1. Introduction
2. Basic definitions
[13, 14] Let $f:(0,\infty )\to R$, then the conformable fractional derivative of f of order α is defined as:
[13] Let $\alpha \in (0,1]$ and $f,g$ be α-differentiable at a point t, then we have
1. | (1)${T}_{\alpha }({af}+{bg})={{aT}}_{\alpha }(f)+{{bT}}_{\alpha }(g),{\rm{for}}\,{\rm{all}}\,a,b\in R,$ |
2. | (2)${T}_{\alpha }({t}^{\lambda })=\lambda {t}^{\lambda -\alpha },{\rm{for}}\,{\rm{all}}\,\lambda \in R,$ |
3. | (3)${T}_{\alpha }({fg})={{fT}}_{\alpha }(g)+{{gT}}_{\alpha }(f),$ |
4. | (4)${T}_{\alpha }\left(\tfrac{f}{g}\right)=\tfrac{{{fT}}_{\alpha }(g)-{{gT}}_{\alpha }(f)}{{g}^{2}}.$ |
[14] Assume $f,g:[0,\infty )\to R$ are α-differentiable functions ($0\lt \alpha \leqslant 1$), then $f(g(t))$ is α-differentiable with $t\ne 0$ and $g(t)\ne 0$, we have
[13, 14] Assume $a\geqslant 0$ and $t\geqslant a$. If f is a function defined on $(a,t]$ and $\alpha \in f$, then the α-fractional integral of f is defined by
[13, 14] Suppose $a\geqslant 0$ and $\alpha \in (0,1)$. Also, let f be a continuous function such that ${I}_{\alpha }^{a}(f)(t)$ exists. Then
3. Soliton solutions of equation (2 )
Figure 1. (a) Soliton solution ( |
4. Solitary wave solutions of equation (2 )
Figure 2. Solitary wave solution ( |