{R}_{2}\right)\\ & & +\displaystyle \frac{5}{8}{{\rm{e}}}^{2{R}_{1}}+64,\end{array}\end{eqnarray*}$
where ${R}_{1}=\tfrac{3}{2}(x+9t),{R}_{2}=\tfrac{\sqrt{33}}{18}(3x+35t)$. We can see from figure 3 that the soliton solution (43) describes the propagation process of one soliton splitting into two solitons.
Figure 3. The evolution of the soliton solution (43) with parameter: ${\lambda }_{1}=\tfrac{3}{2}{\rm{i}}$. (a) − (b) show the ∣u[1]∣. (c) − (d) show the v[1].
(ii) Let ${d}_{2}=1,{d}_{4}=0,{d}_{3}=\tfrac{{\rm{i}}}{2},b=\tfrac{1}{3}$. We have
$\begin{eqnarray}\begin{array}{rcl}u[1] & = & \displaystyle \frac{{\rm{i}}{A}_{1}{{\rm{e}}}^{{R}_{2}+{R}_{1}}-{A}_{2}{{\rm{e}}}^{2{R}_{2}}+{A}_{3}{{\rm{e}}}^{2{R}_{1}}}{{A}_{2}{{\rm{e}}}^{2{R}_{2}}+{A}_{3}{{\rm{e}}}^{2{R}_{1}}},\\ v[1] & = & -\tanh \left(\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{{A}_{2}}{{A}_{3}}\right)+{R}_{2}-{R}_{1}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{A}_{1} & = & 71064-12312\sqrt{33},\,\,\,{A}_{2}=1863\sqrt{33}-10935,\\ {A}_{3} & = & 4560\sqrt{33}-26320.\end{array}\end{eqnarray*}$
The solution ∣u[1]∣ given by (44) is an anti-soliton soliton that propagates along the line $x=\left(\tfrac{3\sqrt{33}-43}{6}\right)t+\tfrac{9+\sqrt{33}}{16}\mathrm{ln}\tfrac{{A}_{2}}{{A}_{3}}$. The solution v[1] is a kink solution (see figure 4(a)-4(b)).
Figure 4. The evolution of solutions (44) and (45) with parameter: ${\lambda }_{1}=\tfrac{3}{2}{\rm{i}}$. (a) shows the anti-soliton solution ∣u[1]∣. (b) shows the kink solution v[1]. (c) shows the soliton solution ∣u[1]∣ of the case b = 0.
When b = 0, we have
$\begin{eqnarray}\begin{array}{rcl}u[1] & = & \displaystyle \frac{-12{\mathrm{ie}}^{{R}_{3}+{R}_{1}}+4{{\rm{e}}}^{2{R}_{1}}-3{{\rm{e}}}^{2{R}_{3}}}{3{{\rm{e}}}^{2{R}_{3}}+4{{\rm{e}}}^{2{R}_{1}}},\\ v[1] & = & -\tanh \left(\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{3}{4}\right)+{R}_{3}-{R}_{1}\right),\end{array}\end{eqnarray}$
where ${R}_{3}=\tfrac{1}{2}(x+13t)$. The solution ∣u[1]∣ given by (45) is a soliton solution that propagates along the line $x=-7t+\tfrac{1}{2}\mathrm{ln}\tfrac{3}{4}$ (see figure 4(c)), and v[1] is still a kink solution.
We note that the solution ∣u[1]∣ given by (44) is an anti-soliton solution where b ≠ 0 and the solution ∣u[1]∣ given by (45) is a soliton solution where b = 0. This shows that there is a difference between equation (6) and equation (5).
Case 2: If $2a| s{| }^{2}+2\mathrm{Re}({b}^{* }{s}^{2})-{r}^{2}-{\lambda }_{1}^{2}\lt 0$, $\mathrm{Re}(\tau )=0$, depending on the different choices of d2 and d4, we can obtain the following two solutions.
(i) Let ${d}_{2}=1,{d}_{3}=\tfrac{{\rm{i}}}{2},{d}_{4}=0,b=\tfrac{1}{3}$. We have
$\begin{eqnarray}u[1]=1-\displaystyle \frac{{G}_{1}}{G},\,\,\,\,\,\,v[1]=1-\displaystyle \frac{{G}_{2}}{G},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{G}_{1} & = & 9\left({\sigma }_{1}{{\rm{e}}}^{-2{\rm{i}}{R}_{5}+{R}_{4}}+{\sigma }_{1}^{* }{{\rm{e}}}^{2{\rm{i}}{R}_{5}+{R}_{4}}+{\sigma }_{2}{{\rm{e}}}^{-{\rm{i}}{R}_{5}}+{\sigma }_{3}{{\rm{e}}}^{{\rm{i}}{R}_{5}}\right.\\ & & \left.+1536{\mathrm{ie}}^{-{\rm{i}}{R}_{5}+2{R}_{4}}-1024{\mathrm{ie}}^{{\rm{i}}{R}_{5}+2{R}_{4}}+552{{\rm{e}}}^{{R}_{4}}\right),\\ {G}_{2} & = & 3\left({\omega }_{1}{{\rm{e}}}^{-2{\rm{i}}{R}_{5}+{R}_{4}}+{\omega }_{1}^{* }{{\rm{e}}}^{2{\rm{i}}{R}_{5}+{R}_{4}}-{\omega }_{2}{{\rm{e}}}^{-{\rm{i}}{R}_{5}}\right.\\ & & \left.-{\omega }_{2}^{* }{{\rm{e}}}^{{\rm{i}}{R}_{5}}-2560{{\rm{e}}}^{2{R}_{4}}\sin {R}_{5}+1656{{\rm{e}}}^{{R}_{4}}\right),\\ G & = & {m}_{1}{{\rm{e}}}^{-2{\rm{i}}{R}_{5}+{R}_{4}}+{m}^{* }{{\rm{e}}}^{2{\rm{i}}{R}_{5}+{R}_{4}}+5120{{\rm{e}}}^{3{R}_{4}}\\ & & +13248{{\rm{e}}}^{{R}_{4}}+3159{{\rm{e}}}^{-{R}_{4}},\end{array}\end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{rcl}{R}_{4} & = & \displaystyle \frac{1}{2}\left(x+t\right),\,\,\,\,\,\,{R}_{5}=\displaystyle \frac{\sqrt{39}}{18}\left(3x+11t\right),\\ {\sigma }_{1} & = & 68{\rm{i}}\sqrt{39}-204,\,\,\,{\sigma }_{2}=819{\rm{i}}-63\sqrt{39},\\ {\sigma }_{3} & = & 9\sqrt{39}+117{\rm{i}},\\ {\omega }_{1} & = & 204{\rm{i}}\sqrt{39}-612,\,\,\,{\omega }_{2}=351{\rm{i}}-27\sqrt{39},\\ {m}_{1} & = & 306{\rm{i}}\sqrt{39}-918.\end{array}\end{eqnarray*}$
The solution (46) is a breather which is shown in figure 5. When t → ± ∞ , ∣u[1]∣ → 1, v[1] → 1.
Figure 5. The evolution of the breather solution (46) with parameter ${\lambda }_{1}=\tfrac{1}{2}{\rm{i}}$. (a) − (b) show the ∣u[1]∣. (c) − (d) show the v[1].
(ii) Let ${d}_{2}=0,{d}_{3}=\tfrac{{\rm{i}}}{2},{d}_{4}=1,b=\tfrac{1}{3}$. We have
$\begin{eqnarray}u[1]=1+\displaystyle \frac{{F}_{1}}{F},\,\,\,\,\,\,v[1]=1+\displaystyle \frac{{F}_{2}}{F},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{F}_{1} & = & 2\left({\rm{i}}{l}_{1}\cos {R}_{5}-{\rm{i}}{l}_{2}\sin {R}_{5}-{l}_{3}{{\rm{e}}}^{{R}_{4}}\sin 2{R}_{5}\right.\\ & & \left.+{l}_{4}{{\rm{e}}}^{{R}_{4}}\cos 2{R}_{5}+75{{\rm{e}}}^{{R}_{4}}\right).\\ {F}_{2} & = & 2\left(-{l}_{3}\sin 2{R}_{5}+{l}_{4}\cos 2{R}_{5}+75\right),\\ F & = & {l}_{3}{{\rm{e}}}^{{R}_{4}}\sin 2{R}_{5}-{l}_{4}{{\rm{e}}}^{{R}_{4}}\cos 2{R}_{5}-400{{\rm{e}}}^{{R}_{4}}-3159{{\rm{e}}}^{-{R}_{4}},\end{array}\end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{rcl}{l}_{1} & = & 54\sqrt{39}-351,\,\,\,\,\,\,{l}_{2}=27\sqrt{39}+702,\\ {l}_{3} & = & 15\sqrt{39}+60,\,\,\,\,\,\,\,\,{l}_{4}=45-20\sqrt{39}.\end{array}\end{eqnarray*}$
The solution (47) is a periodic-like solution, which is a plane on the left and a periodic wave on the right (see figure 6).
Figure 6. The evolution of periodic-like solution ∣u[1]∣ with parameter: ${\lambda }_{1}=\tfrac{1}{2}{\rm{i}}$.

5. Two-soliton solutions of the gSS equation

By using the two-fold Darboux transformation, we have
$\begin{eqnarray}u[2]=u\,+\,2{\rm{i}}\displaystyle \frac{{W}_{1}}{W},\,\,\,\,v[2]=v\,+\,2{\rm{i}}\displaystyle \frac{{W}_{2}}{W},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}W & = & \left|\begin{array}{cccc}{X}_{11} & -{Y}_{11}^{* } & -{X}_{21}^{* } & -{Y}_{21}^{* }\\ {Y}_{11} & {X}_{11} & {Y}_{21} & {X}_{21}\\ {X}_{21} & -{Y}_{21}^{* } & {X}_{22} & -{Y}_{22}^{* }\\ {Y}_{21} & -{X}_{21}^{* } & {Y}_{22} & {X}_{22}\end{array}\right|,\\ {W}_{1} & = & \left|\begin{array}{ccccc}{X}_{11} & -{Y}_{11}^{* } & -{X}_{21}^{* } & -{Y}_{21}^{* } & -{\phi }_{1}^{* }\\ {Y}_{11} & {X}_{11} & {Y}_{21} & {X}_{21} & -{\phi }_{1}\\ {X}_{21} & -{Y}_{21}^{* } & {X}_{22} & -{Y}_{22}^{* } & -{\phi }_{5}^{* }\\ {Y}_{21} & -{X}_{21}^{* } & {Y}_{22} & {X}_{22} & -{\phi }_{5}\\ {\phi }_{3} & {\phi }_{2}^{* } & {\phi }_{7} & {\phi }_{6}^{* } & 0\end{array}\right|,\\ {W}_{2} & = & \left|\begin{array}{ccccc}{X}_{11} & -{Y}_{11}^{* } & -{X}_{21}^{* } & -{Y}_{21}^{* } & -{\phi }_{1}^{* }\\ {Y}_{11} & {X}_{11} & {Y}_{21} & {X}_{21} & -{\phi }_{1}\\ {X}_{21} & -{Y}_{21}^{* } & {X}_{22} & -{Y}_{22}^{* } & -{\phi }_{5}^{* }\\ {Y}_{21} & -{X}_{21}^{* } & {Y}_{22} & {X}_{22} & -{\phi }_{5}\\ {\phi }_{4} & {\phi }_{4}^{* } & {\phi }_{8} & {\phi }_{8}^{* } & 0\end{array}\right|,\end{array}\end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{rcl}{X}_{21} & = & \displaystyle \frac{1}{{\lambda }_{1}-{\lambda }_{2}^{* }}\left[a\left({\phi }_{3}{\phi }_{7}^{* }+{\phi }_{2}{\phi }_{6}^{* }\right)+b{\phi }_{2}{\phi }_{7}^{* }\right.\\ & & \left.+{b}^{* }{\phi }_{3}{\phi }_{6}^{* }-{\phi }_{1}{\phi }_{5}^{* }-{\phi }_{4}{\phi }_{8}^{* }\right],\\ {Y}_{21} & = & \displaystyle \frac{1}{{\lambda }_{1}+{\lambda }_{2}}\left[a\left({\phi }_{3}{\phi }_{6}+{\phi }_{2}{\phi }_{7}\right)+b{\phi }_{2}{\phi }_{6}\right.\\ & & \left.+{b}^{* }{\phi }_{3}{\phi }_{7}-{\phi }_{1}{\phi }_{5}-{\phi }_{4}{\phi }_{8}\right],\\ {X}_{22} & = & \displaystyle \frac{1}{{\lambda }_{2}-{\lambda }_{2}^{* }}\left[a\left(| {\phi }_{6}{| }^{2}+| {\phi }_{7}{| }^{2}\right)+b{\phi }_{6}{\phi }_{7}^{* }\right.\\ & & \left.+{b}^{* }{\phi }_{7}{\phi }_{6}^{* }-| {\phi }_{5}{| }^{2}-| {\phi }_{8}{| }^{2}\right],\\ {Y}_{22} & = & \displaystyle \frac{1}{2{\lambda }_{2}}\left(2a{\phi }_{6}{\phi }_{7}+b{\phi }_{6}^{2}+{b}^{* }{\phi }_{7}^{2}-{\phi }_{5}^{2}-{\phi }_{8}^{2}\right),\end{array}\end{eqnarray*}$
and X11 and Y11 are represented by equation (37).

5.1. Two-soliton solutions from zero seed solution

Taking zero seed solutions u = 0, v = 0, and solving the Lax pair (8), we obtain
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{4k-3} & = & {c}_{4k-3}{{\rm{e}}}^{{\rm{i}}{\lambda }_{k}(x-4{\lambda }_{k}^{2}t)},\\ {\phi }_{4k-2} & = & {c}_{4k-2}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{k}(x-4{\lambda }_{k}^{2}t)},\\ {\phi }_{4k-1} & = & {c}_{4k-1}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{k}(x-4{\lambda }_{k}^{2}t)},\\ {\phi }_{4k} & = & {c}_{4k}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{k}(x-4{\lambda }_{k}^{2}t)},\\ k & = & 1,2\end{array}\end{eqnarray}$
where c4k−3, c4k−2, c4k−1, c4k (k = 1, 2) are all complex constants. Substituting equation (49) into equation (48), and taking $a=-\tfrac{1}{2}$, $b=\tfrac{1}{3}$, c1 = c2 = c4 = c5 = c6 = c8 = 1, ${c}_{3}={c}_{7}=1+\tfrac{{\rm{i}}}{2}$, we get
$\begin{eqnarray}u[2]=2{\rm{i}}\displaystyle \frac{{W}_{1}}{W},\,\,\,\,\,\,v[2]=2{\rm{i}}\displaystyle \frac{{W}_{2}}{W},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{X}_{11} & = & -\displaystyle \frac{1}{2{\rm{i}}{\eta }_{1}}\left(\displaystyle \frac{35}{24}{{\rm{e}}}^{-{\vartheta }_{1}-{\vartheta }_{1}^{* }}+{{\rm{e}}}^{{\vartheta }_{1}+{\vartheta }_{1}^{* }}\right),\\ {X}_{22} & = & -\displaystyle \frac{1}{2{\rm{i}}{\eta }_{2}}\left(\displaystyle \frac{35}{24}{{\rm{e}}}^{-{\vartheta }_{2}-{\vartheta }_{2}^{* }}+{{\rm{e}}}^{{\vartheta }_{2}+{\vartheta }_{2}^{* }}\right),\\ {Y}_{11} & = & -\displaystyle \frac{1}{2({\xi }_{1}+{\rm{i}}{\eta }_{1})}\left(\left(\displaystyle \frac{17}{12}+\displaystyle \frac{{\rm{i}}}{6}\right){{\rm{e}}}^{-2{\vartheta }_{1}}+{{\rm{e}}}^{2{\vartheta }_{1}}\right),\\ {Y}_{22} & = & -\displaystyle \frac{1}{2({\xi }_{2}+{\rm{i}}{\eta }_{2})}\left(\left(\displaystyle \frac{17}{12}+\displaystyle \frac{{\rm{i}}}{6}\right){{\rm{e}}}^{-2{\vartheta }_{2}}+{{\rm{e}}}^{2{\vartheta }_{2}}\right),\\ {X}_{21} & = & -\displaystyle \frac{1}{\left({\xi }_{1}-{\xi }_{2}\right)+{\rm{i}}({\eta }_{1}+{\eta }_{2})}\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl} & & \times \left(\displaystyle \frac{35}{24}{{\rm{e}}}^{-{\vartheta }_{1}-{\vartheta }_{2}^{* }}+{{\rm{e}}}^{{\vartheta }_{1}+{\vartheta }_{2}^{* }}\right),\\ {Y}_{21} & = & -\displaystyle \frac{1}{({\xi }_{1}+{\xi }_{2})+{\rm{i}}({\eta }_{1}+{\eta }_{2})}\\ & & \times \left(\left(\displaystyle \frac{17}{12}+\displaystyle \frac{{\rm{i}}}{6}\right){{\rm{e}}}^{-{\vartheta }_{1}-{\vartheta }_{2}}+{{\rm{e}}}^{{\vartheta }_{1}+{\vartheta }_{2}}\right),\\ {\vartheta }_{j} & = & {\rm{i}}{\lambda }_{j}(x-4{\lambda }_{j}^{2}t),\,\,\,\,{\lambda }_{j}={\xi }_{j}+{\rm{i}}{\eta }_{j},\,\,\,\,j=1,2.\end{array}\end{eqnarray*}$
When ξj ≠ 0, the solution (50) is a two-breather solution. We plot them in figure 7. When ξj = 0, we obtain a two-soliton solution from solution (50),
$\begin{eqnarray}u[2]=\displaystyle \frac{{D}_{1}}{D},\,\,\,\,\,\,\,\,v[2]=\displaystyle \frac{{D}_{2}}{D},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{D}_{1} & = & 4{\rm{i}}\sqrt{159}\left({\eta }_{1}^{2}-{\eta }_{2}^{2}\right)\left[{\eta }_{1}\cosh \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{48}{53}\right)\right)\right.\\ & & \left.-{\eta }_{2}\cosh \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{48}{53}\right)\right)\right],\\ {D}_{2} & = & -16\sqrt{159}\left({\eta }_{1}^{2}-{\eta }_{2}^{2}\right)\left[{\eta }_{1}\cosh \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{48}{53}\right)\right)\right.\\ & & \left.+{\eta }_{2}\cosh \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{48}{53}\right)\right)\right],\\ D & = & 53{\left({\eta }_{1}-{\eta }_{2}\right)}^{2}\cosh \left(2{\kappa }_{1}+2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\left(\displaystyle \frac{48}{53}\right)\right)\\ & & +53{\left({\eta }_{1}+{\eta }_{2}\right)}^{2}\cosh \left(2{\kappa }_{2}-2{\kappa }_{1}\right)-212{\eta }_{1}{\eta }_{2},\\ {\kappa }_{1} & = & -{\eta }_{1}\left(x+4{\eta }_{1}^{2}t\right),\,\,\,\,\,\,\,\,{\kappa }_{2}=-{\eta }_{2}\left(x+4{\eta }_{2}^{2}t\right).\end{array}\end{eqnarray*}$
Furthermore, we get the following asymptotic property of solutions (51):
Figure 7. The evolution of two-breather solution (50) with the parameters: ${\lambda }_{1}=\tfrac{1}{2}+{\rm{i}},{\lambda }_{2}=1+{\rm{i}}$. (a) − (b) show the ∣u[2]∣. (c) − (d) show the v[2].
(1) When κ1O(1), we have
$\begin{eqnarray}\begin{array}{rcl}u[2] & = & \left\{\begin{array}{ll}\displaystyle \frac{6{\rm{i}}{\eta }_{1}\mathrm{sgn}\left(\tfrac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{2}\to +\infty ,\\ \displaystyle \frac{6{\rm{i}}{\eta }_{1}\mathrm{sgn}\left(\tfrac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{2}\to -\infty .\end{array}\right.\\ v[2] & = & \left\{\begin{array}{ll}\displaystyle \frac{24{\eta }_{1}\mathrm{sgn}\left(\tfrac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{2}\to +\infty ,\\ \displaystyle \frac{24{\eta }_{1}\mathrm{sgn}\left(\tfrac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{1}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{2}\to -\infty .\end{array}\right.\end{array}\end{eqnarray}$
(2) When κ2O(1), we have
$\begin{eqnarray}\begin{array}{rcl}u[2] & = & \left\{\begin{array}{ll}-\displaystyle \frac{6{\rm{i}}{\eta }_{2}\mathrm{sgn}\left(\tfrac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{1}\to +\infty ,\\ -\displaystyle \frac{6{\rm{i}}{\eta }_{2}\mathrm{sgn}\left(\tfrac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{1}\to -\infty .\end{array}\right.\\ v[2] & = & \left\{\begin{array}{ll}-\displaystyle \frac{24{\eta }_{2}\mathrm{sgn}\left(\tfrac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{1}\to +\infty ,\\ -\displaystyle \frac{24{\eta }_{2}\mathrm{sgn}\left(\tfrac{{\eta }_{1}-{\eta }_{2}}{{\eta }_{1}+{\eta }_{2}}\right)}{\sqrt{159}}{\rm{sech}} \left(2{\kappa }_{2}+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{48}{53}{\left(\displaystyle \frac{{\eta }_{1}+{\eta }_{2}}{{\eta }_{1}-{\eta }_{2}}\right)}^{2}\right), & \,\,\,\,\,\,{\kappa }_{1}\to -\infty .\end{array}\right.\end{array}\end{eqnarray}$
The solution (51) represents the two-soliton solution. Figure 8 depicts the evolution of the two-soliton solution u[2] with the parameters: ${c}_{1}={c}_{2}={c}_{4}={c}_{5}={c}_{6}={c}_{8}=1,{c}_{3}\,={c}_{7}=1+\tfrac{{\rm{i}}}{2}$, $a=-\tfrac{1}{2},b=\tfrac{1}{3}$.
Figure 8. The evolution of the two-soliton solution ∣u[2]∣ given by (51) with the parameters: ${\eta }_{1}=-\tfrac{1}{2},{\eta }_{2}=1$.

5.2. Two-soliton solutions from nonzero seed solution

Choosing the seed solutions u = s, v = r, and solving the linear spectral equation yields
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{4j-3} & = & {d}_{4j-1}{{\rm{e}}}^{{\tau }_{j}x+{m}_{j}t}+{d}_{4j}{{\rm{e}}}^{-{\tau }_{j}x-{m}_{j}t},\\ {\phi }_{4j-2} & = & \left({{as}}^{* }+{b}^{* }s\right){d}_{4j-3}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{j}(x-4{\lambda }_{j}^{2}t)}\\ & & +\displaystyle \frac{{s}^{* }}{{\rm{i}}{\lambda }_{j}+{\tau }_{j}}{d}_{4j-1}{{\rm{e}}}^{{\tau }_{j}x+{m}_{j}t}+\displaystyle \frac{{s}^{* }}{{\rm{i}}{\lambda }_{j}-{\tau }_{j}}{d}_{4j}{{\rm{e}}}^{-{\tau }_{j}x-{m}_{j}t},\\ {\phi }_{4j-1} & = & \left[-\left({as}+{{bs}}^{* }\right){d}_{4j-3}+{{rd}}_{4j-2}\right]{{\rm{e}}}^{-{\rm{i}}{\lambda }_{j}(x-4{\lambda }_{j}^{2}t)}\\ & & +\displaystyle \frac{s}{{\rm{i}}{\lambda }_{j}+{\tau }_{j}}{d}_{4j-1}{{\rm{e}}}^{{\tau }_{j}x+{m}_{j}t}\\ & & +\displaystyle \frac{s}{{\rm{i}}{\lambda }_{j}-{\tau }_{j}}{d}_{4j}{{\rm{e}}}^{-{\tau }_{j}x-{m}_{j}t},\\ {\phi }_{4j} & = & \left({{as}}^{* }+{b}^{* }s\right){d}_{4j-2}{{\rm{e}}}^{-i{\lambda }_{j}(x-4{\lambda }_{j}^{2}t)}\\ & & +\displaystyle \frac{r}{{\rm{i}}{\lambda }_{j}+{\tau }_{j}}{d}_{4j-1}{{\rm{e}}}^{{\tau }_{j}x+{m}_{j}t}\\ & & +\displaystyle \frac{r}{{\rm{i}}{\lambda }_{j}-{\tau }_{j}}{d}_{4j}{{\rm{e}}}^{-{\tau }_{j}x-{m}_{j}t},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\tau }_{j} & = & \sqrt{2a| s{| }^{2}+2\mathrm{Re}({b}^{* }{s}^{2})-{r}^{2}-{\lambda }_{j}^{2}},\\ {m}_{j} & = & -{\tau }_{j}\left(4a| s{| }^{2}+4\mathrm{Re}({b}^{* }{s}^{2})-2{r}^{2}+4{\lambda }_{j}^{2}\right),\\ j & = & 1,2.\end{array}\end{eqnarray}$
Set ${d}_{3}={d}_{7}=\tfrac{{\rm{i}}}{2}$, d4 = d8 = 0, d1 = d2 = d5 = d6 = 1, s = r = 1. We consider the following two cases of solutions.
Case 1: $\mathrm{Re}({\tau }_{1})=0$, $\mathrm{Re}({\tau }_{2})=0$. In this case, we have
$\begin{eqnarray}\begin{array}{rcl}{X}_{11} & = & \displaystyle \frac{{\rm{i}}}{108}\left(27+46{{\rm{e}}}^{{\varpi }_{1}}\right),{X}_{22}=\displaystyle \frac{{\rm{i}}}{54}\left(27+46{{\rm{e}}}^{x+t}\right),\\ {Y}_{11} & = & \displaystyle \frac{{\rm{i}}}{36{\left({\rm{i}}\sqrt{3}-3\right)}^{2}}\left[68\left({\rm{i}}\sqrt{3}-1\right){{\rm{e}}}^{{\varpi }_{1}}\right.\\ & & \left.+27\left({\rm{i}}\sqrt{3}-3\right){{\rm{e}}}^{2{\rm{i}}{\varpi }_{2}}\right],\\ {Y}_{22} & = & \displaystyle \frac{{\rm{i}}}{18{\left({\rm{i}}\sqrt{39}-3\right)}^{2}}\left[27\left({\rm{i}}\sqrt{39}-3\right){{\rm{e}}}^{2{\varpi }_{3}}\right.\\ & & \left.+68\left({\rm{i}}\sqrt{39}+5\right){{\rm{e}}}^{x+t}\right],\\ {X}_{21} & = & -\displaystyle \frac{{\rm{i}}}{54\left({\rm{i}}\sqrt{3}-3\right)({\rm{i}}\sqrt{39}+3)}\left[27\left({\rm{i}}\sqrt{39}-{\rm{i}}\sqrt{3}\right.\right.\\ & & \left.+\sqrt{13}+11\right){{\rm{e}}}^{-{\rm{i}}{\varpi }_{3}+{\rm{i}}{\varpi }_{2}}\\ & & \left.+92({\rm{i}}\sqrt{39}-{\rm{i}}\sqrt{3}+\sqrt{13}+3){{\rm{e}}}^{{\varpi }_{4}}\right],\\ {Y}_{21} & = & \displaystyle \frac{{\rm{i}}}{54\left({\rm{i}}\sqrt{3}-3\right)\left({\rm{i}}\sqrt{39}-3\right)}\left[27\left({\rm{i}}\sqrt{39}\right.\right.\\ & & \left.+{\rm{i}}\sqrt{3}+\sqrt{13}-11\right){{\rm{e}}}^{{\rm{i}}{\varpi }_{2}+{\rm{i}}{\varpi }_{3}}\\ & & \left.+68\left({\rm{i}}\sqrt{39}+{\rm{i}}\sqrt{3}+\sqrt{13}-3\right){{\rm{e}}}^{{\varpi }_{4}}\right],\end{array}\end{eqnarray}$
where ϖ1 = 2(x + 4t), ${\varpi }_{2}=\tfrac{\sqrt{3}}{9}(3x+20t)$, ${\varpi }_{3}=\tfrac{\sqrt{39}}{18}(3x+11t)$, ${\varpi }_{4}=\tfrac{3}{2}(x+3t)$. The solution describes the interaction of two breather solutions (see figure 9).
Figure 9. The evolution of two breather solutions with the parameters: λ1 = i, ${\lambda }_{2}=\tfrac{{\rm{i}}}{2}$, $a=-\tfrac{1}{2}$, $b=\tfrac{1}{3}$. (a)–(b) show the ∣u[2]∣. (c)–(d) show the v[2].
Case 2: If ${\tau }_{2}\in {\bf{R}},\mathrm{Re}({\tau }_{1})=0$, we have
$\begin{eqnarray*}\begin{array}{rcl}{X}_{11} & = & \displaystyle \frac{{\rm{i}}}{8000}\left(5681{{\rm{e}}}^{{\varpi }_{1}}+2000\right),\\ {Y}_{11} & = & \displaystyle \frac{{\rm{i}}}{800{\left(3{\rm{i}}\sqrt{10}-10\right)}^{2}}\left[2261(6{\rm{i}}\sqrt{10}-1){{\rm{e}}}^{{\varpi }_{1}}\right.\\ & & \left.+2000(3{\rm{i}}\sqrt{10}-1){{\rm{e}}}^{2{\rm{i}}{\varpi }_{5}}\right],\\ {X}_{22} & = & -\displaystyle \frac{{\rm{i}}}{1200{\left(\sqrt{35}-15\right)}^{2}}\left[5681\left(3\sqrt{35}-26\right){{\rm{e}}}^{{\varpi }_{8}}\right.\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{rcl} & & \left.+3000\left(\sqrt{35}-15\right){{\rm{e}}}^{2{\varpi }_{6}}\right],\\ {Y}_{22} & = & \displaystyle \frac{{\rm{i}}}{1200{\left(\sqrt{35}-15\right)}^{2}}\left[2261\left(3\sqrt{35}-26\right){{\rm{e}}}^{{\varpi }_{8}}\right.\\ & & \left.+3000\left(\sqrt{35}-15\right){{\rm{e}}}^{2{\varpi }_{6}}\right],\\ {X}_{21} & = & -\displaystyle \frac{{\rm{i}}}{2000\left(3{\rm{i}}\sqrt{10}-10\right)\left(\sqrt{35}-15\right)}\\ & & \left[1000\left(9{\rm{i}}\sqrt{10}-3{\rm{i}}\sqrt{14}+2\sqrt{35}-68\right){{\rm{e}}}^{{\rm{i}}{\varpi }_{5}+{\varpi }_{6}}\right.\\ & & \left.+5681\left(9{\rm{i}}\sqrt{10}-3{\rm{i}}\sqrt{14}+2\sqrt{35}-30\right){{\rm{e}}}^{{\varpi }_{7}}\right],\\ {Y}_{21} & = & \displaystyle \frac{{\rm{i}}}{2000\left(3{\rm{i}}\sqrt{10}-10\right)\left(\sqrt{35}-15\right)}\\ & & \left[1000\left(9{\rm{i}}\sqrt{10}-3{\rm{i}}\sqrt{14}+2\sqrt{35}-68\right){{\rm{e}}}^{{\rm{i}}{\varpi }_{5}+{\varpi }_{6}}\right.\\ & & \left.+2261\left(9{\rm{i}}\sqrt{10}-3{\rm{i}}\sqrt{14}+2\sqrt{35}-30\right){{\rm{e}}}^{{\varpi }_{7}}\right]\end{array}\end{eqnarray}$
where ${\varpi }_{5}=\tfrac{\sqrt{10}}{50}(15x+117t)$, ${\varpi }_{6}=\tfrac{\sqrt{35}}{50}(5x+64t)$, ${\varpi }_{7}=\tfrac{5}{2}(x+7t)$ and ϖ8 = 3x + 27t. In this case, ∣u[2]∣ is a solution describing the interaction of a breather and a soliton solution, and v[2] is a solution describing the interaction of a breather and a kink. Figure 10 gives their evolution process.
Figure 10. The evolution of solutions ∣u[2]∣ and v[2] with the parameters: λ1 = i, ${\lambda }_{2}=\tfrac{3}{2}{\rm{i}}$, $a=-\tfrac{1}{2}$, $b=\tfrac{1}{20}$. (a)–(b) show the ∣u[2]∣ describing the interaction of a breather and a soliton. (c)–(d) show v[2] describing the interaction of a breather and a kink.

6. Conclusion

In this paper, we have introduced and studied a two-component gSS equation. A Darboux transformation of the two-component gSS equation has been constructed from its Lax pair. By applying the Darboux transformation, we have obtained its various solutions, including a breather solution, kink solution, anti-soliton solution and periodic-like solution. We should stress that there exists a difference in the soliton solutions between the two-component Sasa-Satsuma equation (5) and our two-component gSS equation (6), e.g. an anti-soliton solution does not appear for equation (5).

The work of ZNZ is supported by the National Natural Science Foundation of China under Grant No. 12071286, and by the Ministry of Economy and Competitiveness of Spain under contract PID2020-115273GB-I00(AEI/FEDER, EU).

1
Kodama Y 1985 Optical solitons in a monomode fiber J. Stat. Phys. 39 597

DOI

2
Kodama Y Hasegawa A 1987 Nonlinear pulse propagation in a monomode dielectric guide IEEE J Quantum Elect. 23 510

DOI

3
Chen H H Lee Y C Liu C S 1979 Integrability of nonlinear Hamiltonian systems by inverse scattering method Phys. Scr. 20 490

DOI

4
Kaup D J Newell A C 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 798

DOI

5
Hirota R 1973 Exact envelope-soliton solutions of a nonlinear wave equation J. Math. Phys. 14 805

DOI

6
Sasa N Satsuma J 1991 New type of soliton solutions for a higher-order nonlinear Schrödinger equation J. Phys. Soc. Japan 60 409

DOI

7
Mihalache D Torner L Moldoveanu F Panoiu N C Truta N 1993 Inverse-scattering approach to femtosecond solitons in monomode optical fibers Phys. Rev. E 48 4699

DOI

8
Kaup D Yang J K 2009 The inverse scattering transform and squared eigenfunctions for a degenerate 3 × 3 operator Inverse Probl. 25 105010

DOI

9
Nimmo J Yilmaz H 2015 Binary Darboux transformation for the Sasa-Satsuma equation J. Phys. A. Math. Theor. 48 425202

DOI

10
Haider B Hassan M Saleem U 2011 Binary Darboux transformation and quasideterminant solutions of the chiral field J. Nonlinear Math. Phys. 18 299

11
Riaz H W A 2019 Noncommutative coupled complex modified Korteweg-de Vries equation: Darboux and binary Darboux transformations Mod. Phys. Lett. A 34 1950054

DOI

12
Song C Q Xiao D M Zhu Z N 2017 Reverse space-time nonlocal Sasa-Satsuma equation and its solutions J. Phys. Soc. Japan 86 054001

DOI

13
Ling L M 2016 The algebraic representation for high order solution of Sasa-Satsuma equation Discrete Cont. Dyn.-S 9 1975

DOI

14
Xu T Wang D H Li M Liang H 2014 Soliton and breather solutions of the Sasa-Satsuma equation via the Darboux transformation Phys. Scr. 89 075207

15
Ghosh S Kundu A Nandy S 1999 Soliton solutions, Liouville integrability and gauge equivalence of Sasa Satsuma equation J. Math. Phys. 40 1993

DOI

16
Gilson C Hietarinta J Nimmo J Ohta Y 2003 Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions Phys. Rev. E 68 016614

17
Geng X G Li Y H Wei J Zhai Y Y 2021 Darboux transformation of a two-component generalized Sasa-Satsuma equation and explicit solutions Math. Methods Appl. Sci. 44 12727

DOI

18
Wang J Su T Geng X G Li R M 2020 Riemann-Hilbert approach and N-soliton solutions for a new two-component Sasa-Satsuma equation Nonlinear Dyn. 101 597

DOI

Outlines

/