Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Solitons and quasi-Grammians of the generalized lattice Heisenberg magnet model

  • Zeeshan Amjad , ,
  • Bushra Haider
Expand
  • Department of Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

Author to whom all correspondence should be addressed.

Received date: 2022-11-26

  Revised date: 2023-05-30

  Accepted date: 2023-05-31

  Online published: 2023-07-20

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we study the discrete Darboux and standard binary Darboux transformation for the generalized lattice Heisenberg magnet model. We calculate the quasi-Grammian solutions by the iteration of standard binary Darboux transformation. Furthermore, we derive the explicit matrix solutions for the binary Darboux matrix and then reduce them to the elementary Darboux matrix and plot the dynamics of solutions.

Cite this article

Zeeshan Amjad , Bushra Haider . Solitons and quasi-Grammians of the generalized lattice Heisenberg magnet model[J]. Communications in Theoretical Physics, 2023 , 75(8) : 085004 . DOI: 10.1088/1572-9494/acda1f

1. Introduction

During the past few decades, there has been a lot of interest in the study of continuous and lattice Heisenberg magnet models. The continuous Heisenberg magnet model is completely integrable and exhibits the exact soliton solutions. Similarly, the lattice Heisenberg magnet model also preserves the integrability. The soliton solutions of this model have been studied using the inverse scattering transform, Bäcklund transformation, Darboux transformation and other solution-generating methods (see, e.g. [19]). The lattice Heisenberg magnet model has been studied in many works (see [1013]). The existence of a Lax pair, Bäcklund transformation and other symmetries of the lattice Heisenberg magnet model explains many aspects of integrability [1017]. Darboux transformation of the generalized lattice Heisenberg magnet model is studied in [25] and soliton solutions are presented.
Discrete integrable systems have received much attention from modern researchers. Many techniques, such as the Darboux transformation, the Hirota method, the Bäcklund transformation, etc, have been employed to calculate the exact solutions of many nonlinear partial differential equations ([3036]). Binary Darboux transformation is a well-known technique used to compute the Grammian-type multisolitons of integrable systems [19, 33]. The general mechanism of this method is to keep both the spectral problem and the corresponding adjoint spectral problem associated with the nonlinear equations, which are invariant with respect to the action of the binary Darboux transformation. Furthermore, the solutions can be expressed in terms of Grammian, quasi-Grammian and quasideterminants in the literature [18, 20, 33, 37, 38].
In this paper, we study the discrete Darboux and binary Darboux transformation of the generalized lattice Heisenberg magnet (GLHM) model. For this purpose, we operate the discrete Darboux matrix on a Lax pair of GLHM models for both the direct and adjoint space to calculate the multi-soliton solutions. For the representation of solutions, we use the quasideterminant approach. Furthermore, by the iteration of binary Darboux transformation, we derive the general expressions of multi quasi-Grammian solutions. Finally, we obtain the explicit solutions for the GLHM model based upon Lie group SU(2) transformation and present the solutions, which also include the soliton solution.

2. Lax pair

The Lax pair of the GLHM model is given as,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{n+1} & = & {A}_{n}{{\rm{\Psi }}}_{n},\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{{\rm{\Psi }}}_{n} & = & {B}_{n}{{\rm{\Psi }}}_{n},\end{array}\end{eqnarray}$
having matrices An and Bn given by,
$\begin{eqnarray}\begin{array}{rcl}{A}_{n} & = & I+\lambda {U}_{n},\\ {B}_{n} & = & \displaystyle \frac{\lambda }{1-{\lambda }^{2}}{J}_{n}+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}{J}_{n}{U}_{n},\end{array}\end{eqnarray}$
where the matrix function UnUn(t) take values from Lie group ${ \mathcal G }$ in the Lie algebra g and $Psi$n ≡ $Psi$n(λ) is an N × N eigen matrix, which depends upon variable n written in subscripts defined over a lattice. The matrix function Un is subjected to constraints given by ${U}_{n}^{2}=I$ and JnUn = Un−1Jn, which also implies JnAn = An−1Jn. The compatibility condition dAn/dt + AnBnBn+1An = 0, is operated on (2.1), which gives the equation of motion of the GLHM model given by,
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{U}_{n}={J}_{n+1}-{J}_{n}.\end{eqnarray}$
Equation of motion (2.3) implies that,
$\begin{eqnarray}{J}_{n+1}({U}_{n+1}+{U}_{n})=({U}_{n}+{U}_{n-1}){J}_{n},\end{eqnarray}$
which is satisfied if we take,
$\begin{eqnarray}{J}_{n}=2{\rm{i}}{{aU}}_{n-1}{\left({U}_{n}+{U}_{n-1}\right)}^{-1}+2b{\left({U}_{n}+{U}_{n-1}\right)}^{-1}.\end{eqnarray}$
By substituting equation (2.5) in (2.3), we derive the following form of the equation of motion:
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{U}_{n}={{\rm{\Delta }}}_{n}[2{\rm{i}}{{aU}}_{n-1}({U}_{n}+{U}_{n-1})-1+2b{\left({U}_{n}+{U}_{n-1}\right)}^{-1}],\end{eqnarray}$
where Δnfn = fn+1fn. For N = 2, we have the simplest 2 × 2 case of Lie group SU(2), for which the matrix Un is expressed as ${U}_{n}={U}_{n}^{a}{\sigma }_{a}$, where σa are the familiar Pauli matrices and the constraint on the matrix Un becomes ${U}_{n}^{2}=I$. I is the 2 × 2 identity matrix. We substitute $2{\left({U}_{n}+{U}_{n-1}\right)}^{-1}=({U}_{n}+{U}_{n-1})/(1+{U}_{n}{U}_{n-1})$ in (2.6) and are able to express the equation of motion in vector notation as,
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{{\boldsymbol{U}}}_{n}={{\rm{\Delta }}}_{n}\left[a\displaystyle \frac{{{\boldsymbol{U}}}_{n}\times {{\boldsymbol{U}}}_{n-1}}{1+{{\boldsymbol{U}}}_{n}\cdot {{\boldsymbol{U}}}_{n-1}}+\displaystyle \frac{{{\boldsymbol{U}}}_{n}+{{\boldsymbol{U}}}_{n-1}}{1+{{\boldsymbol{U}}}_{n}\cdot {{\boldsymbol{U}}}_{n-1}}\right],\qquad \qquad {{\boldsymbol{U}}}_{n}^{2}=1.\end{eqnarray}$

3. Discrete Darboux transformation

Darboux transformation is an important tool to find solutions of integrable systems represented by differential equations, partial differential equations and differential-difference equations (for details see [2029]). We then define the Darboux transformation on the Lax pair (2.1) by using the N × N Darboux matrix Dn(λ) to calculate the soliton solutions. The Darboux matrix transforms the matrix solution from the space W to new space $\widetilde{W}$, i.e.
$\begin{eqnarray}\begin{array}{l}{D}_{n}(\lambda ):W\longrightarrow \widetilde{W}\\ \quad :{{\rm{\Psi }}}_{n}\longrightarrow {\widetilde{{\rm{\Psi }}}}_{n}.\end{array}\end{eqnarray}$
The one-fold Darboux transformation on matrix solution $Psi$n is defined as,
$\begin{eqnarray}{{\rm{\Psi }}}_{n}[1]={D}_{n}(\lambda ){{\rm{\Psi }}}_{n},\end{eqnarray}$
where Dn(λ) is the Darboux matrix. The new transformed solution $Psi$n[1] satisfies the following Lax pair (2.1) as,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{n+1}[1] & = & {A}_{n}[1]{{\rm{\Psi }}}_{n}[1],\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{{\rm{\Psi }}}_{n}[1] & = & {B}_{n}[1]{{\rm{\Psi }}}_{n}[1],\end{array}\end{eqnarray}$
having An[1] and Bn[1] as,
$\begin{eqnarray}\begin{array}{rcl}{A}_{n}[1] & = & I+\lambda {U}_{n}[1],\\ {B}_{n}[1] & = & \displaystyle \frac{\lambda }{1-{\lambda }^{2}}{J}_{n}[1]+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}{J}_{n}[1]{U}_{n}[1],\end{array}\end{eqnarray}$
where I is the identity matrix. In order to obtain the Darboux transformation on matrix solution Un[1], we define the Darboux matrix as,
$\begin{eqnarray}{D}_{n}(\lambda )={\lambda }^{-1}I-{Q}_{n},\end{eqnarray}$
where I is the N × N identity matrix and Qn is the auxiliary matrix of N × N order, which is yet to be found. The choice for Qn is ${Q}_{n}={H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$, where Hn is the distinct matrix solution of the Lax pair (2.1) having order N × N, which can be obtained by using i-eigenvector functions ${\rm{\Psi }}({\lambda }_{{\rm{i}}}){\left|\sigma \right\rangle }_{i}$ evaluated at λi, i = 1,…,N, whereas matrix Λ is a diagonal matrix of order N × N having eigenvalues λ1, λ2,…,λN. Therefore, matrix Hn can be defined as,,
$\begin{eqnarray}{H}_{n}=\left({{\rm{\Psi }}}_{n}({\lambda }_{1}){\left|\sigma \right\rangle }_{1},\ldots ,{{\rm{\Psi }}}_{n}({\lambda }_{N}){\left|\sigma \right\rangle }_{N}\right),\end{eqnarray}$
evaluated at,
$\begin{eqnarray}{\rm{\Lambda }}=\mathrm{diag}({\lambda }_{1},\ldots ,{\lambda }_{N}).\end{eqnarray}$
Using (3.6) and (3.7), the Lax pair (2.1) can be written in matrix form as,
$\begin{eqnarray}{H}_{n+1}={H}_{n}+{U}_{n}{H}_{n}{\rm{\Lambda }},\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{H}_{n}={J}_{n}{H}_{n}{\rm{\Lambda }}{\left(I-{{\rm{\Lambda }}}^{2}\right)}^{-1}+{J}_{n}{U}_{n}{H}_{n}{{\rm{\Lambda }}}^{2}{\left(I-{{\rm{\Lambda }}}^{2}\right)}^{-1}.\end{eqnarray}$
Based upon the above results, we can prove the following theorems.

Under the action of Darboux transformation (3.5), the new solution (3.4) has the identical form as Un in equation (2.2), provided that matrix Qn fulfills the following conditions:

$\begin{eqnarray}{U}_{n}[1]={U}_{n}-\left({Q}_{n+1}-{Q}_{n}\right),\end{eqnarray}$
$\begin{eqnarray}\left({Q}_{n+1}-{Q}_{n}\right){Q}_{n}={U}_{n}{Q}_{n}-{Q}_{n+1}{U}_{n}.\end{eqnarray}$

The relation between the Darboux transformed solution ${U}_{n}[1]$ and the untransformed solution Un is developed and defined in equation (3.10). We then have to show that the choice of matrix ${Q}_{n}={H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$ satisfies the condition (3.11), i.e.

$\begin{eqnarray*}\begin{array}{l}\left({Q}_{n+1}-{Q}_{n}\right){Q}_{n}\\ \quad =\left({H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right){H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1},\\ \quad ={H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\\ \quad +{H}_{n+1}{{\rm{\Lambda }}}^{-2}{H}_{n}^{-1}-{H}_{n+1}{{\rm{\Lambda }}}^{-2}{H}_{n}^{-1},\\ \quad =\left({H}_{n+1}-{H}_{n}\right){{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\\ \quad -{H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}\left({H}_{n+1}-{H}_{n}\right){{\rm{\Lambda }}}^{-1}{H}_{n}^{-1},\\ \quad ={U}_{n}{Q}_{n}-{Q}_{n+1}{U}_{n}.,\end{array}\end{eqnarray*}$
which is equivalent to (3.11). Therefore, the proof is complete.

Under the action of Darboux transformation (3.5), the new solution (3.4 ) has the identical form as Jn in equation (2.2 ), provided that matrix Qn fulfills the following conditions:

$\begin{eqnarray}{J}_{n}[1]={J}_{n}-\displaystyle \frac{{\rm{d}}{Q}_{n}}{{\rm{d}}{t}},\end{eqnarray}$
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{Q}_{n}}{{\rm{d}}{t}}\left(I-{Q}_{n}^{2}\right)=\left[{Q}_{n},{J}_{n}\left({Q}_{n}+{U}_{n}\right)\right].\end{eqnarray}$

The relation between the Darboux transformed solution ${J}_{n}[1]$ and the untransformed solution Jn is developed and defined in equation (3.12). We then have to show that the choice of matrix ${Q}_{n}={H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$ satisfies the condition (3.13). For this, we operate $\tfrac{{\rm{d}}}{{\rm{d}}{t}}$ on matrix $(I-{Q}_{n}^{2})$ as,

$\begin{eqnarray*}\begin{array}{l}\displaystyle \frac{{\rm{d}}{Q}_{n}}{{\rm{d}}{t}}\left(I-{Q}_{n}^{2}\right)\\ \quad =\left(\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right)\left(I-{H}_{n}{{\rm{\Lambda }}}^{-2}{H}_{n}^{-1}\right),\\ \quad =\displaystyle \frac{{\rm{d}}{H}_{n}}{{\rm{d}}{t}}{{\rm{\Lambda }}}^{-1}\left(I-{{\rm{\Lambda }}}^{-2}\right){H}_{n}^{-1}\\ \quad -{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\displaystyle \frac{{\rm{d}}{H}_{n}}{{\rm{d}}{t}}\left(I-{{\rm{\Lambda }}}^{-2}\right){H}_{n}^{-1},\\ \quad =\left[{J}_{n}{H}_{n}{{\rm{\Lambda }}}^{-1}{\left(I-{{\rm{\Lambda }}}^{-2}\right)}^{-1}+{J}_{n}{U}_{n}{H}_{n}{{\rm{\Lambda }}}^{2}{\left(I-{{\rm{\Lambda }}}^{2}\right)}^{-1}\right]\\ \quad {{\rm{\Lambda }}}^{-1}\left(I-{{\rm{\Lambda }}}^{-2}\right){H}_{n}^{-1}-\\ {H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\left[{J}_{n}{H}_{n}{\rm{\Lambda }}{\left(I-{{\rm{\Lambda }}}^{2}\right)}^{-1}\right.\\ \quad \left.+{J}_{n}{U}_{n}{H}_{n}{{\rm{\Lambda }}}^{2}{\left(I-{{\rm{\Lambda }}}^{2}\right)}^{-1}\right]\left(I-{{\rm{\Lambda }}}^{-2}\right){H}_{n}^{-1},\\ \quad =\left[{Q}_{n},{J}_{n}\left({Q}_{n}+{U}_{n}\right)\right],\end{array}\end{eqnarray*}$
which is equivalent to (3.13). Therefore, the proof is complete.

Thus, the matrix ${Q}_{n}={H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$ is a good choice, which satisfies the conditions imposed by the Darboux transformation. Thus, the Darboux transformation preserves the system, i.e. if ${{\rm{\Psi }}}_{n},{U}_{n}$ and Jn, respectively, are the solutions of the linear system (2.1) and (2.2) and the equation of motion (2.4), then ${{\rm{\Psi }}}_{n}[1],{U}_{n}[1]$ and ${W}_{n}[1]$ are also the solutions of the same equations.

In order to study the solutions we use the technique known as quasideterminants given by,
$\begin{eqnarray*}\left|\begin{array}{cc}{P}_{11} & {P}_{12}\\ {P}_{21} & \boxed{{P}_{22}}\end{array}\right|={P}_{22}-{P}_{21}{P}_{11}^{-1}{P}_{12}.\end{eqnarray*}$
For details see [39, 40]. Thus, we can write the Darboux transformation on matrix solution $Psi$n as,
$\begin{eqnarray}\begin{array}{l}{{\rm{\Psi }}}_{n}[1]\equiv {D}_{n}(\lambda ){{\rm{\Psi }}}_{n}=\left({\lambda }^{-1}I-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right){{\rm{\Psi }}}_{n},\\ \quad =\left|\begin{array}{cc}{H}_{n} & {{\rm{\Psi }}}_{n}\\ {H}_{n}{{\rm{\Lambda }}}^{-1} & \boxed{{\lambda }^{-1}I}\end{array}\right|.\end{array}\end{eqnarray}$
For the next iteration of Darboux transformation, take Qn,1 and Qn,2 as the two particular solutions of the Lax pair (3.3) and (3.4) at ${\rm{\Lambda }}={{\rm{\Lambda }}}_{1}^{-1}$ and ${\rm{\Lambda }}={{\rm{\Lambda }}}_{2}^{-1}$, respectively. The two-fold Darboux transformation on $Psi$n[1] is defined as,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Psi }}}_{n}[2] & = & \left({\lambda }^{-1}I-{Q}_{n}[2]\right)\left({\lambda }^{-1}I-{Q}_{n}[1]\right){{\rm{\Psi }}}_{n},\\ & = & \left({\lambda }^{-1}I-{Q}_{n}[2]\right){{\rm{\Psi }}}_{n}[1],\end{array}\end{eqnarray}$
where ${Q}_{n}[1]={H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1}{H}_{n,1}^{-1}$, ${Q}_{n}[2]={H}_{n}[2]{{\rm{\Lambda }}}_{2}^{-1}{\left({H}_{n}[2]\right)}^{-1}$. Also, Hn[2] is written as,
$\begin{eqnarray}\begin{array}{rcl}{H}_{n}[2] & = & ({H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}-{Q}_{n}[1]{H}_{n,2}),\\ & = & \left|\begin{array}{cc}{H}_{n,1} & {H}_{n,2}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & \boxed{{H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}}\end{array}\right|.\end{array}\end{eqnarray}$
Using (3.14) and (3.16) in (3.15), we obtain the following:
$\begin{eqnarray*}\begin{array}{rcl}{{\rm{\Psi }}}_{n}[2] & = & {\lambda }^{-1}\left|\begin{array}{cc}{H}_{n,1} & {{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & \boxed{{\lambda }^{-1}{{\rm{\Psi }}}_{n}}\end{array}\right|-\left|\begin{array}{cc}{H}_{n,1} & {H}_{n,2}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & \boxed{{H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}}\end{array}\right|{{\rm{\Lambda }}}_{2}^{-1}\\ & & \times {\left|\begin{array}{cc}{H}_{n,1} & {H}_{n,2}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & \boxed{{H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}}\end{array}\right|}^{-1}\left|\begin{array}{cc}{H}_{n,1} & {{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & \boxed{{\lambda }^{-1}{{\rm{\Psi }}}_{n}}\end{array}\right|,\\ & = & \left|\begin{array}{cc}{H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {\lambda }^{-1}{{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-2} & \boxed{{\lambda }^{-2}{{\rm{\Psi }}}_{n}}\end{array}\right|-\left|\begin{array}{cc}{H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-2} & \boxed{{H}_{n,2}{{\rm{\Lambda }}}_{2}^{-2}}\end{array}\right|\\ & & \times {\left|\begin{array}{cc}{H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1}\\ {H}_{n,1} & \boxed{{H}_{n,2}}\end{array}\right|}^{-1}\left|\begin{array}{cc}{H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {\lambda }^{-1}{{\rm{\Psi }}}_{n}\\ {H}_{n,1} & \boxed{{{\rm{\Psi }}}_{n}}\end{array}\right|,\\ & = & \left|\begin{array}{ccc}{H}_{n,1} & {H}_{n,2} & {{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1} & {\lambda }^{-1}{{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-2} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-2} & \boxed{{\lambda }^{-2}{{\rm{\Psi }}}_{n}}\end{array}\right|,\end{array}\end{eqnarray*}$
where we have used a homological relation in the second step and a noncommutative Jacobi identity in the last step.1(1For a general quasideterminant expanded about N × N matrix D, we have $\left|\begin{array}{c}E\qquad F\qquad G\\ H\qquad A\qquad B\\ J\qquad C\qquad \boxed{D}\end{array}\right|=\left|\begin{array}{c}E\qquad G\\ J\qquad \boxed{D}\end{array}\right|-\left|\begin{array}{c}E\qquad F\\ J\qquad \boxed{C}\end{array}\right|{\left|\begin{array}{c}E\qquad F\\ H\qquad \boxed{A}\end{array}\right|}^{-1}\left|\begin{array}{c}E\qquad G\\ H\qquad \boxed{B}\end{array}\right|.$ From the noncommutative Jacobi identity, we obtain the homological relation $\left|\begin{array}{c}E\qquad F\qquad G\\ H\qquad A\qquad \boxed{B}\\ J\qquad C\qquad D\end{array}\right|=\left|\begin{array}{c}E\qquad F\qquad O\\ H\qquad A\qquad \boxed{O}\\ J\qquad C\qquad I\end{array}\right|\left|\begin{array}{c}E\qquad F\qquad G\\ H\qquad A\qquad B\\ J\qquad C\qquad \boxed{D}\end{array}\right|,$ where O and I denote the null and identity matrices, respectively.) Similarly, the K-fold Darboux transformation is given by,
$\begin{eqnarray}{{\rm{\Psi }}}_{n}[K]=\left|\begin{array}{ccccc}{H}_{n,1} & {H}_{n,2} & \cdots & {H}_{n,K} & {{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1} & \cdots & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-1} & {\lambda }^{-1}{{\rm{\Psi }}}_{n}\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-(K-1)} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-(K-1)} & \cdots & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-(K-1)} & {\lambda }^{-(K-1)}{{\rm{\Psi }}}_{n}\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-K} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-K} & \cdots & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-K} & \boxed{{\lambda }^{-K}{{\rm{\Psi }}}_{n}}\end{array}\right|.\end{eqnarray}$
The expression (3.10) can then be expressed as,
$\begin{eqnarray}\begin{array}{rcl}{U}_{n}[1] & = & {H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}{U}_{n}{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1},\\ & = & \left|\begin{array}{cc}{H}_{n+1} & I\\ {H}_{n+1}{{\rm{\Lambda }}}^{-1} & \boxed{O}\end{array}\right|{U}_{n}{\left|\begin{array}{cc}{H}_{n} & I\\ {H}_{n}{{\rm{\Lambda }}}^{-1} & \boxed{O}\end{array}\right|}^{-1}.\end{array}\end{eqnarray}$
The result can be generalized to K-times Darboux transformation as,
$\begin{eqnarray}\begin{array}{rcl}{U}_{n}[K] & = & \left|\begin{array}{ccccc}{H}_{n+\mathrm{1,1}} & {H}_{n+\mathrm{1,2}} & \cdots & {H}_{n+1,K} & I\\ {H}_{n+\mathrm{1,1}}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n+\mathrm{1,2}}{{\rm{\Lambda }}}_{2}^{-1} & \cdots & {H}_{n+1,K}{{\rm{\Lambda }}}_{K}^{-1} & O\\ {H}_{n+\mathrm{1,1}}{{\rm{\Lambda }}}_{1}^{-2} & {H}_{n+\mathrm{1,2}}{{\rm{\Lambda }}}_{2}^{-2} & ... & {H}_{n+1,K}{{\rm{\Lambda }}}_{K}^{-2} & O\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {H}_{n+\mathrm{1,1}}{{\rm{\Lambda }}}_{1}^{-K} & {H}_{n+\mathrm{1,2}}{{\rm{\Lambda }}}_{2}^{-K} & \cdots & {H}_{n+1,K}{{\rm{\Lambda }}}_{K}^{-K} & \boxed{O}\end{array}\right|\times \\ & & \times {U}_{n}\times {\left|\begin{array}{ccccc}{H}_{n,1} & {H}_{n,2} & \cdots & {H}_{n,K} & I\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-1} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-1} & \cdots & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-1} & O\\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-2} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-2} & ... & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-2} & O\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {H}_{n,1}{{\rm{\Lambda }}}_{1}^{-K} & {H}_{n,2}{{\rm{\Lambda }}}_{2}^{-K} & \cdots & {H}_{n,K}{{\rm{\Lambda }}}_{K}^{-K} & \boxed{O}\end{array}\right|}^{-1}.\end{array}\end{eqnarray}$
The expressions given by equations (3.17) and (3.19) are the Kth solutions of the GLHM model and these results can easily be derived through induction. We then construct the adjoint Darboux transformation. The adjoint Lax pair is obtained by taking the formal adjoint of the linear equations (2.1) written as,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{n+1} & = & -{A}_{n}^{\dagger }{{\rm{\Phi }}}_{n},\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{{\rm{\Phi }}}_{n} & = & -{B}_{n}^{\dagger }{{\rm{\Phi }}}_{n},\end{array}\end{eqnarray}$
with ${A}_{n}^{\dagger }$ and ${B}_{n}^{\dagger }$ given by,
$\begin{eqnarray}\begin{array}{rcl}{A}_{n}^{\dagger } & = & I+\eta {U}_{n}^{\dagger },\\ {B}_{n}^{\dagger } & = & \displaystyle \frac{\eta }{1-{\eta }^{2}}{J}_{n}^{\dagger }+\displaystyle \frac{{\eta }^{2}}{1-{\eta }^{2}}{U}_{n}^{\dagger }{J}_{n}^{\dagger },\end{array}\end{eqnarray}$
where η is a spectral parameter and Φn is an invertible N × N matrix field in the adjoint space W. The Darboux matrix Dn(η) transforms the matrix solution Φn in space W to a new matrix solution ${\tilde{{\rm{\Phi }}}}_{n}$ in $\widetilde{{W}^{\dagger }}$ i.e.
$\begin{eqnarray}\begin{array}{rcl}{D}_{n}(\eta ) & : & {W}^{\dagger }\longrightarrow {\widetilde{W}}^{\dagger }\\ & : & {{\rm{\Phi }}}_{n}\longrightarrow {\widetilde{{\rm{\Phi }}}}_{n}.\end{array}\end{eqnarray}$
Based upon the above facts, we can write Darboux transformation Φn as,
$\begin{eqnarray}{{\rm{\Phi }}}_{n}[1]\equiv {D}_{n}(\eta ){{\rm{\Phi }}}_{n}=-({\eta }^{-1}I-{S}_{n}){{\rm{\Phi }}}_{n},\end{eqnarray}$
where Sn is the N × N matrix that is to be determined and I is N × N identity matrix. The covariance of the Lax pair under the Darboux transformation requires that the new solution ${\widetilde{{\rm{\Phi }}}}_{n}$ satisfies the Lax pair (3.20) given by,
$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Phi }}}_{n+1}[1] & = & -{A}_{n}^{\dagger }[1]{{\rm{\Phi }}}_{n}[1],\\ {A}_{n}^{\dagger }[1] & = & I+\eta {U}_{n}^{\dagger }[1],\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{{\rm{\Phi }}}_{n}[1] & = & -{B}_{n}^{\dagger }[1]{{\rm{\Phi }}}_{n}[1],\\ {B}_{n}^{\dagger }[1] & = & \displaystyle \frac{\eta }{1-{\eta }^{2}}{J}_{n}^{\dagger }[1]+\displaystyle \frac{{\eta }^{2}}{1-{\eta }^{2}}{U}_{n}^{\dagger }[1]{J}_{n}^{\dagger }[1].\end{array}\end{eqnarray}$
By operating the Darboux transformation (3.23) on (3.24), we obtain the Darboux transformed matrix functions ${U}_{n}^{\dagger }$ and ${J}_{n}^{\dagger }$ as,
$\begin{eqnarray}\begin{array}{rcl}{U}_{n}^{\dagger }[1] & = & {U}_{n}^{\dagger }-({S}_{n+1}-{S}_{n}),\\ {J}_{n}^{\dagger }[1] & = & {J}_{n}^{\dagger }-\displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{S}_{n}.\end{array}\end{eqnarray}$
The matrix Sn can be constructed from the eigen matrices of the Lax pair and we take Sn to be ${S}_{n}={M}_{n}{{\rm{\Xi }}}^{-1}{M}_{n}^{-1}$, where Ξ= diag(η1,…,ηn) is the eigenvalue matrix. The particular matrix solution Mn of the Lax pair (3.20) is an invertible N × N matrix, which is given by,
$\begin{eqnarray}{M}_{n}=\left({{\rm{\Phi }}}_{n}({\eta }_{1})\left|1\right\rangle ,...,\ {{\rm{\Phi }}}_{n}({\eta }_{N})\left|N\right\rangle \right)=\left(\left|{m}_{1}\right\rangle ,...,\ \left|{m}_{N}\right\rangle \right).\end{eqnarray}$
Each column ${\left|{{\rm{\Phi }}}_{{\rm{i}}}\right\rangle }_{n}={{\rm{\Phi }}}_{n}({\eta }_{{\rm{i}}})\left|{e}_{i}\right\rangle $ in Mn is a column solution of the Lax pair (3.20). The K-fold Darboux transformation on the matrix solution and matrix function Φn, ${U}_{n}^{\dagger }$ can be written as,
$\begin{eqnarray}{{\rm{\Phi }}}_{n}[K]=\left|\begin{array}{ccccc}{M}_{n,1} & {M}_{n,2} & \cdots & {M}_{n,K} & {{\rm{\Phi }}}_{n}\\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-1} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-1} & \cdots & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-1} & {\eta }^{-1}{{\rm{\Phi }}}_{n}\\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-2} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-2} & ... & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-2} & {\eta }^{{}^{-}2}{{\rm{\Phi }}}_{n}\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-K} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-K} & \cdots & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-K} & \boxed{{\eta }^{-K}{{\rm{\Phi }}}_{n}}\end{array}\right|.\end{eqnarray}$
Similarly, the quasideterminant of ${U}_{n}^{\dagger }[K]$ is,
$\begin{eqnarray}\begin{array}{rcl}{U}_{n}^{\dagger }[K] & = & \left|\begin{array}{ccccc}{M}_{n+\mathrm{1,1}} & {M}_{n+\mathrm{1,2}} & \cdots & {M}_{n+1,K} & I\\ {M}_{n+\mathrm{1,1}}{{\rm{\Xi }}}_{1}^{-1} & {M}_{n+\mathrm{1,2}}{{\rm{\Xi }}}_{2}^{-1} & \cdots & {M}_{n+1,K}{{\rm{\Xi }}}_{K}^{-1} & O\\ {M}_{n+\mathrm{1,1}}{{\rm{\Xi }}}_{1}^{-2} & {M}_{n+\mathrm{1,2}}{{\rm{\Xi }}}_{2}^{-2} & ... & {M}_{n+1,K}{{\rm{\Xi }}}_{K}^{-2} & O\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {M}_{n+\mathrm{1,1}}{{\rm{\Xi }}}_{1}^{-K} & {M}_{n+\mathrm{1,2}}{{\rm{\Xi }}}_{2}^{-K} & \cdots & {M}_{n+1,K}{{\rm{\Xi }}}_{K}^{-K} & \boxed{O}\end{array}\right|\times \\ & & \times {U}_{n}^{\dagger }\times {\left|\begin{array}{ccccc}{M}_{n,1} & {M}_{n,2} & \cdots & {M}_{n,K} & I\\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-1} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-1} & \cdots & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-1} & O\\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-2} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-2} & ... & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-2} & O\\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {M}_{n,1}{{\rm{\Xi }}}_{1}^{-K} & {M}_{n,2}{{\rm{\Xi }}}_{2}^{-K} & \cdots & {M}_{n,K}{{\rm{\Xi }}}_{K}^{-K} & \boxed{O}\end{array}\right|}^{-1}.\end{array}\end{eqnarray}$
Equations (3.27) and (3.28) are the Kth quasideterminant solutions of the GLHM model for the adjoint space.

4. Standard binary Darboux transformation

In order to define the binary Darboux transformation, we consider the hat space $\hat{W}$, which is a copied version of direct space W, so the corresponding solutions are ${\hat{{\rm{\Phi }}}}_{n}$ ∈$\hat{W}$. Therefore, the equation of motion and the compatibility condition will have the identical form as that for the direct space given by,
$\begin{eqnarray}\begin{array}{rcl}{\hat{{\rm{\Psi }}}}_{n+1} & = & {\hat{A}}_{n}{\hat{{\rm{\Psi }}}}_{n},\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{\hat{{\rm{\Psi }}}}_{n} & = & {\hat{B}}_{n}{\hat{{\rm{\Psi }}}}_{n},\end{array}\end{eqnarray}$
having ${\hat{A}}_{n}$ and ${\hat{B}}_{n}$ are,
$\begin{eqnarray}\begin{array}{rcl}{\hat{A}}_{n} & = & I+\lambda {\hat{U}}_{n},\\ {\hat{B}}_{n} & = & \displaystyle \frac{\lambda }{1-{\lambda }^{2}}{\hat{J}}_{n}+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}{\hat{J}}_{n}{\hat{U}}_{n}.\end{array}\end{eqnarray}$
The specific solutions for the direct and adjoint spaces are Hn and Sn, respectively. Thus, the corresponding solutions for $\hat{W}$ are ${\hat{H}}_{n}$ ∈$\hat{W}$ and ${\hat{{\rm{\Phi }}}}_{n}$ ∈ ${\hat{W}}_{n}^{\dagger }.$ Also assuming that ${\rm{i}}({\hat{H}}_{n})$ ∈ ${\widetilde{W}}^{\dagger },$ we can then write the transformation as,
$\begin{eqnarray}{D}_{n}^{(-1)\dagger }(\lambda ):{W}_{n}^{\dagger }\to {\widetilde{W}}_{n}^{\dagger }.\end{eqnarray}$
Since ${{\rm{\Phi }}}_{n}\in {W}_{n}^{\dagger }$, we have,
$\begin{eqnarray}{\rm{i}}({\hat{H}}_{n})={D}_{n}^{(-1)\dagger }(\lambda ){{\rm{\Phi }}}_{n}.\end{eqnarray}$
Also from ${D}_{n}^{\dagger }(\lambda )({\rm{i}}({H}_{n}))=0$, we obtain ${\rm{i}}({H}_{n})={M}_{n}^{(-1)\dagger }$ and similarly ${\rm{i}}({\hat{M}}_{n})={\hat{M}}_{n}^{(-1)\dagger }$. Therefore, from the above equations we can write,
$\begin{eqnarray*}{\hat{H}}_{n}^{(-1)\dagger }={D}_{n}^{(-1)\dagger }(\lambda ){{\rm{\Phi }}}_{n},\end{eqnarray*}$
and
$\begin{eqnarray}{\hat{H}}_{n}={\left({D}_{n}^{(-1)\dagger }(\lambda ){{\rm{\Phi }}}_{n}\right)}^{(-1)\dagger },\end{eqnarray}$
where ${D}_{n}(\lambda )={\lambda }^{-1}I-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$. By substituting the expression of Dn(λ) in equation (4.5), we obtain,
$\begin{eqnarray}\begin{array}{c}{\hat{H}}_{n}={\left({\left({\lambda }^{-1}I-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right)}^{(-1)\dagger }{{\rm{\Phi }}}_{n}\right)}^{(-1)\dagger }\\ =\,({\lambda }^{-1}I-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}){{\rm{\Phi }}}_{n}^{(-1)\dagger }\,\\ =\,{H}_{n}({\lambda }^{-1}I-{{\rm{\Lambda }}}^{-1}){H}_{n}^{-1}{{\rm{\Phi }}}_{n}^{(-1)\dagger }\,\\ =\,{H}_{n}({\lambda }^{-1}I-{{\rm{\Lambda }}}^{-1}){\left({{\rm{\Phi }}}_{n}^{\dagger }{H}_{n}\right)}^{-1}\,\\ =\,{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1},\,\end{array}\end{eqnarray}$
where the algebraic potential Δn is defined as,
$\begin{eqnarray}{{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n})=({{\rm{\Phi }}}_{n}^{\dagger }{H}_{n}){\left({\lambda }^{-1}I-{{\rm{\Lambda }}}^{-1}\right)}^{-1}.\end{eqnarray}$
Similarly, for the adjoint space matrix ${\hat{M}}_{n}$ is written as,
$\begin{eqnarray}{\hat{M}}_{n}={M}_{n}{{\rm{\Delta }}}_{n}{\left({{\rm{\Psi }}}_{n},{M}_{n}\right)}^{{}^{(-1)\dagger }},\end{eqnarray}$
where,
$\begin{eqnarray}{{\rm{\Delta }}}_{n}({{\rm{\Psi }}}_{n},{M}_{n})=-{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}({M}_{n}^{\dagger }{{\rm{\Psi }}}_{n}).\end{eqnarray}$
By writing equations (4.7) and (4.9) in matrix form for the solutions Hn and Mn, we obtain the condition on Δn which is given by,
$\begin{eqnarray}{{\rm{\Xi }}}^{(-1)\dagger }{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n})-{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}){{\rm{\Lambda }}}^{-1}={M}_{n}^{\dagger }{H}_{n},\end{eqnarray}$
where the Δn matrix is given by,
$\begin{eqnarray}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}_{{ij}}=\displaystyle \frac{{\left\langle {M}_{n}| {H}_{n}\right\rangle }_{(i\ j)}}{{{\rm{\Xi }}}^{(-1)\dagger }-{{\rm{\Lambda }}}^{-1}}.\end{eqnarray}$
Therefore, the required potential is expressed in terms of particular matrix solutions to the Lax pair as well as to the adjoint Lax pair of the GLHM model. We then define the Darboux matrix in hat space:
$\begin{eqnarray}{\hat{D}}_{n}(\lambda )\equiv ({\lambda }^{-1}I-{\hat{Q}}_{n})=({\lambda }^{-1}I-{\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}),\end{eqnarray}$
where,
$\begin{eqnarray}{\hat{D}}_{n}(\lambda ){\hat{{\rm{\Psi }}}}_{n}={{\rm{\Psi }}}_{n}[1].\end{eqnarray}$
We may write above formalism as the following Darboux maps:
$\begin{eqnarray}\begin{array}{rcl}{D}_{n}(\lambda ) & : & {W}_{n}\to {\widetilde{W}}_{n},\\ {\hat{D}}_{n}(\lambda ) & : & {\hat{W}}_{n}\to {\widetilde{W}}_{n},\\ {D}_{n}(\eta ) & : & {W}_{n}^{\dagger }\to {\widetilde{W}}_{n}^{\dagger }.\end{array}\end{eqnarray}$
When we apply ${\hat{D}}_{n}(\lambda )$ on equation (4.1), the equation must be covariant, i.e.
$\begin{eqnarray}\begin{array}{rcl}{\hat{{\rm{\Psi }}}}_{n+1}[1] & = & {\hat{A}}_{n}[1]{\hat{{\rm{\Psi }}}}_{n}[1],\\ \displaystyle \frac{{\rm{d}}}{{\rm{d}}{t}}{\hat{{\rm{\Psi }}}}_{n}[1] & = & {\hat{B}}_{n}[1]{\hat{{\rm{\Psi }}}}_{n}[1],\end{array}\end{eqnarray}$
Matrix ${\hat{Q}}_{n}$ is defined as,
$\begin{eqnarray*}{\hat{Q}}_{n}={\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}.\end{eqnarray*}$
The Darboux transformation on matrix field ${\hat{{\rm{\Psi }}}}_{n}$ and ${\hat{U}}_{n}$ in hat space ${\hat{W}}_{n}$ is,
$\begin{eqnarray}\begin{array}{rcl}{\hat{{\rm{\Psi }}}}_{n}[1] & = & ({\lambda }^{-1}I-{\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}){{\rm{\Psi }}}_{n},\\ {\hat{U}}_{n}[1] & = & {\hat{H}}_{n+1}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n+1}^{-1}U{\left({\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}\right)}^{-1}.\end{array}\end{eqnarray}$
We then define the standard binary Darboux transformation from equation (4.14), which relates ${\hat{{\rm{\Psi }}}}_{n}$ and $Psi$n as,
$\begin{eqnarray}{\hat{D}}_{n}(\lambda ){\hat{{\rm{\Psi }}}}_{n}={D}_{n}(\lambda ){{\rm{\Psi }}}_{n},\end{eqnarray}$
which implies that,
$\begin{eqnarray}{\hat{{\rm{\Psi }}}}_{n}={\hat{D}}_{n}^{-1}(\lambda ){D}_{n}(\lambda ){{\rm{\Psi }}}_{n}.\end{eqnarray}$
We then operate the standard binary Darboux transformation on matrix solution $Psi$n as,
$\begin{eqnarray*}\begin{array}{rcl}{\hat{{\rm{\Psi }}}}_{n} & = & {\left({\lambda }^{-1}I-{\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}\right)}^{-1}({\lambda }^{-1}I-{H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}){{\rm{\Psi }}}_{n},\\ & = & {\hat{H}}_{n}{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}{\hat{H}}_{n}^{-1}{H}_{n}({\lambda }^{-1}I-{{\rm{\Lambda }}}^{-1}){H}_{n}^{-1}{{\rm{\Psi }}}_{n}.\end{array}\end{eqnarray*}$
By using the expression (4.6) in the above equation, we obtain,
$\begin{eqnarray}\begin{array}{l}{\hat{{\rm{\Psi }}}}_{n}={H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1}{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}\\ \quad \times {{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n}){H}_{n}^{-1}{H}_{n}({\lambda }^{-1}I-{{\rm{\Lambda }}}^{-1}){H}_{n}^{-1}{{\rm{\Psi }}}_{n},\\ \quad ={H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1}{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}\\ \quad \times ({\lambda }^{-1}{{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n})-{{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n}){{\rm{\Lambda }}}^{-1}){H}_{n}^{-1}{{\rm{\Psi }}}_{n}.\end{array}\end{eqnarray}$
By substituting the expression of Δn(Hn, Φn−1 from equation (4.10) in the equation (4.19), we obtain,
$\begin{eqnarray*}\begin{array}{c}{\hat{{\rm{\Psi }}}}_{n}={H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1}{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}\\ \quad \times ({\lambda }^{-1}{{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n}){H}_{n}^{-1}-{{\rm{\Xi }}}^{(-1)\dagger }{{\rm{\Delta }}}_{n}({H}_{n},{{\rm{\Phi }}}_{n}){H}_{n}^{-1}+{M}_{n}^{\dagger }){\rm{\Psi }}\\ \quad ={\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger })\left(I+\frac{{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1}{M}_{n}^{\dagger }}{{\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }}\right){{\rm{\Psi }}}_{n}\\ \quad ={{\rm{\Psi }}}_{n}+{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{-1}{\left({\lambda }^{-1}I-{{\rm{\Xi }}}^{(-1)\dagger }\right)}^{-1}{M}_{n}^{\dagger }{{\rm{\Psi }}}_{n}.\end{array}\end{eqnarray*}$
By using equation (4.9), the above expression becomes,
$\begin{eqnarray}{\hat{{\rm{\Psi }}}}_{n}={{\rm{\Psi }}}_{n}-{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Delta }}}_{n}({{\rm{\Psi }}}_{n},{M}_{n}),\end{eqnarray}$
which is the standard form of binary Darboux transformation on matrix $Psi$n. In terms of quasideterminant, the above expression can be expressed as,
$\begin{eqnarray}{\hat{{\rm{\Psi }}}}_{n}=\left|\begin{array}{cc}{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}) & {{\rm{\Delta }}}_{n}({{\rm{\Psi }}}_{n},{M}_{n})\\ {H}_{n} & \boxed{{{\rm{\Psi }}}_{n}}\end{array}\right|.\end{eqnarray}$
This is known as the quasi-Grammian solution of the system. Similarly, for the adjoint space $\hat{{\rm{\Phi }}}$ ∈${\hat{W}}^{\dagger }$ we obtain,
$\begin{eqnarray}\begin{array}{l}{\hat{{\rm{\Phi }}}}_{n}={{\rm{\Phi }}}_{n}-{M}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{(-1)\dagger }{{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{\dagger }\\ \quad =\left|\begin{array}{cc}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n},{{\rm{\Phi }}}_{n}\right)}^{\dagger }\\ {M}_{n} & \boxed{{{\rm{\Phi }}}_{n}}\end{array}\right|.\end{array}\end{eqnarray}$
The standard binary Darboux transformation on the solution of GLHM model Un, is given by,
$\begin{eqnarray}{\hat{U}}_{n}={\hat{Q}}_{n+1}^{-1}{Q}_{n+1}{U}_{n}{Q}_{n}^{-1}{\hat{Q}}_{n},\end{eqnarray}$
where ${\hat{Q}}_{n+1}^{-1}={\hat{H}}_{n+1}{{\rm{\Xi }}}^{\dagger }{\hat{H}}_{n+1}^{-1}$, ${\hat{Q}}_{n}={\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}$, ${Q}_{n+1}={H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}$, ${Q}_{n}^{-1}={H}_{n}{\rm{\Lambda }}{H}_{n}^{-1}$, and so equation (4.23) becomes,
$\begin{eqnarray}{\hat{U}}_{n}=({\hat{H}}_{n+1}{{\rm{\Xi }}}^{\dagger }{\hat{H}}_{n+1}^{-1})({H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}){U}_{n}({H}_{n}{\rm{\Lambda }}{H}_{n}^{-1})({\hat{H}}_{n}{{\rm{\Xi }}}^{(-1)\dagger }{\hat{H}}_{n}^{-1}).\end{eqnarray}$
This is in fact a product of quasideterminants, i.e.
$\begin{eqnarray}\begin{array}{l}{\hat{U}}_{n}=\left|\begin{array}{cc}{\hat{H}}_{n+1}{{\rm{\Xi }}}^{(-1)\dagger } & I\\ {\hat{H}}_{n+1} & \boxed{O}\end{array}\right|\left|\begin{array}{cc}{\hat{H}}_{n+1}{\rm{\Lambda }} & I\\ {\hat{H}}_{n+1} & \boxed{O}\end{array}\right|\\ \quad {U}_{n}\left|\begin{array}{cc}{\hat{H}}_{n} & I\\ {\hat{H}}_{n}{\rm{\Lambda }} & \boxed{O}\end{array}\right|\left|\begin{array}{cc}{\hat{H}}_{n}{{\rm{\Xi }}}^{\dagger } & I\\ {\hat{H}}_{n} & \boxed{O}\end{array}\right|.\end{array}\end{eqnarray}$
This expression can be further simplified when we introduce potential Δn instead of matrices in the hat space. By using equation (4.6), the above equation becomes,
$\begin{eqnarray*}\begin{array}{c}{\hat{U}}_{n}=({H}_{n+1}{{\rm{\Delta }}}_{n+1}{\left({H}_{n+1},{M}_{n+1}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Delta }}}_{n+1}({H}_{n+1},{M}_{n+1}){H}_{n+1}^{-1})\\ \quad ({H}_{n+1}{{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1})\\ \quad \times {U}_{n}\left({H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}){H}_{n}^{-1})\right.\\ \quad {\left.({H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right)}^{-1}\\ \quad ={H}_{n+1}{{\rm{\Delta }}}_{n+1}{\left({H}_{n+1},{M}_{n+1}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Delta }}}_{n+1}\\ \quad ({H}_{n+1},{M}_{n+1}){{\rm{\Lambda }}}^{-1}{H}_{n+1}^{-1}\\ \quad \times {U}_{n}{\left({H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}){{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}\right)}^{-1}.\end{array}\end{eqnarray*}$
By substituting equation (4.10) in the above expression, we obtain,
$\begin{eqnarray*}\begin{array}{c}{\hat{U}}_{n}=({H}_{n+1}{{\rm{\Delta }}}_{n+1}{\left({H}_{n+1},{M}_{n+1}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Xi }}}^{(-1)\dagger }{{\rm{\Delta }}}_{n+1}\\ \quad ({H}_{n+1},{M}_{n+1}){H}_{n+1}^{-1}\\ \quad {\left.-{H}_{n+1}{{\rm{\Delta }}}_{n+1}{\left({H}_{n+1},{M}_{n+1}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{S}_{n+1}^{\dagger }{H}_{n+1}H\right)}_{n+1}^{-1}{U}_{n}\\ \quad \left({H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{{\rm{\Xi }}}^{(-1)\dagger }{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}){H}_{n}^{-1}\right.\\ \quad {\left.-{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{M}_{n}^{\dagger }{H}_{n}{H}_{n}^{-1}\right)}^{-1}\\ \quad =(I-{H}_{n+1}{{\rm{\Delta }}}_{n+1}{\left({H}_{n+1},{M}_{n+1}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{M}_{n+1}^{\dagger }){U}_{n}{\left(I-{H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{M}_{n}^{\dagger }\right)}^{-1}\\ \quad ={\hat{{\rm{F}}}}_{n+1}{U}_{n}{\hat{{\rm{F}}}}_{n}^{-1}\\ \quad ={U}_{n}-{\hat{{\rm{F}}}}_{n+1}+{\hat{{\rm{F}}}}_{n}^{-1}.\end{array}\end{eqnarray*}$
In terms of quasideterminants, the above expression can be written as,
$\begin{eqnarray}{\hat{U}}_{n}=\left|\begin{array}{cc}{{\rm{\Delta }}}_{n+1}({H}_{n+1},{M}_{n+1}) & {{\rm{\Xi }}}^{\dagger }{M}_{n+1}^{\dagger }\\ {H}_{n+1} & \boxed{I}\end{array}\right|{U}_{n}{\left|\begin{array}{cc}{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n}) & {{\rm{\Xi }}}^{\dagger }{M}_{n}^{\dagger }\\ {H}_{n} & \boxed{I}\end{array}\right|}^{-1}.\end{eqnarray}$
Similarly, we can calculate the Kth iteration of $Psi$n through the iteration of binary Darboux transformation given by,
$\begin{eqnarray}{{\rm{\Psi }}}_{n}[K+1]=\left|\begin{array}{cccc}{{\rm{\Delta }}}_{n}({H}_{n,1},{M}_{n,1}) & \cdots & {{\rm{\Delta }}}_{n}({H}_{n,K},{M}_{n,1}) & {{\rm{\Delta }}}_{n}({{\rm{\Psi }}}_{n},{M}_{n,1})\\ \vdots & \cdots & \vdots & \vdots \\ {\rm{\Delta }}({H}_{n,1},{M}_{n,K}) & \cdots & {{\rm{\Delta }}}_{n}({H}_{n,K},{M}_{n,K}) & {{\rm{\Delta }}}_{n}({{\rm{\Psi }}}_{n},{M}_{n,K})\\ {H}_{n,1} & \cdots & {H}_{n,K} & \boxed{{{\rm{\Psi }}}_{n}}\end{array}\right|.\end{eqnarray}$
The Kth iteration for the adjoint binary Darboux transformation is given by,
$\begin{eqnarray}{{\rm{\Phi }}}_{n}[K+1]=\left|\begin{array}{ccccc}{{\rm{\Delta }}}_{n}{\left({H}_{n,1},{M}_{n,1}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,2},{M}_{n,1}\right)}^{\dagger } & \cdots & {{\rm{\Delta }}}_{n}{\left({H}_{n,K},{M}_{n,1}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,1},{{\rm{\Phi }}}_{n}\right)}^{\dagger }\\ {{\rm{\Delta }}}_{n}{\left({H}_{n,1},{M}_{n,2}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,2},{M}_{n,2}\right)}^{\dagger } & \cdots & {{\rm{\Delta }}}_{n}{\left({H}_{n,K},{M}_{n,2}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,2},{{\rm{\Phi }}}_{n}\right)}^{\dagger }\\ \vdots & \vdots & \cdots & \vdots & \vdots \\ {{\rm{\Delta }}}_{n}{\left({H}_{n,1},{M}_{n,K}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,2},{M}_{n,K}\right)}^{\dagger } & \cdots & {{\rm{\Delta }}}_{n}{\left({H}_{n,K},{M}_{n,K}\right)}^{\dagger } & {{\rm{\Delta }}}_{n}{\left({H}_{n,K},{{\rm{\Phi }}}_{n}\right)}^{\dagger }\\ {S}_{n,1} & {M}_{n,2} & \cdots & {M}_{n,K} & \boxed{{{\rm{\Phi }}}_{n}}\end{array}\right|.\end{eqnarray}$
Similarly, ${\hat{U}}_{n}[K]$ can be written as,
$\begin{eqnarray*}\begin{array}{l}{\hat{U}}_{n}[K+1]=\left|\begin{array}{cccc}{{\rm{\Delta }}}_{n\,+\,1}({H}_{n+\mathrm{1,1}},{M}_{n+\mathrm{1,1}}) & \cdots & {{\rm{\Delta }}}_{n\,+\,1}({H}_{n+1,K},{M}_{n+\mathrm{1,1}}) & {{\rm{\Xi }}}_{1}^{\dagger }{M}_{n\,+\,1,1}^{\dagger }\\ {{\rm{\Delta }}}_{n\,+\,1}({H}_{n+\mathrm{1,1}},{M}_{n+\mathrm{1,2}}) & \cdots & {{\rm{\Delta }}}_{n\,+\,1}({H}_{n+1,K},{M}_{n+\mathrm{1,2}}) & {{\rm{\Xi }}}_{2}^{\dagger }{M}_{n\,+\,1,2}^{\dagger }\\ \vdots & \vdots & \cdots & \vdots \\ {{\rm{\Delta }}}_{n\,+\,1}({H}_{n+\mathrm{1,1}},{M}_{n+1,K}) & \cdots & {{\rm{\Delta }}}_{n\,+\,1}({H}_{n+1,K},{M}_{n+1,K}) & {{\rm{\Xi }}}_{K}^{\dagger }{M}_{n\,+\,1,K}^{\dagger }\\ {H}_{n\,+\,\mathrm{1,1}} & \cdots & {H}_{n\,+\,1,K} & \boxed{I}\end{array}\right|\\ \quad \times {U}_{n}\times {\left|\begin{array}{cccc}{{\rm{\Delta }}}_{n}({H}_{n,1},{M}_{n,1}) & \cdots & {{\rm{\Delta }}}_{n}({H}_{n,K},{M}_{n,1}) & {{\rm{\Xi }}}_{1}^{\dagger }{M}_{n,1}^{\dagger }\\ {{\rm{\Delta }}}_{n}({H}_{n,1},{M}_{n,2}) & \cdots & {{\rm{\Delta }}}_{n}({H}_{n,K},{M}_{n,2}) & {{\rm{\Xi }}}_{2}^{\dagger }{M}_{n,2}^{\dagger }\\ \vdots & \cdots & \vdots & \vdots \\ {{\rm{\Delta }}}_{n}({H}_{n,1},{M}_{n,K}) & \cdots & {{\rm{\Delta }}}_{n}({H}_{n,K},{M}_{n,K}) & {{\rm{\Xi }}}_{K}^{\dagger }{M}_{n,K}^{\dagger }\\ {H}_{n,1} & \cdots & {H}_{n,K} & \boxed{I}\end{array}\right|}^{-1}.\end{array}\end{eqnarray*}$
Similarly, using the iteration process we can calculate the quasideterminant solutions for ${U}_{n}^{\dagger }$.

Therefore, we can calculate the Grammian-type solutions for the GLHM model by using standard binary Darboux transformation. In addition, the potential can be expressed in the form of quasideterminants. Thus, by developing the binary Darboux transformation in terms of spectral parameters, we can obtain expressions of matrix solutions in the form of Grammian-type quasideterminants that have a different form as calculated using elementary Darboux transformation.

5. Explicit solutions

In this section, we consider the GLHM model based on the Lie group SU(2) and obtain the soliton solutions by using the binary Darboux transformation. To obtain an explicit expression for the soliton solution in the general N × N case, we take the seed solution,
$\begin{eqnarray*}{U}_{0}\equiv {U}_{n}={\rm{i}}\left(\begin{array}{ccc}{c}_{1} & & \\ & \ddots & \\ & & -{c}_{N}\end{array}\right),\qquad \qquad a=0,\ b=1,\end{eqnarray*}$
where ci are real constants and Tr Un = 0. A trivial calculation then yields a matrix solution $Psi$n of the Lax pair (2.1) with the form,
$\begin{eqnarray*}{{\rm{\Psi }}}_{n}=\left(\begin{array}{cc}{{\rm{\Pi }}}_{n}{\left(\lambda \right)}_{{\rm{p}}} & O\\ O & {{\rm{\Pi }}}_{n}{\left(\lambda \right)}_{{\rm{N}}-{\rm{p}}}\end{array}\right)\end{eqnarray*}$
where,
$\begin{eqnarray*}\begin{array}{l}{{\rm{\Pi }}}_{n}{\left(\lambda \right)}_{{\rm{p}}}=\left(\begin{array}{ccc}{\xi }_{n}{\left(\lambda \right)}_{1} & & \\ & \ddots & \\ & & {\xi }_{n}{\left(\lambda \right)}_{{\rm{p}}}\end{array}\right),\\ \quad {{\rm{\Pi }}}_{n}{\left(\lambda \right)}_{{\rm{N}}-{\rm{p}}}=\left(\begin{array}{ccc}{\xi }_{n}{\left(\lambda \right)}_{{\rm{p}}+1} & & \\ & \ddots & \\ & & {\xi }_{n}{\left(\lambda \right)}_{{\rm{N}}}\end{array}\right)\end{array}\end{eqnarray*}$
are respectively p × p and (Np) × (Np) matrices. Here, n in the subscript is a discrete index. We then take the seed solution for the case N = 2, which is given as,
$\begin{eqnarray}{U}_{0}\equiv {U}_{n}={\rm{i}}\left(\begin{array}{cc}c & 0\\ 0 & -c\end{array}\right).\end{eqnarray}$
Thus, the solution of the linear system (2.1) can be expressed as,
$\begin{eqnarray}{{\rm{\Psi }}}_{n}=\left(\begin{array}{cc}{\xi }_{n}(\lambda ) & \\ & {\bar{\xi }}_{n}(\lambda )\end{array}\right),\end{eqnarray}$
where,
$\begin{eqnarray}{\xi }_{n}(\lambda )={\left(1+{\rm{i}}c\lambda \right)}^{n}\exp \left[\displaystyle \frac{-{\rm{i}}{c}^{-1}\lambda }{1-{\lambda }^{2}}+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}\right]t.\end{eqnarray}$
The particular matrix solution Hn of the direct Lax pair can be written by using the above equation (5.2) as,
$\begin{eqnarray}\begin{array}{l}{H}_{n}=\left({{\rm{\Psi }}}_{n}(\lambda )\left|1\right\rangle ,{{\rm{\Psi }}}_{n}(\bar{\lambda })\left|2\right\rangle \right)\\ \quad =\left(\begin{array}{cc}{\xi }_{n}(\lambda ) & -{\xi }_{n}(\bar{\lambda })\\ {\bar{\xi }}_{n}(\lambda ) & {\bar{\xi }}_{n}(\bar{\lambda })\end{array}\right).\end{array}\end{eqnarray}$
The expression for ${Q}_{n}={H}_{n}{{\rm{\Lambda }}}^{-1}{H}_{n}^{-1}$ by using ${\rm{\Lambda }}=\left(\begin{array}{cc}\lambda & 0\\ 0 & \bar{\lambda }\end{array}\right)$ becomes,
$\begin{eqnarray}{Q}_{n}=\displaystyle \frac{1}{{X}_{n}^{+}+{X}_{n}^{-}}\left(\begin{array}{cc}{\lambda }^{-1}{X}_{n}^{+}+{\bar{\lambda }}^{-1}{X}_{n}^{-} & ({\lambda }^{-1}-{\bar{\lambda }}^{-1}){Y}_{n}^{+}\\ ({\lambda }^{-1}-{\bar{\lambda }}^{-1}){Y}_{n}^{+} & {\lambda }^{-1}{X}_{n}^{-}+{\bar{\lambda }}^{-1}{X}_{n}^{+}\end{array}\right),\end{eqnarray}$
where,
$\begin{eqnarray}\begin{array}{rcl}{X}_{n}^{(\pm )} & = & {\left(1\pm {\rm{i}}c\lambda \right)}^{n}{\left(1\mp {\rm{i}}c\bar{\lambda }\right)}^{n}\\ & & \exp \left[\mp {\rm{i}}{c}^{-1}\left(\displaystyle \frac{\lambda }{1-{\lambda }^{2}}+\displaystyle \frac{\bar{\lambda }}{1-{\bar{\lambda }}^{2}}\right)t\right],\\ {Y}_{n}^{+} & = & {\left(1\pm {\rm{i}}c\lambda \right)}^{n}{\left(1\pm {\rm{i}}c\bar{\lambda }\right)}^{n}\\ & & \exp \left[\pm {\rm{i}}{c}^{-1}\left(\displaystyle \frac{\lambda }{1-{\lambda }^{2}}+\displaystyle \frac{\bar{\lambda }}{1-{\bar{\lambda }}^{2}}\right)t\right].\end{array}\end{eqnarray}$
Similarly, the particular matrix solution Mn for adjoint space can be written as,
$\begin{eqnarray}\begin{array}{l}{M}_{n}=\left({{\rm{\Phi }}}_{n}(\eta )\left|1\right\rangle ,{{\rm{\Phi }}}_{n}(\bar{\eta })\left|2\right\rangle \right)\\ \quad =\left(\begin{array}{cc}{\xi }_{n}(\eta ) & -{\xi }_{n}(\bar{\eta })\\ {\bar{\xi }}_{n}(\eta ) & {\bar{\xi }}_{n}(\bar{\eta })\end{array}\right),\end{array}\end{eqnarray}$
where,
$\begin{eqnarray}{\xi }_{n}(\eta )={\left(1+{\rm{i}}c\eta \right)}^{n}\exp \left[\displaystyle \frac{-{\rm{i}}{c}^{-1}\eta }{1-{\eta }^{2}}+\displaystyle \frac{{\eta }^{2}}{1-{\eta }^{2}}\right]t.\end{eqnarray}$
In order to obtain the expression for ${\hat{U}}_{n}$, we start from the definition of Δn(Hn, Mn) given in (4.11) and by using (5.4), (5.7), we obtain,
$\begin{eqnarray*}{{\rm{\Delta }}}_{n}({H}_{n},{M}_{n})=\left(\begin{array}{cc}\displaystyle \frac{{A}_{n}+{\bar{A}}_{n}}{{\eta }^{-1}-{\lambda }^{-1}} & \displaystyle \frac{{\bar{B}}_{n}-{B}_{n}}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\\ \displaystyle \frac{{\bar{C}}_{n}-{C}_{n}}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}} & \displaystyle \frac{{D}_{n}+{\bar{D}}_{n}}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}\end{array}\right),\end{eqnarray*}$
where,
$\begin{eqnarray*}\begin{array}{l}{A}_{n}={\left(1+{\rm{i}}c\eta \right)}^{n}{\left(1+{\rm{i}}c\lambda \right)}^{n}\\ \quad \exp \left[{\rm{i}}{c}^{-1}\left(\displaystyle \frac{\eta }{1-{\eta }^{2}}+\displaystyle \frac{\lambda }{1-{\lambda }^{2}}\right)t\right]\\ \quad \exp \left(\displaystyle \frac{{\eta }^{2}}{1-{\eta }^{2}}+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}\right)t,\\ {B}_{n}={\left(1+{\rm{i}}c\eta \right)}^{n}{\left(1+{\rm{i}}c\bar{\lambda }\right)}^{n}\\ \quad \exp \left[{\rm{i}}{c}^{-1}\left(\displaystyle \frac{\eta }{1-{\eta }^{2}}+\displaystyle \frac{\bar{\lambda }}{1-{\bar{\lambda }}^{2}}\right)t\right]\\ \quad \exp \left(\displaystyle \frac{{\eta }^{2}}{1-{\eta }^{2}}+\displaystyle \frac{{\bar{\lambda }}^{2}}{1-{\bar{\lambda }}^{2}}\right)t,\\ {C}_{n}={\left(1+{\rm{i}}c\bar{\eta }\right)}^{n}{\left(1+{\rm{i}}c\lambda \right)}^{n}\\ \quad \exp \left[{\rm{i}}{c}^{-1}\left(\displaystyle \frac{\bar{\eta }}{1-{\bar{\eta }}^{2}}+\displaystyle \frac{\lambda }{1-{\lambda }^{2}}\right)t\right]\\ \quad \exp \left(\displaystyle \frac{{\bar{\eta }}^{2}}{1-{\bar{\eta }}^{2}}+\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}\right)t,\\ {D}_{n}={\left(1+{\rm{i}}c\bar{\eta }\right)}^{n}{\left(1+{\rm{i}}c\bar{\lambda }\right)}^{n}\\ \quad \exp \left[{\rm{i}}{c}^{-1}\left(\displaystyle \frac{\bar{\eta }}{1-{\bar{\eta }}^{2}}+\displaystyle \frac{\bar{\lambda }}{1-{\bar{\lambda }}^{2}}\right)t\right]\\ \quad \exp \left(\displaystyle \frac{{\bar{\eta }}^{2}}{1-{\bar{\eta }}^{2}}+\displaystyle \frac{{\bar{\lambda }}^{2}}{1-{\bar{\lambda }}^{2}}\right).\end{array}\end{eqnarray*}$
Then, we take,
$\begin{eqnarray}{\hat{M}}_{n}={H}_{n}{{\rm{\Delta }}}_{n}{\left({H}_{n},{M}_{n}\right)}^{-1}{{\rm{\Xi }}}^{\dagger }{M}_{n}^{\dagger }=\left(\begin{array}{cc}{\hat{M}}_{n,11} & {\hat{M}}_{n,12}\\ {\hat{M}}_{n,21} & {\hat{M}}_{n,22}\end{array}\right),\end{eqnarray}$
$\begin{eqnarray*}=\displaystyle \frac{1}{K}\left(\begin{array}{cc}\begin{array}{c}\displaystyle \frac{\eta {\xi }_{n}(\eta ){\xi }_{n}(\lambda )({D}_{n}+{\bar{D}}_{n})}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}-\displaystyle \frac{\bar{\eta }{\xi }_{n}(\bar{\eta }){\xi }_{n}(\lambda )({B}_{n}-{\bar{B}}_{n})}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\\ -\displaystyle \frac{\eta {\xi }_{n}(\eta ){\xi }_{n}(\bar{\lambda })({C}_{n}-{\bar{C}}_{n})}{{\bar{\eta }}^{-1}-{\lambda }^{-1}}+\displaystyle \frac{\bar{\eta }{\xi }_{n}(\bar{\eta }){\xi }_{n}(\bar{\lambda })({A}_{n}+{\bar{A}}_{n})}{{\eta }^{-1}-{\lambda }^{-1}}\end{array} & \begin{array}{c}\displaystyle \frac{\eta {\bar{\xi }}_{n}(\eta ){\xi }_{n}(\lambda )({D}_{n}+{\bar{D}}_{n})}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}+\displaystyle \frac{\bar{\eta }{\bar{\xi }}_{n}(\bar{\eta }){\xi }_{n}(\lambda )({B}_{n}-{\bar{B}}_{n})}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\\ -\displaystyle \frac{\eta {\bar{\xi }}_{n}(\eta ){\xi }_{n}(\bar{\lambda })({C}_{n}-{\bar{C}}_{n})}{{\bar{\eta }}^{-1}-{\lambda }^{-1}}-\displaystyle \frac{\bar{\eta }{\bar{\xi }}_{n}(\bar{\eta }){\xi }_{n}(\bar{\lambda })({A}_{n}+{\bar{A}}_{n})}{{\eta }^{-1}-{\lambda }^{-1}}\end{array}\\ \begin{array}{c}\displaystyle \frac{\eta {\xi }_{n}(\eta ){\bar{\xi }}_{n}(\lambda )({D}_{n}+{\bar{D}}_{n})}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}-\displaystyle \frac{\bar{\eta }{\xi }_{n}(\bar{\eta }){\bar{\xi }}_{n}(\lambda )({B}_{n}-{\bar{B}}_{n})}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\\ +\displaystyle \frac{\eta {\xi }_{n}(\eta ){\bar{\xi }}_{n}(\bar{\lambda })({C}_{n}-{\bar{C}}_{n})}{{\bar{\eta }}^{-1}-{\lambda }^{-1}}-\displaystyle \frac{\bar{\eta }{\xi }_{n}(\bar{\eta }){\bar{\xi }}_{n}(\bar{\lambda })({A}_{n}+{\bar{A}}_{n})}{{\eta }^{-1}-{\lambda }^{-1}}\end{array} & \begin{array}{c}\displaystyle \frac{\eta {\bar{\xi }}_{n}(\eta ){\bar{\xi }}_{n}(\lambda )({D}_{n}+{\bar{D}}_{n})}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}+\displaystyle \frac{\bar{\eta }{\bar{\xi }}_{n}(\bar{\eta }){\bar{\xi }}_{n}(\lambda )({B}_{n}-{\bar{B}}_{n})}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\\ +\displaystyle \frac{\eta {\bar{\xi }}_{n}(\eta ){\bar{\xi }}_{n}(\bar{\lambda })({C}_{n}-{\bar{C}}_{n})}{{\bar{\eta }}^{-1}-{\lambda }^{-1}}+\displaystyle \frac{\bar{\eta }{\bar{\xi }}_{n}(\bar{\eta }){\bar{\xi }}_{n}(\bar{\lambda })({A}_{n}+{\bar{A}}_{n})}{{\eta }^{-1}-{\lambda }^{-1}}\end{array}\end{array}\right),\end{eqnarray*}$
where,
$\begin{eqnarray}K=\left(\displaystyle \frac{{A}_{n}+{\bar{A}}_{n}}{{\eta }^{-1}-{\lambda }^{-1}}\right)\left(\displaystyle \frac{{D}_{n}+{\bar{D}}_{n}}{{\bar{\eta }}^{-1}-{\bar{\lambda }}^{-1}}\right)-\left(\displaystyle \frac{{\bar{B}}_{n}-{B}_{n}}{{\eta }^{-1}-{\bar{\lambda }}^{-1}}\right)\left(\displaystyle \frac{{\bar{C}}_{n}-{C}_{n}}{{\bar{\eta }}^{-1}-{\lambda }^{-1}}\right).\end{eqnarray}$
The matrix field in hat space is given by,
$\begin{eqnarray*}{\hat{U}}_{n}={U}_{n}-{\hat{{\rm{F}}}}_{n+1}+{\hat{{\rm{F}}}}_{n},\end{eqnarray*}$
where,
$\begin{eqnarray}\begin{array}{rcl}{\hat{{\rm{F}}}}_{n} & = & \left(\begin{array}{cc}I-{\hat{M}}_{n,11} & -{\hat{M}}_{n,12}\\ -{\hat{M}}_{n,21} & I-{\hat{M}}_{n,22}\end{array}\right)\\ & = & \left(\begin{array}{cc}{\hat{U}}_{n,11} & {\hat{U}}_{n,12}\\ {\hat{U}}_{n,21} & {\hat{U}}_{n,22}\end{array}\right).\end{array}\end{eqnarray}$
The expressions (5.11) are presented in figures 1 and 2.
Figure 1. Dynamics of ${\hat{U}}_{n,11}$.
Figure 2. Dynamics of ${\hat{U}}_{n,22}$.

5.1. Reduction

For the reduction we take $\eta =-\bar{\lambda }$ and $\bar{\eta }=-\lambda $, which gives ${B}_{n}-{\bar{B}}_{n}=0={C}_{n}-{\bar{C}}_{n}$, then,
$\begin{eqnarray}\begin{array}{rcl}K & = & \displaystyle \frac{{\left({X}_{n}^{+}+{X}_{n}^{-}\right)}^{2}{\left(\exp \,A\right)}^{2}}{{\left({\lambda }^{-1}+{\bar{\lambda }}^{-1}\right)}^{2}},{\rm{}}\,{\rm{where}}\\ A & = & \left(\displaystyle \frac{{\lambda }^{2}}{1-{\lambda }^{2}}+\displaystyle \frac{{\bar{\lambda }}^{2}}{1-{\bar{\lambda }}^{2}}\right)t.\end{array}\end{eqnarray}$
Thus, we can write,
$\begin{eqnarray}{\hat{{\rm{F}}}}_{n}=\displaystyle \frac{1}{{X}_{n}^{+}+{X}_{n}^{-}}\left(\begin{array}{cc}-\bar{\lambda }{\lambda }^{-1}{X}_{n}^{+}-\lambda {\bar{\lambda }}^{-1}{X}_{n}^{-} & (\lambda {\bar{\lambda }}^{-1}-\bar{\lambda }{\lambda }^{-1}){Y}_{n}^{+}\\ (\lambda {\bar{\lambda }}^{-1}-\bar{\lambda }{\lambda }^{-1}){Y}_{n}^{+} & -\lambda {\bar{\lambda }}^{-1}{X}_{n}^{+}-\bar{\lambda }{\lambda }^{-1}{X}_{n}^{-}\end{array}\right).\end{eqnarray}$
Therefore, the solution of matrix function ${\hat{U}}_{n}$ by using expressions (5.1) and (4.12) can be written as,
$\begin{eqnarray}{\hat{U}}_{n}=\left(\begin{array}{cc}{U}_{n}^{+} & -{U}_{n}^{-}\\ {U}_{n}^{-} & -{U}_{n}^{+}\end{array}\right),\end{eqnarray}$
where,
$\begin{eqnarray*}\begin{array}{rcl}{U}_{n}^{+} & = & {\rm{i}}c+(\bar{\lambda }{\lambda }^{-1}+\lambda {\bar{\lambda }}^{-1})\\ & & \times \displaystyle \frac{{X}_{n+1}^{+}{X}_{n}^{-}-{X}_{n}^{+}{X}_{n+1}^{-}}{({X}_{n}^{+}+{X}_{n}^{-})({X}_{n+1}^{+}+{X}_{n+1}^{-})},\\ {U}_{n}^{-} & = & (\bar{\lambda }{\lambda }^{-1}+\lambda {\bar{\lambda }}^{-1})\\ & & \times \displaystyle \frac{({X}_{n}^{+}+{X}_{n}^{-}){Y}_{n+1}^{+}-{Y}_{n}^{+}({X}_{n+1}^{+}+{X}_{n+1}^{-})}{({X}_{n}^{+}+{X}_{n}^{-})({X}_{n+1}^{+}+{X}_{n+1}^{-})}.\end{array}\end{eqnarray*}$
The expressions (5.14) are depicted in figures 3 and 4.
Figure 3. Dynamics of ${U}_{n}^{+}$ for different values of c.
Figure 4. Dynamics of ${U}_{n}^{-}:$ for different values of c.
By substituting λ = $\bar{\lambda }$, we obtain the soliton solutions shown in figures 5 and 6.
$\begin{eqnarray}\begin{array}{rcl}{U}_{n}^{+} & = & {\rm{i}}c+\displaystyle \frac{{X}_{n+1}^{+}{X}_{n}^{-}-{X}_{n}^{+}{X}_{n+1}^{-}}{({X}_{n}^{+}+{X}_{n}^{-})({X}_{n+1}^{+}+{X}_{n+1}^{-})},\\ {U}_{n}^{-} & = & \displaystyle \frac{({X}_{n}^{+}+{X}_{n}^{-}){Y}_{n+1}^{+}-{Y}_{n}^{+}({X}_{n+1}^{+}+{X}_{n+1}^{-})}{({X}_{n}^{+}+{X}_{n}^{-})({X}_{n+1}^{+}+{X}_{n+1}^{-})}.\end{array}\end{eqnarray}$
From (5.15), it can be seen that U[1] = − U[1] and Tr(U[1]) =0. Therefore, it can be said that the above expression (5.15) is an explicit equation based on SU(2) one-soliton solutions of the GLHM model.
Figure 5. Semi-discrete one-soliton solution ${U}_{n}^{+}$.
Figure 6. Semi-discrete one-soliton solution ${U}_{n}^{-}$.
We can obtain solutions in the form of direct and adjoint space parameters, by using the standard binary Darboux transformation, which are different to those obtained by elementary Darboux transformation. In addition, we reduce the solutions into the elementary Darboux transformation solutions, which is the advantage of binary Darboux transformation.

6. Conclusion

In this paper, we have composed the discrete Darboux transformation of the GLHM model not only for the direct space, but also for the adjoint space, and also calculated the standard binary Darboux transformation of the model. By iterating the standard binary Darboux transformation we have obtained the multi-Grammian solutions in terms of quasideterminants. We have calculated the explicit solutions for the Grammian solutions of the model. We presented the dynamics of the solutions and by reducing the solutions also obtain the one-soliton solution for the semi-discrete model. This work can be extended in various interesting directions. For example, one can study discrete and semi-discrete versions of the multi-component GLHM model as well as their multi-soliton solutions. It would also be interesting to study discrete rogue and hump wave solutions for the GLHM model.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

1
Takhtajan L A 1977 Integration of the continuous Heisenberg spin chain through the inverse scattering method Phys. Lett. A 64 235 237

DOI

2
Faddeev L D Takhtajan L A 1987 Hamiltonian Methods in the Theory of Solitons Berlin Springer

3
Orfanidis S J 1980 SU(n) Heisenberg spin chain Phys. Lett. A 75 304 306

DOI

4
Calini A 1995 A note on a Bäcklund transformation for the continuous Heisenberg model Phys. Lett. A 203 333 344

DOI

5
Shin H J 2001 Generalized Heisenberg ferromagnetic models via Hermitian symmetric spaces J. Phys. A: Math. Gen. 34 3169 3177

DOI

6
Pritula G M Vekslerchik V E 2003 Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system J. Nonlinear Math. Phys. 10 256 281

DOI

7
Cienski J L Czarnecka J 2006 The Darboux–Bäcklund transformation for the static 2-dimensional continuum Heisenberg chain J. Phys. A: Math. Gen. 39 11003 11012

DOI

8
Ragnisco O Zullo F 2007 Continuous and discrete (classical) Heisenberg spin chain revisited SIGMA 3 033

DOI

9
Saleem U Hassan M 2010 Quasideterminant solutions of the generalized Heisenberg magnet model J. Phys. A: Math. Theor. 43 045204

DOI

10
Faddeev L D 1984 Integrable models in (1+1)-dimensional quantum field theory Recent Advances in Field Theory and Statistical Mechanics (Les Houches, 2 August–10 September 1982 Zuber J-B Stora R Amsterdam North-Holland 561 608

11
Sklyanin E K 1982 Some algebraic structures connected with the Yang–Baxter equation Funct. Anal. Appl. 16 263 270

DOI

12
Ishimori Y 1982 An integrable classical spin chain J. Phys. Soc. Jpn. 51 3417 3418

DOI

13
Haldane F D M 1982 Excitation spectrum of a generalized Heisenberg ferromagnet spin chain with arbitrary spin J. Phys. C: Solid State Phys. 15 L1309–L1313

DOI

14
Balakrishnan R Bishop A R 1985 Nonlinear excitations on a ferromagnetic chain Phys. Rev. Lett. 55 537 540

DOI

15
Haldane F D M 1986 Geometrical interpretation of momentum and crystal momentum of classical and quantum ferromagnetic Heisenberg chains Phys. Rev. Lett. 57 1488 1491

DOI

16
Papanicolaou N 1987 Complete integrability for a discrete Heisenberg chain J. Phys. A: Math. Gen. 20 3637 3652

DOI

17
Tsuchida T 2010 A systematic method for constructing time discretizations of integrable lattice systems: local equations of motion J. Phys. A: Math. Theor. 43 415202

DOI

18
Nimmo J J C 2000 Darboux transformations for discrete systems Chaos Solitons Fractals 11 115 120

DOI

19
Ma W X 2021 Binary Darboux transformation for general matrix mKdV equations and reduced counterparts Chaos Solitons Fractals 146 110824

DOI

20
Amjad Z Haider B 2019 Binary Darboux transformations of the supersymmetric Heisenberg magnet model Theor. Math. Phys. 199 784 797

DOI

21
Haider B Hassan M 2011 Binary Darboux transformation for the supersymmetric Principal Chiral field model J. Nonlinear Math. Phys. 18 557 581

DOI

22
Matveev V B Salle M A 1991 Darboux Transformations and Solitons Berlin Springer Press

23
Gu C H Hu H S Zhou Z X 2005 Darboux Transformation in Soliton Theory and Its Geometric Applications Shanghai Shanghai Scientific and Technical Publishers

24
Zhang H Q Tian B Li J Xu T Zhang Y X 2009 Symbolic-computation study of integrable properties for the (2 +1)-dimensional Gardner equation with the two-singular manifold method IMA J. Appl. Math. 74 46

DOI

25
Wajahat H Riaz A Hassan M 2018 Generalized lattice Heisenberg magnet model and its quasideterminants soliton solutions Theor. Math. Phys. 195 665 675

DOI

26
Manas M 1996 Darboux transformations for the nonlinear Schrödinger equations J. Phys. A: Math. Gen. 29 7721 7737

DOI

27
Amjad Z Haider B 2018 Darboux transformations of supersymmetric Heisenberg magnet model J. Phys. Commun. 2 035019

DOI

28
Park Q H Shin H J 2001 Darboux transformation and Crum's formula for multi-component integrable equations Physica D 157 1 15

DOI

29
Ji Q 2003 Darboux transformation for MZM-I, II equations Phys. Lett. A 311 384 388

DOI

30
Ablowitz M J Prinari B Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems Cambridge Cambridge University Press

31
Hirota R 2004 The Direct Method in Soliton Theory Cambridge Cambridge University Press

DOI

32
Li X Y Zhao Q L 2009 The Darboux transformation associated with two-parameter lattice soliton equation Commun. Nonlinear Sci. Numer. Simul. 14 2956 2961

DOI

33
Amjad Z Haider B 2020 Binary Darboux transformation of time-discrete generalized lattice Heisenberg magnet model Chaos Solitons Fractals 130 109404

DOI

34
Shi Y Nimmo J J C Zhang D 2014 Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation J. Phys. A: Math. Theor. 47 025205

DOI

35
Wei J Wang X Geng X 2018 Periodic and rational solutions of the reduced Maxwell–Bloch equations Commun. Nonlinear Sci. Numer. Simul. 59 1

DOI

36
Yu G F Lao D 2016 Complex and coupled complex negative order AKNS equation Commun. Nonlinear Sci. Numer. Simul. 30 196

DOI

37
Babich M V Matveev V B Salle M A 1986 Binary Darboux transformations for the Toda lattice J. Sov. Math. 35 2582 2589

DOI

38
Etingof P Gelfand I Retakh V 1997 Factorization of differential operators, quasideterminants and nonabelian Toda field equations Math. Res. Lett. 4 413 425

DOI

39
Gelfand I M Retakh V S 1991 Determinants of matrices over noncommutative rings Funct. Anal. Appl. 25 102

40
Gelfand I Gelfand S Retakh V Wilson R L 2005 Quasideterminants Adv. Math. 193 141

DOI

Outlines

/