Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Breather, lump, and interaction solutions to a nonlocal KP system

  • Quanyong Zhu 1 ,
  • Lijun Xu , 2 ,
  • Jinxi Fei 3 ,
  • Huiling Wu 1 ,
  • Zhengyi Ma 1, 4
Expand
  • 1Institute of Nonlinear Analysis and Department of Mathematics, Lishui University, Lishui 323000, China
  • 2Faculty of Preschool Teacher Education, Lishui University, Songyang 323400, China
  • 3Institute of Optoelectronic Technology and Department of Photoelectric Engineering, Lishui University, Lishui 323000, China
  • 4Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310038, China

Received date: 2023-01-12

  Revised date: 2023-03-11

  Accepted date: 2023-05-29

  Online published: 2023-07-06

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

A new high-dimensional two-place Alice–Bob-Kadomtsev–Petviashvili (AB-KP) equation is proposed by applying the Alice–Bob-Bob–Alice principle and shifted-parity, delayed time reversal, charge conjugation (${\hat{P}}_{s}{\hat{T}}_{d}\hat{C}$) principle to the usual KP equation. Based on the dependent variable transformation, the bilinear form of the AB-KP system is constructed. Explicit trigonometric-hyperbolic, rational and rational-hyperbolic solutions are presented by taking advantage of the Hirota bilinear method. The obtained breather, lump, and interaction solutions enrich the solution structure of nonlocal nonlinear systems. The three-dimensional graphs of these nonlinear wave solutions are demonstrated by choosing the specific parameters.

Cite this article

Quanyong Zhu , Lijun Xu , Jinxi Fei , Huiling Wu , Zhengyi Ma . Breather, lump, and interaction solutions to a nonlocal KP system[J]. Communications in Theoretical Physics, 2023 , 75(7) : 075007 . DOI: 10.1088/1572-9494/acd99a

1. Introduction

The pioneering application of the Korteweg–de Vries (KdV) formula for the propagation velocity of a soliton to two problems by John Scott and Russell, the discovery by Boussinesq, Korteweg, and de Vries of the first formulation of model equations to describe a soliton stand as two of the most important developments in modern nonlinear science. As a prototypical completely integrable system, the KdV equation has had a tremendous impact on many active fields of pure mathematics, physical sciences, and the fields in between [1, 2]. The KdV equation also has important applications in other famous integrable equations, including the nonlinear Schrödinger equation (NLS) and the sine-Gordon equation (SG) [3, 4].
Applications for these celebrated integrable systems include nonlinear optics in Kerr media, condensed matter physics, fluid mechanics, semiconductor physics, electromagnetics, laser physics, hydrodynamics, lattice dynamics and plasma physics [511]. There are also many continuous and discrete integrable evolution partial differential equations (PDEs) that are physically significant and apply to a plethora of situations. Recently, a novel integrable nonlinear evolution PDE, namely, the nonlocal NLS equation, was discovered from the reduction of the Ablowitz–Kaup–Newell–Segue (AKNS) hierarchy [12]. Soon afterwards, other types of integrable nonlocal evolution PDEs have been constructed, such as integrable nonlocal KdV type equations, nonlocal Sine/Sinh-Gordon equations, and couple nonlocal NLS equations [1315]. Enlightened by these findings, there is great interest in the field of integrable nonlocal parity-time (PT) symmetric systems in mathematical physics societies. A profusion of other unusual properties has also been reported in integrable nonlocal PT-symmetric systems. Meanwhile, there are other intrinsic properties in physics, such as charge conjugation ($\hat{C}$), shifted parity (${\hat{P}}_{s}$) and delayed time reversal (${\hat{T}}_{d}$) and their cross combinations, such as $\hat{P}\hat{C}$, $\hat{P}\hat{T}$, ${\hat{P}}_{s}\hat{C}$, and ${\hat{P}}_{s}{\hat{T}}_{d}$, that can be employed to model two or more place physical problems. These systems are called Alice-Bob (AB) systems submitted to the AB-BA (Alice–Bob-Bob–Alice) principle and the ${\hat{P}}_{s}{\hat{T}}_{d}\hat{C}$ principle [16, 17]. To obtain concrete results, various systematic machineries have been proposed to construct explicit solutions for nonlocal nonlinear PDEs. For example, the inverse scattering transform method, the Hirota bilinear method, the Riemann-Hilbert approach, the variable separation method, the Bäcklund transformation method, and the symmetry reduction method. These methods have been widely sharpened in the last few years, e.g., see [1830] and the references therein. Since most of the nonlinear PDEs of physically significant are written in high dimensions, whether these equations can be integrated is a question of fundamental importance. Shi et al obtained mixed lump-soliton solutions for the extended high-dimensional Nizhnik-Novikov-Veselov equation using the Hirota bilinear method [31]. Wei et al derived soliton molecules and multi-breather solutions for the high-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation [32].
In this work, the construction problem of coherent structures to a high-dimensional, nonlocal, and nonlinear system, i.e., the high-dimensional Alice–Bob-Kadomtsev–Petviashvili (AB-KP) equation, is treated. The considered system is given by
$\begin{eqnarray}\begin{array}{l}{[{A}_{t}+{B}_{t}+4\alpha (A+B)({A}_{x}+{B}_{x})+\beta ({A}_{{xxx}}+{B}_{{xxx}})]}_{x}\\ +{\sigma }^{2}({A}_{{yy}}+{B}_{{yy}})+{\gamma }^{2}({A}_{{zz}}+{B}_{{zz}})=0,\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{l}A=A(x,y,z,t),\quad B={\hat{P}}_{s}^{x}{\hat{P}}_{s}^{y}{\hat{P}}_{s}^{z}{\hat{T}}_{d}A\\ =\,A(-x+{x}_{0},-y+{y}_{0},-z+{z}_{0},-t+{t}_{0}),\end{array}\end{eqnarray*}$
${A}_{t}=\tfrac{\partial A}{\partial t}$, etc, α, β, Σ and γ are arbitrary constants. Historically, the KP equation has received intensive interest and is one of the best-known integrable multi-dimensional systems. As a universal model, a wide variety of physically significant problems arising in very different areas (e.g., plasma physics, water waves, and internal waves) are described by the KP equation. Many methods have been proposed for search analytical solutions of the KP equation, such as the Darboux transformation method [33], the long wave limit approach [34], and the Hirota bilinear method [35].
This paper is arranged as follows. In section 2, we first construct the high-dimensional AB-KP system via AB-BA and the ${\hat{P}}_{s}{\hat{T}}_{d}\hat{C}$ principle. The bilinear form of the AB-KP system is then deduced according to the Hirota method. A breather solution is obtained with the help of a variable transformation technique. In section 3, the rational lump solution to the AB-KP system is obtained by taking the auxiliary function as a quadratic function. Furthermore, the interaction between a lump and a pair of solitons of the AB-KP system is illustrated in section 4. Finally, we give our conclusions in section 5.

2. Breather solution to the AB-KP equation

The high-dimensional AB-KP equation (1) is established according to ${\hat{P}}_{s}{\hat{T}}_{d}\hat{C}$ principles. By substituting the symmetric $u=\tfrac{1}{2}(A+B)$ into the classical high-dimensional KP equation
$\begin{eqnarray}{[{u}_{t}+8\alpha {{uu}}_{x}+\beta {u}_{{xxx}}]}_{x}+{\sigma }^{2}{u}_{{yy}}+{\gamma }^{2}{u}_{{zz}}=0,\end{eqnarray}$
we have
$\begin{eqnarray}\begin{array}{l}{[{A}_{t}+{B}_{t}+4\alpha (A+B)({A}_{x}+{B}_{x})+\beta ({A}_{{xxx}}+{B}_{{xxx}})]}_{x}\\ +{\sigma }^{2}({A}_{{yy}}+{B}_{{yy}})+{\gamma }^{2}({A}_{{zz}}+{B}_{{zz}})=0.\end{array}\end{eqnarray}$
equation (3) can be split into the following two equations
$\begin{eqnarray}\begin{array}{l}{[{A}_{t}+\alpha (A+B)(3{A}_{x}+{B}_{x})+\beta {A}_{{xxx}}]}_{x}\\ +{\sigma }^{2}{A}_{{yy}}+{\gamma }^{2}{A}_{{zz}}+G(A,B)=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{[{B}_{t}+\alpha (A+B)(3{B}_{x}+{A}_{x})+\beta {B}_{{xxx}}]}_{x}\\ +{\sigma }^{2}{B}_{{yy}}+{\gamma }^{2}{B}_{{zz}}-G(A,B)=0,\end{array}\end{eqnarray}$
where G(A, B) is an arbitrary function of A and B. B is related to A under the ${\hat{P}}_{s}{\hat{T}}_{d}$ principle, i.e., $B={\hat{P}}_{s}^{x}{\hat{P}}_{s}^{y}{\hat{P}}_{s}^{z}{\hat{T}}_{d}A$ = A( − x + x0, − y + y0, − z + z0, − t + t0), where P and T are parity transformation and time reversal operators, respectively. It is easy to find that if B is far from A, then the AB-KP equation is nonlocal. Without loss of generality, G(A, B) is fixed to zero, then equation (4) can be reduced to the following system
$\begin{eqnarray}\begin{array}{l}{[{A}_{t}+\alpha (A+B)(3{A}_{x}+{B}_{x})+\beta {A}_{{xxx}}]}_{x}\\ +{\sigma }^{2}{A}_{{yy}}+{\gamma }^{2}{A}_{{zz}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{[{B}_{t}+\alpha (A+B)(3{B}_{x}+{A}_{x})+\beta {B}_{{xxx}}]}_{x}\\ +{\sigma }^{2}{B}_{{yy}}+{\gamma }^{2}{B}_{{zz}}=0.\end{array}\end{eqnarray}$
It is clear that equations 5(a) and (b) are equivalent to the following equation
$\begin{eqnarray}\begin{array}{l}{[{A}_{t}+\alpha (A+B)(3{A}_{x}+{B}_{x})+\beta {A}_{{xxx}}]}_{x}\\ +{\sigma }^{2}{A}_{{yy}}+{\gamma }^{2}{A}_{{zz}}=0.\end{array}\end{eqnarray}$
Inspired by Bell polynomial theories, we introduce the dependent variable transformation as follows
$\begin{eqnarray}A={(\mathrm{ln}f)}_{{xx}}+a{(\mathrm{ln}f)}_{x},\end{eqnarray}$
$\begin{eqnarray}B={(\mathrm{ln}f)}_{{xx}}-a{(\mathrm{ln}f)}_{x},\end{eqnarray}$
where a is an arbitrary constant. Transformation (7) is an ordinary Bäcklund transformation with a = 0. By substituting transformation (7) into equation (5), the bilinear form of the AB-KP system can be derived as follows
$\begin{eqnarray}({D}_{x}{D}_{t}+{D}_{x}^{4}+{\sigma }^{2}{D}_{y}^{2}+{\gamma }^{2}{D}_{z}^{2})(f\cdot f)=0,\end{eqnarray}$
where ${D}_{x}{D}_{t},{D}_{x}^{4}$ and Dy2 are the Hirota bilinear derivative operators defined by
$\begin{eqnarray}\begin{array}{l}{D}_{x}^{\alpha }{D}_{y}^{\beta }{D}_{z}^{\gamma }{D}_{t}^{\delta }(f\cdot g)={\left(\displaystyle \frac{\partial }{\partial x}-\displaystyle \frac{\partial }{\partial x^{\prime} }\right)}^{\alpha }{\left(\displaystyle \frac{\partial }{\partial y}-\displaystyle \frac{\partial }{\partial y^{\prime} }\right)}^{\beta }\\ \times {\left(\displaystyle \frac{\partial }{\partial z}-\displaystyle \frac{\partial }{\partial z^{\prime} }\right)}^{\gamma }{\left(\displaystyle \frac{\partial }{\partial t}-\displaystyle \frac{\partial }{\partial t^{\prime} }\right)}^{\delta }\\ \times f(x,y,z,t)g(x^{\prime} ,y^{\prime} ,z^{\prime} ,t^{\prime} ){| }_{x^{\prime} =x,y^{\prime} =y,z^{\prime} =z,t^{\prime} =t}.\end{array}\end{eqnarray}$
The bilinear form of the AB-KP system (8) can be rewritten as follows
$\begin{eqnarray}\begin{array}{l}{{ff}}_{{xt}}-{f}_{x}{f}_{t}+\beta ({{ff}}_{{xxxx}}-4{f}_{x}{f}_{{xxx}}+3{f}_{{xx}}^{2})\\ +\,{\sigma }^{2}({{ff}}_{{yy}}-{f}_{y}^{2})+{\gamma }^{2}({{ff}}_{{zz}}-{f}_{z}^{2})=0.\end{array}\end{eqnarray}$
It is well-known that a class of breather solutions to the classical KP equation can be obtained via the general technique. In order to search for breather solutions to the high-dimensional AB-KP equation, the auxiliary function f can be written as
$\begin{eqnarray}f=2\sqrt{{b}_{1}}\cosh (\xi )+{b}_{2}\cos (\eta ),\end{eqnarray}$
where $\xi \,=\,{b}_{3}[{a}_{1}(x\,-\,\tfrac{{x}_{0}}{2})\,+\,{a}_{2}(y\,-\,\tfrac{{y}_{0}}{2})\,+\,{a}_{3}(z\,-\,\tfrac{{z}_{0}}{2})\,+\,{a}_{4}(t\,-\,\tfrac{{t}_{0}}{2})]$, $\eta \,=\,{b}_{4}[{a}_{5}(x\,-\,\tfrac{{x}_{0}}{2})\,+\,{a}_{6}(y\,-\,\tfrac{{y}_{0}}{2})\,+\,{a}_{7}(z\,-\,\tfrac{{z}_{0}}{2})\,+\,{a}_{8}(t\,-\,\tfrac{{t}_{0}}{2})]$, ai( i = 1, ⋯ ,8), bj( j = 1, ⋯ ,4) are real valued parameters to be determined. By substituting the auxiliary function (11) into equation (10) directly and vanishing the coefficients of the polynomial of ai and bj, we have deduced the following constraint equations
$\begin{eqnarray}{b}_{1}=\displaystyle \frac{1}{4}\displaystyle \frac{{b}_{2}^{2}{b}_{4}^{2}\left[-3{a}_{5}^{2}\beta {\left({a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}\right)}^{2}+{b}_{3}^{2}{\gamma }^{2}{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}+{b}_{3}^{2}{\sigma }^{2}{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}\right]}{{b}_{3}^{2}\left[3{a}_{1}^{2}\beta {\left({a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}\right)}^{2}+{b}_{4}^{2}{\gamma }^{2}{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}+{b}_{4}^{2}{\sigma }^{2}{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}\right]},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{a}_{4}={a}_{1}\beta (3{a}_{5}^{2}{b}_{4}^{2}-{a}_{1}^{2}{b}_{3}^{2})\\ \quad -\displaystyle \frac{{\gamma }^{2}({a}_{1}{a}_{3}^{2}{b}_{3}^{2}-{a}_{1}{a}_{7}^{2}{b}_{4}^{2}+2{a}_{3}{a}_{5}{a}_{7}{b}_{4}^{2})}{{a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}}\\ \quad -\displaystyle \frac{{\sigma }^{2}({a}_{1}{a}_{2}^{2}{b}_{3}^{2}-{a}_{1}{a}_{6}^{2}{b}_{4}^{2}+2{a}_{2}{a}_{5}{a}_{6}{b}_{4}^{2})}{{a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{a}_{8}={a}_{5}\beta ({a}_{5}^{2}{b}_{4}^{2}-3{a}_{1}^{2}{b}_{3}^{2})\\ \quad -\displaystyle \frac{{\gamma }^{2}({a}_{5}{a}_{7}^{2}{b}_{4}^{2}-{a}_{5}{a}_{3}^{2}{b}_{3}^{2}+2{a}_{1}{a}_{3}{a}_{7}{b}_{3}^{2})}{{a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}}\\ \quad -\displaystyle \frac{{\sigma }^{2}({a}_{5}{a}_{6}^{2}{b}_{4}^{2}-{a}_{5}{a}_{2}^{2}{b}_{3}^{2}+2{a}_{1}{a}_{2}{a}_{6}{b}_{3}^{2})}{{a}_{1}^{2}{b}_{3}^{2}+{a}_{5}^{2}{b}_{4}^{2}}.\end{array}\end{eqnarray}$
Then noticing the variable transformation (7), a breather solution of the AB-KP system (6) may be expressed as
$\begin{eqnarray}A=-\displaystyle \frac{3\beta }{2}\displaystyle \frac{{{\rm{\Delta }}}^{2}}{\alpha {{\rm{\Gamma }}}^{2}}+\displaystyle \frac{3\beta }{2}\displaystyle \frac{{{\rm{\Theta }}}^{2}}{\alpha {\rm{\Gamma }}}+\displaystyle \frac{a{\rm{\Delta }}}{{\rm{\Gamma }}},\end{eqnarray}$
$\begin{eqnarray}B=-\displaystyle \frac{3\beta }{2}\displaystyle \frac{{{\rm{\Delta }}}^{2}}{\alpha {{\rm{\Gamma }}}^{2}}+\displaystyle \frac{3\beta }{2}\displaystyle \frac{{{\rm{\Theta }}}^{2}}{\alpha {\rm{\Gamma }}}-\displaystyle \frac{a{\rm{\Delta }}}{{\rm{\Gamma }}},\end{eqnarray}$
where ${\rm{\Delta }}=2{a}_{1}{b}_{3}\sqrt{{b}_{1}}\sinh (\xi )-{a}_{5}{b}_{2}{b}_{4}\sin (\eta )$, ${\rm{\Gamma }}=2\sqrt{{b}_{1}}\cosh (\xi )+{b}_{2}\cos (\eta )$ and ${\rm{\Theta }}=2{a}_{1}^{2}{b}_{3}^{2}\sqrt{{b}_{1}}\cosh (\xi )-{a}_{5}^{2}{b}_{2}{b}_{4}^{2}\cos (\eta )$.
This kind of breather solution is illustrated in figures 1 and 2 with the choice of parameters $a=\tfrac{1}{2}$, a1 = a2 = a3 = a5 = a6 = 1, a7 = $-\tfrac{1}{2},{b}_{2}=-1,{b}_{3}=1,{b}_{4}=2,\alpha =1/10,\beta $ = $\tfrac{1}{5},\gamma $ = Σ = 2I, x0 = y0 = z0 = t0 = 1. Figure 1 shows the three-dimensional profiles of the breather solution (15) and (16) with t = 0 and y = 1, respectively, and the density plots are depicted in figure 2.
Figure 1. The exhibition of the breather solution with t = 0, y = 1: (a) solution (15); (b) solution (16).
Figure 2. The density plots of the breather solution with t = 0, y = 1: (a) solution (15); (b) solution (16).

3. Lump solution

In this section, we will inquire into rational solutions of the AB-KP system in detail and show that equation (6) has a lump solution, decaying in all directions. By applying the Taylor expansion technique to equation (11) at ε = 0 with b1 = 1 + a9ε2, b2 = − 2, (b3, b4) = (ε, ε), one obtains the quadratic auxiliary function f, which can be expressed as
$\begin{eqnarray}f={g}^{2}+{h}^{2}+{a}_{9},\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}g={a}_{1}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{2}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)\\ \quad +{a}_{3}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)+{a}_{4}\left(t-\displaystyle \frac{{t}_{0}}{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}h={a}_{5}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{6}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)\\ \quad +{a}_{7}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)+{a}_{8}\left(t-\displaystyle \frac{{t}_{0}}{2}\right).\end{array}\end{eqnarray}$
By inserting (17) into (10) directly, one can deduce the following constraint conditions
$\begin{eqnarray}\begin{array}{l}{a}_{4}=\displaystyle \frac{{\gamma }^{2}[{a}_{1}({a}_{7}^{2}-{a}_{3}^{2})-2{a}_{3}{a}_{5}{a}_{7}]}{{a}_{1}^{2}+{a}_{5}^{2}}\\ \quad +\displaystyle \frac{{\sigma }^{2}[{a}_{1}({a}_{6}^{2}-{a}_{2}^{2})-2{a}_{2}{a}_{5}{a}_{6})]}{{a}_{1}^{2}+{a}_{5}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{a}_{8}=\displaystyle \frac{{\gamma }^{2}[{a}_{5}({a}_{3}^{2}-{a}_{7}^{2})-2{a}_{1}{a}_{3}{a}_{7}]}{{a}_{1}^{2}+{a}_{5}^{2}}\\ \quad +\displaystyle \frac{{\sigma }^{2}[{a}_{5}({a}_{2}^{2}-{a}_{6}^{2})-2{a}_{1}{a}_{2}{a}_{6})]}{{a}_{1}^{2}+{a}_{5}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}{a}_{9}=-\displaystyle \frac{3\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{3}}{{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}{\sigma }^{2}+{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}{\gamma }^{2}}.\end{eqnarray}$
By virtue of the variable transformation (7), a lump solution of the system (5) can be obtained as follows:
$\begin{eqnarray}\begin{array}{l}A=-\displaystyle \frac{6\beta {\left({a}_{1}g+{a}_{5}h\right)}^{2}}{\alpha {\left({g}^{2}+{h}^{2}+{a}_{9}\right)}^{2}}+\displaystyle \frac{3\beta ({a}_{1}^{2}+{a}_{5}^{2})}{\alpha ({g}^{2}+{h}^{2}+{a}_{9})}\\ \quad +\,\displaystyle \frac{2a({a}_{1}g+{a}_{5}h)}{{g}^{2}+{h}^{2}+{a}_{9}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}B=-\displaystyle \frac{6\beta {\left({a}_{1}g+{a}_{5}h\right)}^{2}}{\alpha {\left({g}^{2}+{h}^{2}+{a}_{9}\right)}^{2}}+\displaystyle \frac{3\beta ({a}_{1}^{2}+{a}_{5}^{2})}{\alpha ({g}^{2}+{h}^{2}+{a}_{9})}\\ \quad -\displaystyle \frac{2a({a}_{1}g+{a}_{5}h)}{{g}^{2}+{h}^{2}+{a}_{9}},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{l}g={a}_{1}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{2}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+{a}_{3}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)\\ \quad +\left(\displaystyle \frac{{\gamma }^{2}\left[{a}_{1}\left({a}_{7}^{2}-{a}_{3}^{2}\right)-2{a}_{3}{a}_{5}{a}_{7}\right]}{{a}_{1}^{2}+{a}_{5}^{2}}\right.\\ \left.\quad +\displaystyle \frac{{\sigma }^{2}\left[{a}_{1}({a}_{6}^{2}-{a}_{2}^{2})-\left.2{a}_{2}{a}_{5}{a}_{6}\right)\right]}{{a}_{1}^{2}+{a}_{5}^{2}}\right)\left(t-\displaystyle \frac{{t}_{0}}{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}h={a}_{5}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{6}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+{a}_{7}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)\\ \quad +\left(\displaystyle \frac{{\gamma }^{2}\left[{a}_{5}({a}_{3}^{2}-{a}_{7}^{2})-2{a}_{1}{a}_{3}{a}_{7}\right]}{{a}_{1}^{2}+{a}_{5}^{2}}\right.\\ \quad \left.+\displaystyle \frac{{\sigma }^{2}\left[{a}_{5}({a}_{2}^{2}-{a}_{6}^{2})-\left.2{a}_{1}{a}_{2}{a}_{6}\right)\right]}{{a}_{1}^{2}+{a}_{5}^{2}}\right)(t-\displaystyle \frac{{t}_{0}}{2}).\end{array}\end{eqnarray}$
Analyzing the local properties of (21) where the first derivatives equal to zero yields the maximum amplitude
$\begin{eqnarray}{A}_{\max }={B}_{\max }=\displaystyle \frac{3\beta \left({a}_{1}^{2}+{a}_{5}^{2}\right)}{{a}_{9}\alpha }.\end{eqnarray}$
Further calculation shows that the lump solution moving with the velocities
$\begin{eqnarray}{V}_{x}=\displaystyle \frac{{a}_{3}{a}_{8}-{a}_{4}{a}_{7}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}+\displaystyle \frac{{a}_{3}{a}_{6}-{a}_{2}{a}_{7}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}{V}_{y},\end{eqnarray}$
$\begin{eqnarray}{V}_{z}=\displaystyle \frac{{a}_{4}{a}_{5}-{a}_{1}{a}_{8}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}+\displaystyle \frac{{a}_{2}{a}_{5}-{a}_{1}{a}_{6}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}{V}_{y},\end{eqnarray}$
and along the path
$\begin{eqnarray}\begin{array}{l}z=\displaystyle \frac{{a}_{4}{a}_{5}-{a}_{1}{a}_{8}}{{a}_{3}{a}_{8}-{a}_{4}{a}_{7}}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)\\ \quad +\displaystyle \frac{{a}_{4}{a}_{6}-{a}_{2}{a}_{8}}{{a}_{3}{a}_{8}-{a}_{4}{a}_{7}}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+\displaystyle \frac{{z}_{0}}{2},\end{array}\end{eqnarray}$
which is derived from
$\begin{eqnarray}\begin{array}{l}x=\displaystyle \frac{{a}_{3}{a}_{8}-{a}_{4}{a}_{7}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\\ \quad +\displaystyle \frac{{a}_{3}{a}_{6}-{a}_{2}{a}_{7}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+\displaystyle \frac{{x}_{0}}{2},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}z=\displaystyle \frac{{a}_{4}{a}_{5}-{a}_{1}{a}_{8}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\\ \quad +\displaystyle \frac{{a}_{2}{a}_{5}-{a}_{1}{a}_{6}}{{a}_{1}{a}_{7}-{a}_{3}{a}_{5}}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+\displaystyle \frac{{z}_{0}}{2}.\end{array}\end{eqnarray}$
In figures 3, 4, and 5, the lump solution (21) is drawn for a particular choice of parameters a1 = − 1/2, a2 = a3 = a5 = a6 = a7 = x0 = y0 = z0 = t0 = α = 1, β = 2, and Σ = γ = I(I2 = − 1). Figures 3(a) and 3(b) show the three-dimensional profiles of the lump (21a) and (21b) when t = 0, y = 1, respectively. Figures 4(a) and 4(b) depict the density plots of the lump (21a) and (21b) when t = 0, y = 1, respectively. The contour curves with different values of variable t when y = 1 are drawn in figures 5(a) and (b). One can observe that these lumps evolve along the line z = − x/2 + 1/4.
Figure 3. The exhibition of the lump solution (21) with (20) when t = 0, y = 1: (a) the profile of the lump (21a); (b) the profile of the lump (21b).
Figure 4. The density plots of the lump solution (21) with (20) when t = 0, y = 1: (a) the lump (21a); (b) the lump (21b).
Figure 5. The contour curves of the lump solution (21) with (20) when t = − 2, 0, 2, y = 1:(a) the lump (21a); (b) the lump (21b).

4. Interaction of one lump with a pair of solitons

In this section, we will study the interaction solution consisting of one lump and a pair of solitons for the AB-KP system (6). To this end, the auxiliary function f is assumed as a combination of rational function and hyperbolic function, from which we will obtain the hybrid lump-soliton solution. More precisely, f can be concisely written in terms of rational-hyperbolic form
$\begin{eqnarray}f={g}^{2}+{h}^{2}+{c}_{0}+{c}_{1}\cosh (\theta ),\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{l}g={a}_{1}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{2}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)\\ \quad +{a}_{3}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)+{a}_{4}\left(t-\displaystyle \frac{{t}_{0}}{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}h={a}_{5}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+{a}_{6}\left(y-\displaystyle \frac{{y}_{0}}{2}\right)\\ \quad +{a}_{7}\left(z-\displaystyle \frac{{z}_{0}}{2}\right)+{a}_{8}\left(t-\displaystyle \frac{{t}_{0}}{2}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\theta =k\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+p\left(y-\displaystyle \frac{{y}_{0}}{2}\right)+q\left(z-\displaystyle \frac{{z}_{0}}{2}\right)\\ \quad +\omega \left(t-\displaystyle \frac{{t}_{0}}{2}\right),\end{array}\end{eqnarray}$
where ai(i = 1, 2,…,8), c0, and c1 are real undetermined parameters. We can use (28) and (10) to solve for these undetermined parameters. Upon doing some symbolic computation, the constraints on the undetermined parameters can be written as
$\begin{eqnarray}\begin{array}{rcl}{a}_{4} & = & \displaystyle \frac{{\gamma }^{2}[{a}_{1}({a}_{7}^{2}-{a}_{3}^{2})-2{a}_{3}{a}_{5}{a}_{7}]}{{a}_{1}^{2}+{a}_{5}^{2}}\\ & & +\displaystyle \frac{{\sigma }^{2}[{a}_{1}({a}_{6}^{2}-{a}_{2}^{2})-2{a}_{2}{a}_{5}{a}_{6})]}{{a}_{1}^{2}+{a}_{5}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{a}_{8} & = & \displaystyle \frac{{\gamma }^{2}[{a}_{5}({a}_{3}^{2}-{a}_{7}^{2})-2{a}_{1}{a}_{3}{a}_{7}]}{{a}_{1}^{2}+{a}_{5}^{2}}\\ & & +\displaystyle \frac{{\sigma }^{2}[{a}_{5}({a}_{2}^{2}-{a}_{6}^{2})-2{a}_{1}{a}_{2}{a}_{6})]}{{a}_{1}^{2}+{a}_{5}^{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{c}_{0} & = & -\displaystyle \frac{3\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{3}}{{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}{\sigma }^{2}+{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}{\gamma }^{2}}\\ & & -{c}_{1}^{2}\left[\displaystyle \frac{{\gamma }^{2}{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}}{12\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{3}}+\displaystyle \frac{\left.{\sigma }^{2}{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}\right)}{12\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{3}}\right],\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}p=\displaystyle \frac{k({a}_{1}{a}_{2}+{a}_{5}{a}_{6})}{{a}_{1}^{2}+{a}_{5}^{2}},q=\displaystyle \frac{k({a}_{1}{a}_{3}+{a}_{5}{a}_{7})}{{a}_{1}^{2}+{a}_{5}^{2}},\\ \omega =-\displaystyle \frac{\beta {k}^{4}+{p}^{2}{\sigma }^{2}+{q}^{2}{\gamma }^{2}}{k},\end{array}\end{eqnarray}$
with
$\begin{eqnarray}{k}^{2}=-\displaystyle \frac{{\gamma }^{2}{\left({a}_{1}{a}_{7}-{a}_{3}{a}_{5}\right)}^{2}}{3\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{2}}-\displaystyle \frac{{\sigma }^{2}{\left({a}_{1}{a}_{6}-{a}_{2}{a}_{5}\right)}^{2}}{3\beta {\left({a}_{1}^{2}+{a}_{5}^{2}\right)}^{2}}.\end{eqnarray}$
Since the real parameters are given by (32), we have deduced the following interaction solution between one lump and a pair of solitons of the AB-KP system (5)
$\begin{eqnarray}\begin{array}{rcl}A & = & -\displaystyle \frac{3\beta }{2\alpha }\displaystyle \frac{{\left[2{a}_{1}g+2{a}_{5}h+{c}_{1}k\sinh (\theta )\right]}^{2}}{{\left({g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}\right)}^{2}}\\ & & +\displaystyle \frac{3\beta }{2\alpha }\displaystyle \frac{2{a}_{1}^{2}+2{a}_{5}^{2}+{c}_{1}{k}^{2}\cosh (\theta )}{{g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}}\\ & & +\displaystyle \frac{a\left[2{a}_{1}g+2{a}_{5}h+{c}_{1}k\sinh (\theta )\right]}{{g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}B & = & -\displaystyle \frac{3\beta }{2\alpha }\displaystyle \frac{{\left[2{a}_{1}g+2{a}_{5}h+{c}_{1}k\sinh (\theta )\right]}^{2}}{{\left({g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}\right)}^{2}}\\ & & +\displaystyle \frac{3\beta }{2\alpha }\displaystyle \frac{2{a}_{1}^{2}+2{a}_{5}^{2}+{c}_{1}{k}^{2}\cosh (\theta )}{{g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}}\\ & & -\displaystyle \frac{a\left[2{a}_{1}g+2{a}_{5}h+{c}_{1}k\sinh (\theta )\right]}{{g}^{2}+{h}^{2}+{c}_{1}\cosh (\theta )+{c}_{0}}.\end{array}\end{eqnarray}$
The propagation process of the interaction solution between one lump and a pair of solitons (34a) is depicted in figure 6 with the specific parameters a = 0.5, a1 = − 0.5, b1 = 0.1, a2 = a3 = a5 = a6 = a7 = x0 = y0 = z0 = t0 = 1, and α = 1, β = 2, γ = Σ = I, y = 1. It can be seen that there only exists a pair of solitons at first, a lump and two solitons coexist later, and as time goes on the lump is induced by the soliton on the right-hand hand side gradually, it then splits into a lump and a soliton. The lump is induced by the soliton on the left-hand side when the value of t keeps varying, it then splits into a lump and a soliton again.
Figure 6. The exhibition of interaction between a lump and a pair of solitons by (34a) with (32). (a) t = − 20; (b) t = − 5; (c) t = 0; (d) t = 5; and (e) t = 20.

5. Conclusions

In summary, we derived explicit trigonometric-hyperbolic, rational, and rational-hyperbolic solutions of the high-dimensional AB-KP system. The bilinear form of the AB-KP system is derived by introducing a suitable dependent variable transformation. Mixed trigonometric-hyperbolic, purely rational, and mixed rational-hyperbolic solutions are obtained by setting the auxiliary function as the combination of trigonometric and hyperbolic functions, quadratic function, and the combination of quadratic and hyperbolic functions. The mixed trigonometric-hyperbolic solution corresponds to a breather soliton that oscillates periodically in duration and amplitude. The rational function solution represents one lump that is a local wave with a uniform state in all directions in space. The mixed rational-hyperbolic solution depicts the interaction of one lump with two solitons. The local feature and interactive nature of these nonlinear wave solutions are presented analytically in detail. Furthermore, the three-dimensional graphs of these nonlinear wave solutions are demonstrated. The obtained nonlinear wave solutions enrich the solution structure of two-place nonlocal systems. The established direct method is simple and it can be expected to explore more novel physically meaningful solutions of nonlocal nonlinear systems.

We would like to express our sincere thanks to Dr Junchao Chen for his valuable comments. This work was supported by the National Natural Science Foundation of China under grant number 11 447 017.

1
Shen Y R 1997 Solitons made simple Science 276 1520 1520

DOI

2
Ma W X 2021 Linear superposition of Wronskian rational solutions to the KdV equation Commun. Theor. Phys. 73 065001

DOI

3
Ablowitz M J Been J B Carr L D 2022 Fractional integrable nonlinear soliton equations Phys. Rev. Lett. 128 184101

DOI

4
Hairer M Shen H 2016 The dynamical sine-Gordon model Commun. Math. Phys. 341 933 989

DOI

5
Ren B Cheng X P Lin J 2016 The (2+1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions Nonlinear Dyn. 86 1855 1862

DOI

6
Dai C Q Wang Y Y 2022 Complex waves and their collisions of the breaking soliton model describing hydrodynamics Waves Random Complex Media 32 618 628

DOI

7
Cheng W G Li B Chen Y 2015 Nonlocal symmetry and exact solutions of the (2. 1)-dimensional breaking soliton equation Commun. Nonlinear Sci. Numer. Simul. 29 198 207

DOI

8
Ren B Lin J 2021 D’Alembert wave and soliton molecule of the modified Nizhnik–Novikov–Veselov equation Eur. Phys. J. Plus. 136 123

DOI

9
Hu Y H Zhu Q Y 2017 New analytic solutions of two-dimensional nonlocal nonlinear media Appl. Math. Comput. 305 53 61

DOI

10
Wang L X Dai C Q Wen L 2018 Dynamics of vortices followed by the collapse of ring dark solitons in a two-component Bose–Einstein condensate Phys. Rev. A 97 063607

DOI

11
Li B Ye W C Chen Y 2008 Symmetry, full symmetry groups, and some exact solutions to a generalized Davey–Stewartson system J. Math. Phys. 49 103503

DOI

12
Ablowitz M J Musslimani Z H 2013 Integrable nonlocal nonlinear Schrödinger equation Phys. Rev. Lett. 110 064105

DOI

13
Ma L Y Shen S F Zhu Z N 2017 Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg–de Vries equation J. Math. Phys. 58 103501

DOI

14
Chen K Deng X Lou S Y 2018 Solutions of nonlocal equations reduced from the AKNS hierarchy Stud. Appl. Math. 141 113 141

DOI

15
Michor J Sakhnovich A L 2018 GBDT and algebra-geometric approaches to explicit solutions and wave functions for nonlocal NLS J. Phys. A: Math. Theor. 52 025201

16
Lou S Y Huang F 2017 Alice–Bob physics: coherent solutions of nonlocal KdV systems Sci. Rep. 7 869

DOI

17
Jia M Lou S Y 2018 Exact PsTd invariant and PsTd symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system Phys. Lett. A 382 1157 1166

DOI

18
Bilman D Miller P D 2019 A robust inverse scattering transform for the focusing nonlinear Schrödinger equation Commun. Pure Appl. Math. 72 1722 1805

DOI

19
Zhu Q Z Xu J Fan E G 2018 The Riemann–Hilbert problem and long-time asymptotics for the Kundu–Eckhaus equation with decaying initial value Appl. Math. Lett. 76 81 89

DOI

20
Zhou Q Sun Y Z Triki H 2022 Study on propagation properties of one-soliton in a multimode fiber with higher-order effects Results Phys. 41 105898

DOI

21
Zhou Q Xu M Sun Y 2022 Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons Nonlinear Dyn. 110 1747 1752

DOI

22
Kaplan M Ozer M N 2018 Auto-Bäcklund transformations and solitary wave solutions for the nonlinear evolution equation Opt. Quantum Electron. 50 1 11

DOI

23
Ma W X Fan E G 2011 Linear superposition principle applying to Hirota bilinear equations Comput. Math. Appl. 61 950 959

DOI

24
de Carvalho Ferreira J M Gomes J F Lobo G V 2021 Gauge Miura and Bäcklund transformations for generalized A n-KdV hierarchies J. Phys. A 54 435201

DOI

25
Zhu Q Y Fei J X Ma Z Y 2017 Residual symmetry analysis for novel localized excitations of a (2+1)-dimensional general Korteweg–de Vries system Z. Naturforsch. 72 795 804

DOI

26
Wazwaz A M 2017 Multiple-soliton solutions for extended (3+1)-dimensional Jimbo–Miwa equations Appl. Math. Lett. 64 21 26

DOI

27
Carillo S 2019 KdV-type equations linked via Bäcklund transformations: remarks and perspectives Appl. Numer. Math. 141 81 90

DOI

28
Levi D Rodríguez M A Thomova Z 2020 The discretized Boussinesq equation and its conditional symmetry reduction J. Phys. A 53 045201

DOI

29
Patsiuk O Kovalenko S 2018 Symmetry reduction and exact solutions of the non-linear Black–Scholes equation Commun. Nonlinear Sci. Numer. Simul. 62 164 173

DOI

30
Nass A M 2019 Lie symmetry analysis and exact solutions of fractional ordinary differential equations with neutral delay Appl. Math. Comput. 347 370 380

DOI

31
Shi K Z Shen S F Ren B 2022 Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov equation Commun. Theor. Phys. 74 035001

DOI

32
Wei P F Long C X Zhu C 2022 Soliton molecules, multi-breathers and hybrid solutions in (2.1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation Chaos Solit. Fractals 158 112062

DOI

33
Chen H Z Cheng J P Wu Z E 2022 Super modified KP hierarchy in Kac–van de Leur construction J. Math. Phys. 63 033501

DOI

34
Liu Y Q Wen X Y Wang D S 2019 Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation Comput. Math. Appl. 78 1 19

DOI

35
Feng Y Y Bilige S 2021 Multi-breather, multi-lump and hybrid solutions to a novel KP-like equation Nonlinear Dyn. 106 879 890

DOI

Outlines

/