Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Multiple soliton solutions and symmetry analysis of a nonlocal coupled KP system

  • Xi-zhong Liu , ,
  • Jie-tong Li ,
  • Jun Yu
Expand
  • Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China

Author to whom any correspondence should be addressed.

Received date: 2023-01-31

  Revised date: 2023-06-09

  Accepted date: 2023-06-25

  Online published: 2023-07-31

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

A nonlocal coupled Kadomtsev–Petviashivili (ncKP) system with shifted parity (${\hat{P}}_{s}^{x}$) and delayed time reversal (${\hat{T}}_{d}$) symmetries is generated from the local coupled Kadomtsev–Petviashivili (cKP) system. By introducing new dependent variables which have determined parities under the action of ${\hat{P}}_{s}^{x}{\hat{T}}_{d}^{d}$, the ncKP is transformed to a local system. Through this way, multiple even number of soliton solutions of the ncKPI system are generated from N-soliton solutions of the cKP system, which become breathers by choosing appropriate parameters. The standard Lie symmetry method is also applied on the ncKPII system to get its symmetry reduction solutions.

Cite this article

Xi-zhong Liu , Jie-tong Li , Jun Yu . Multiple soliton solutions and symmetry analysis of a nonlocal coupled KP system[J]. Communications in Theoretical Physics, 2023 , 75(8) : 085007 . DOI: 10.1088/1572-9494/ace156

1. Introduction

In 2013 Ablowitz and Musslimani introduced a new nonlocal nonlinear Schrödinger (nNLS) equation [1]
$\begin{eqnarray}{\rm{i}}{q}_{t}(x,t)={q}_{{xx}}(x,t)\pm q(x,t){q}^{* }(-x,t)q(x,t),\end{eqnarray}$
with q*(−x, t) being complex conjugate of q(−x, t), which is proved to be integrable under the meaning that it has a Lax pair and an infinite number of conservation laws. Contrary to local equations where dependent variables have the same independent variables, dependent variables of a nonlocal equation have two or more independent variables which are usually linked by space and/or time reversion, such as the variables of (−x, t) and (x, t) in equation (1). Since the work of [1], nonlocal versions of many famous nonlinear systems, such as the Korteweg de-Vries (KdV) and modified KdV equation, the sine-Gordon equation, the Kadomtsev–Petviashivili (KP) equation, Sasa-Satsuma equation, etc are introduced and studied by applying various methods including inverse scattering transform [2, 3], Riemann–Hilbert method [4, 5], the Hirota's bilinear method [69], the Darboux transformations [1012], Wronskian technique [13], symmetry analysis [14], deep learning neural network framework [15] and so on.
In recent years, Lou and Huang proposed the concept of the Alice–Bob (AB) system to describe two correlated events which can be assumed to be related by an operator $\hat{f}$, e.g. $A=\hat{f}B$, where $\hat{f}$ can be taken as shifted parity and delayed time reversal and so forth [16]. In other words, there exist at least two spacetime coordinates in one AB system. In this context, many AB-type nonlocal systems are constructed including the AB-KdV equation [17], AB-mKdV equation [18], AB-AKNS system [17], etc. In [19], a consistent correlated bang (CCB) method is proposed from which one can generate nonlocal systems from known local ones [20, 21].
The coupled KP (cKP) system [2225] takes the form
$\begin{eqnarray}{\left({u}_{t}+\displaystyle \frac{1}{4}{u}_{{xxx}}-\displaystyle \frac{3}{2}{{uu}}_{x}-\displaystyle \frac{3}{4}{\left({vw}\right)}_{x}\right)}_{x}+{\sigma }^{2}{u}_{{yy}}=0,\end{eqnarray}$
$\begin{eqnarray}{\left({v}_{t}+\displaystyle \frac{1}{4}{v}_{{xxx}}-\displaystyle \frac{3}{2}{\left({uv}\right)}_{x}\right)}_{x}+{\sigma }^{2}{v}_{{yy}}=0,\end{eqnarray}$
$\begin{eqnarray}{\left({w}_{t}+\displaystyle \frac{1}{4}{w}_{{xxx}}-\displaystyle \frac{3}{2}{\left({uw}\right)}_{x}\right)}_{x}+{\sigma }^{2}{w}_{{yy}}=0,\end{eqnarray}$
which was first appeared in a paper of Jimbo and Miwa in Hirota bilinear form [26], it has N-soliton solutions expressed in terms of Pfaffians [27]. The cKP system (2) can be categorized as cKPI by taking σ2 = −1 and cKPII by taking σ2 = 1. In [23, 28], a host of solitonic interactions of the cKP are obtained, among which peculiar spider-web solutions are obtained and analyzed. In this paper, inspired by the CCB method, we introduce a nonlocal coupled KP (ncKP) system as
$\begin{eqnarray}\begin{array}{l}{A}_{{xt}}-\displaystyle \frac{9}{8}{A}_{x}^{2}-\displaystyle \frac{3}{4}{A}_{x}{B}_{x}+\displaystyle \frac{3}{8}{B}_{x}^{2}-\displaystyle \frac{3}{8}(3{F}_{x}+{G}_{x}){C}_{x}\\ \quad +\displaystyle \frac{3}{8}({G}_{x}-{F}_{x}){E}_{x}-\displaystyle \frac{3}{8}(3A+B){A}_{{xx}}+{\sigma }^{2}{A}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(B-A){B}_{{xx}}-\displaystyle \frac{3}{16}(3F+G){C}_{{xx}}+\displaystyle \frac{3}{16}(G-F){E}_{{xx}}\\ \quad -\displaystyle \frac{3}{16}(E+3C){F}_{{xx}}-\displaystyle \frac{3}{16}(C-E){G}_{{xx}}+\displaystyle \frac{1}{4}{A}_{{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{{xt}}-\displaystyle \frac{9}{8}{B}_{x}^{2}-\displaystyle \frac{3}{4}{A}_{x}{B}_{x}+\displaystyle \frac{3}{8}{A}_{x}^{2}-\displaystyle \frac{3}{8}(3{G}_{x}+{F}_{x}){E}_{x}\\ \quad +\displaystyle \frac{3}{8}({F}_{x}-{G}_{x}){C}_{x}-\displaystyle \frac{3}{8}(3B+A){B}_{{xx}}+{\sigma }^{2}{B}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(A-B){A}_{{xx}}-\displaystyle \frac{3}{16}(3G+F){E}_{{xx}}+\displaystyle \frac{3}{16}(F-G){C}_{{xx}}\\ \quad -\displaystyle \frac{3}{16}(C+3E){G}_{{xx}}-\displaystyle \frac{3}{16}(E-C){F}_{{xx}}+\displaystyle \frac{1}{4}{B}_{{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{C}_{{xt}}-\displaystyle \frac{3}{4}({C}_{x}-{E}_{x}){A}_{x}-\displaystyle \frac{3}{4}({E}_{x}+3{C}_{x}){B}_{x}-\displaystyle \frac{3}{8}(3C+E){A}_{{xx}}\\ \quad +\displaystyle \frac{3}{8}(E-C){B}_{{xx}}-\displaystyle \frac{3}{8}(3A+B){C}_{{xx}}+{\sigma }^{2}{C}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(B-A){E}_{{xx}}+\displaystyle \frac{1}{4}{C}_{{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{E}_{{xt}}-\displaystyle \frac{3}{4}({E}_{x}-{C}_{x}){B}_{x}-\displaystyle \frac{3}{4}({C}_{x}+3{E}_{x}){A}_{x}-\displaystyle \frac{3}{8}(3E+C){B}_{{xx}}\\ \quad +\displaystyle \frac{3}{8}(C-E){A}_{{xx}}-\displaystyle \frac{3}{8}(3B+A){E}_{{xx}}+{\sigma }^{2}{E}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(A-B){C}_{{xx}}+\displaystyle \frac{1}{4}{E}_{{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{F}_{{xt}}-\displaystyle \frac{3}{4}({F}_{x}-{G}_{x}){A}_{x}-\displaystyle \frac{3}{4}({F}_{x}+3{G}_{x}){B}_{x}-\displaystyle \frac{3}{8}(3F+G){A}_{{xx}}\\ \quad +\displaystyle \frac{3}{8}(G-F){B}_{{xx}}-\displaystyle \frac{3}{8}(3A+B){F}_{{xx}}+{\sigma }^{2}{F}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(B-A){G}_{{xx}}+\displaystyle \frac{1}{4}{F}_{{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{G}_{{xt}}-\displaystyle \frac{3}{4}({G}_{x}-{F}_{x}){B}_{x}-\displaystyle \frac{3}{4}({G}_{x}+3{F}_{x}){A}_{x}-\displaystyle \frac{3}{8}(3G+F){B}_{{xx}}\\ \quad +\displaystyle \frac{3}{8}(F-G){A}_{{xx}}-\displaystyle \frac{3}{8}(3B+A){G}_{{xx}}+{\sigma }^{2}{G}_{{yy}}\\ \quad +\displaystyle \frac{3}{8}(A-B){F}_{{xx}}+\displaystyle \frac{1}{4}{G}_{{xxxx}}=0,\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{rcl}B & = & {\hat{P}}_{s}^{x}{\hat{T}}_{d}A(x,y,t)=A(-x+{x}_{0},y,-t+{t}_{0}),\\ E & = & {\hat{P}}_{s}^{x}{\hat{T}}_{d}C(x,y,t)=C(-x+{x}_{0},y,-t+{t}_{0}),\\ G & = & {\hat{P}}_{s}^{x}{\hat{T}}_{d}F(x,y,t)=F(-x+{x}_{0},y,-t+{t}_{0}),\end{array}\end{eqnarray}$
and probe its exact solutions and symmetry properties.
The paper is organized as follows. In section 2, we convert the ncKPI (σ2 = −1) system into a local system by introducing some new variables with definite parity properties to replace the variables of the ncKPI system. Then we use N-soliton solutions of the cKP system to generate an even number of N-soliton solutions of the ncKPI system. In section 3, we apply the standard Lie symmetry method on the ncKPII (σ2 = 1) system to give its Lie symmetry group and similarity reduction solutions. The last section is devoted to a summary.

2. Multiple soliton solutions of the ncKPI system

To convert the ncKPI system into a local system, considering the relation (9), we take
$\begin{eqnarray}\begin{array}{rcl}A & = & u+{u}_{1},B=u-{u}_{1},C=v+{v}_{1},\\ E & = & v-{v}_{1},F=w+{w}_{1},G=w-{w}_{1},\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{l}{\hat{P}}_{s}^{x}{\hat{T}}_{d}u=u,{\hat{P}}_{s}^{x}{\hat{T}}_{d}{u}_{1}=-{u}_{1},\\ {\hat{P}}_{s}^{x}{\hat{T}}_{d}v=v,{\hat{P}}_{s}^{x}{\hat{T}}_{d}{v}_{1}=-{v}_{1}\\ {\hat{P}}_{s}^{x}{\hat{T}}_{d}w=w,\\ {\hat{P}}_{s}^{x}{\hat{T}}_{d}{w}_{1}=-{w}_{1}.\end{array}\end{eqnarray}$
Substituting equation (10) into the ncKP system (3)–(9) we split it into the following equations
$\begin{eqnarray}{\left({u}_{t}+\displaystyle \frac{1}{4}{u}_{{xxx}}-\displaystyle \frac{3}{2}{{uu}}_{x}-\displaystyle \frac{3}{4}{\left({vw}\right)}_{x}\right)}_{x}-{u}_{{yy}}=0,\end{eqnarray}$
$\begin{eqnarray}{\left({v}_{t}+\displaystyle \frac{1}{4}{v}_{{xxx}}-\displaystyle \frac{3}{2}{\left({uv}\right)}_{x}\right)}_{x}-{v}_{{yy}}=0,\end{eqnarray}$
$\begin{eqnarray}{\left({w}_{t}+\displaystyle \frac{1}{4}{w}_{{xxx}}-\displaystyle \frac{3}{2}{\left({uw}\right)}_{x}\right)}_{x}-{w}_{{yy}}=0,\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-3{u}_{1,x}{u}_{x}-\displaystyle \frac{3}{2}{u}_{{xx}}{u}_{1}-\displaystyle \frac{3}{2}{{uu}}_{1,{xx}}-\displaystyle \frac{3}{4}{v}_{1}{w}_{{xx}}\\ \quad -\displaystyle \frac{3}{4}{{vw}}_{1,{xx}}-\displaystyle \frac{3}{2}{w}_{x}{v}_{1,x}-\displaystyle \frac{3}{4}{v}_{{xx}}{w}_{1}\\ \quad -\displaystyle \frac{3}{4}{{wv}}_{1,{xx}}-\displaystyle \frac{3}{2}{v}_{x}{w}_{1,x}-{u}_{1,{yy}}+{u}_{1,{xt}}+\displaystyle \frac{1}{4}{u}_{1,{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-{v}_{1,{yy}}-3{u}_{x}{v}_{1,x}+3{v}_{x}{u}_{1,x}-\displaystyle \frac{3}{2}{{vu}}_{1,{xx}}-\displaystyle \frac{3}{2}{u}_{{xx}}{v}_{1}+{v}_{1,{xt}}\\ \quad -\displaystyle \frac{3}{2}{{uv}}_{1,{xx}}-\displaystyle \frac{3}{2}{v}_{{xx}}{u}_{1}\\ \quad +\displaystyle \frac{1}{4}{v}_{1,{xxxx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-{w}_{1,{yy}}-3{u}_{x}{w}_{1,x}+3{w}_{x}{u}_{1,x}-\displaystyle \frac{3}{2}{{wu}}_{1,{xx}}\\ \quad -\displaystyle \frac{3}{2}{u}_{{xx}}{w}_{1}+{w}_{1,{xt}}-\displaystyle \frac{3}{2}{{uw}}_{1,{xx}}-\displaystyle \frac{3}{2}{w}_{{xx}}{u}_{1}\\ \quad +\displaystyle \frac{1}{4}{w}_{1,{xxxx}}=0.\end{array}\end{eqnarray}$
It can be seen that equations (12)–(14) are just the cKPI system (2) with σ2 = −1 while equations (15)–(17) are linearized equations of the cKPI system.
The cKP system (2) has the following N-soliton solution [22]
$\begin{eqnarray}\begin{array}{rcl}u & = & -{\left(\mathrm{ln}F\right)}_{{xx}},v=\alpha {\left(\mathrm{ln}F\right)}_{{xx}},w=\displaystyle \frac{1}{\alpha }{\left(\mathrm{ln}F\right)}_{{xx}},\\ F & = & \displaystyle \sum _{\nu }\exp (\displaystyle \sum _{j=1}^{N}{\nu }_{j}{\xi }_{j}+\displaystyle \sum _{1\leqslant i^{\prime} \lt j}^{N}{\nu }_{i^{\prime} }{\nu }_{j}{\theta }_{i^{\prime} j}),\end{array}\end{eqnarray}$
with α being a nonzero real number, which is an extension of N-soliton solutions of the KP equation, the summations should be done for all permutations of ${\nu }_{i^{\prime} }=0,1(i^{\prime} =1,2,3,\cdots N)$, and
$\begin{eqnarray*}\begin{array}{l}{\xi }_{j}={k}_{j}x+{r}_{j}y-\displaystyle \frac{{k}_{j}^{4}+4{\sigma }^{2}{r}_{j}^{2}}{4{k}_{j}}t+{\xi }_{j0},\exp ({\theta }_{i^{\prime} j})\\ \quad =\,\displaystyle \frac{3{k}_{i^{\prime} }^{2}{k}_{j}^{2}{\left({k}_{i^{\prime} }-{k}_{j}\right)}^{2}-4{\sigma }^{2}{\left({k}_{i^{\prime} }{r}_{j}-{k}_{j}{r}_{i^{\prime} }\right)}^{2}}{3{k}_{i^{\prime} }^{2}{k}_{j}^{2}{\left({k}_{i^{\prime} }+{k}_{j}\right)}^{2}-4{\sigma }^{2}{\left({k}_{i^{\prime} }{r}_{j}-{k}_{j}{r}_{i^{\prime} }\right)}^{2}},\end{array}\end{eqnarray*}$
with arbitrary constants kj, rj, ξj0, (j = 1, 2, 3, ⋯ ,N).
Considering that u , v and w in equation (18) are invariant under the following transformation
$\begin{eqnarray*}F\to \beta \exp ({Kx}+{\rm{\Omega }}t+{X}_{0})F,\end{eqnarray*}$
we rewrite
$\begin{eqnarray*}{\xi }_{j}={\eta }_{j}-\displaystyle \frac{1}{2}\displaystyle \sum _{i^{\prime} =1}^{j-1}{\theta }_{i^{\prime} j}-\displaystyle \frac{1}{2}\displaystyle \sum _{i^{\prime} =j+1}^{N}{\theta }_{{ji}^{\prime} },\end{eqnarray*}$
where
$\begin{eqnarray*}\begin{array}{l}{\eta }_{j}={k}_{j}(x-\displaystyle \frac{{x}_{0}}{2})+{r}_{j}(y-\displaystyle \frac{{y}_{0j}}{2})\\ \quad -\displaystyle \frac{{k}_{j}^{4}+4{r}_{j}^{2}}{4{k}_{j}}(t-\displaystyle \frac{{t}_{0}}{2})+{\eta }_{0j},\end{array}\end{eqnarray*}$
with arbitrary constants y0j and η0j. So the N-soliton solutions of the cKPI system can be rewritten as [17]
$\begin{eqnarray}\begin{array}{l}u=-\displaystyle \frac{1}{\alpha }v=-\alpha w=-\left[\mathrm{ln}\displaystyle \sum _{\nu }{K}_{\nu }\right.\\ \quad \,\times {\left.\cosh \left(\displaystyle \frac{1}{2}\displaystyle \sum _{j=1}^{N}{\nu }_{j}{\eta }_{j}\right)\right]}_{{xx}}\equiv {\left(\mathrm{ln}{F}_{N}\right)}_{{xx}},\end{array}\end{eqnarray}$
where the summation of ν being done for all non-dual permutations of ${\nu }_{i^{\prime} }=1,-1,(i^{\prime} =1,2,3,\cdots N)$ and
$\begin{eqnarray*}{K}_{\nu }=\displaystyle \prod _{i^{\prime} \gt j}\sqrt{3{k}_{i^{\prime} }^{2}{k}_{j}^{2}{\left({k}_{i^{\prime} }-{\nu }_{i^{\prime} }{\nu }_{j}{k}_{j}\right)}^{2}+4{\left({k}_{i^{\prime} }{r}_{j}-{k}_{j}{r}_{i^{\prime} }\right)}^{2}}.\end{eqnarray*}$
In order to give ${\hat{P}}_{s}^{x}{\hat{T}}_{d}$ invariant part of the N-soliton solutions in equation (18), additional restrictions should be given as
$\begin{eqnarray}N=2n,{k}_{n+i^{\prime} }=-{k}_{i^{\prime} },{r}_{n+i^{\prime} }={r}_{i^{\prime} },{y}_{0(n+i^{\prime} )}={y}_{0i^{\prime} }.\end{eqnarray}$
It is clear that solutions of u1, v1, and w1 in equations (15)–(17) are symmetries of the cKP system, which can be taken as
$\begin{eqnarray}\begin{array}{l}{u}_{1}=\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x+\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}+\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){u}_{x}+\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){u}_{y}\\ \quad +{f}_{1}{u}_{t}+\displaystyle \frac{2}{3}\dot{{f}_{1}}u+\displaystyle \frac{2}{9}\ddot{{f}_{1}}x+\displaystyle \frac{1}{9}\dddot{{f}_{1}}{y}^{2}+\displaystyle \frac{1}{3}\ddot{{f}_{2}}y+\displaystyle \frac{2}{3}\dot{{f}_{3}},\\ {v}_{1}=\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x+\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}+\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){v}_{x}\\ \quad +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){v}_{y}+{f}_{1}{v}_{t}+\displaystyle \frac{2}{3}\dot{{f}_{1}}v,\\ {w}_{1}=\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x+\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}+\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){w}_{x}\\ \quad +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){w}_{y}+{f}_{1}{w}_{t}+\displaystyle \frac{2}{3}\dot{{f}_{1}}w,\end{array}\end{eqnarray}$
where f1, f2 and f3 are arbitrary functions of t satisfying
$\begin{eqnarray}\hat{{T}_{d}}\{{f}_{1},{f}_{2},{f}_{3}\}=\{{f}_{1},-{f}_{2},{f}_{3}\}.\end{eqnarray}$
It can be verified that equation (21) with equation (22) satisfies the condition of equation (11). So, N-soliton solutions of the ncKPI system (12)–(14) can be expressed by equation (10) with equations (19) and (21).
By the condition of equation (20), odd number solitons of the ncKPI system are prohibited. As for N = 2, 4, the explicit expressions of FN in equation (19) are
$\begin{eqnarray}\begin{array}{l}{F}_{2}=\sqrt{3{k}_{1}^{4}+4{r}_{1}^{2}}\cosh \left[{r}_{1}\left(y-\displaystyle \frac{{y}_{01}}{2}\right)\right]\\ \quad +2\cosh \left[{k}_{1}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)-\displaystyle \frac{({k}_{1}^{4}-4{r}_{1}^{2})}{4{k}_{1}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\right],\end{array}\end{eqnarray}$
and
$\begin{eqnarray*}\begin{array}{l}{F}_{4}={\delta }_{14,-}{\delta }_{24,-}{\delta }_{34,-}{\delta }_{13,-}{\delta }_{23,-}{\delta }_{12,-}\\ \times \cosh \left[{r}_{1}\left(y-\displaystyle \frac{{y}_{01}}{2}\right)+{r}_{2}\left(y-\displaystyle \frac{{y}_{02}}{2}\right)\right]\\ +{\delta }_{14,+}{\delta }_{24,-}{\delta }_{34,-}{\delta }_{13,+}{\delta }_{23,-}{\delta }_{12,+}\\ \times \cosh \left[{k}_{1}\Space{0ex}{2.5ex}{0ex}(x-\displaystyle \frac{{x}_{0}}{2}\Space{0ex}{2.5ex}{0ex})-\displaystyle \frac{{k}_{1}^{4}-4{r}_{1}^{2}}{4{k}_{1}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)-{r}_{2}\left(y-\displaystyle \frac{{y}_{02}}{2}\right)\right]\\ +{\delta }_{14,-}{\delta }_{24,+}{\delta }_{34,-}{\delta }_{13,-}{\delta }_{23,+}{\delta }_{12,+}\\ \times \cosh \left[{r}_{1}\left(y-\displaystyle \frac{{y}_{01}}{2}\right)-{k}_{2}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)+\displaystyle \frac{\left({k}_{2}^{4}-4{r}_{2}^{2}\right)}{4{k}_{2}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\right]\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}+{\delta }_{14,-}{\delta }_{24,-}{\delta }_{34,+}{\delta }_{13,+}{\delta }_{23,+}{\delta }_{12,-}\\ \times \cosh \left[{k}_{1}\Space{0ex}{1ex}{0ex}(x-\displaystyle \frac{{x}_{0}}{2}\Space{0ex}{1ex}{0ex})-\displaystyle \frac{({k}_{1}^{4}-4{r}_{1}^{2})}{4{k}_{1}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)+{r}_{2}\left(y-\displaystyle \frac{{y}_{02}}{2}\right)\right]\\ +{\delta }_{14,+}{\delta }_{24,+}{\delta }_{34,+}{\delta }_{13,-}{\delta }_{23,-}{\delta }_{12,-}\\ \times \cosh \left[{r}_{1}\Space{0ex}{1ex}{0ex}(y-\displaystyle \frac{{y}_{01}}{2}\Space{0ex}{1ex}{0ex})+{k}_{2}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)-\displaystyle \frac{{k}_{2}^{4}-4{r}_{2}^{2}}{4{k}_{2}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\right]\\ +{\delta }_{14,+}{\delta }_{24,+}{\delta }_{34,-}{\delta }_{13,+}{\delta }_{23,+}{\delta }_{12,-}\\ \times \cosh \left[{k}_{1}\Space{0ex}{1ex}{0ex}(x-\displaystyle \frac{{x}_{0}}{2}\Space{0ex}{1ex}{0ex})-\displaystyle \frac{({k}_{1}^{4}-4{r}_{1}^{2})}{4{k}_{1}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)+{k}_{2}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)\right.\\ \left.-\displaystyle \frac{({k}_{2}^{4}-4{r}_{2}^{2})}{4{k}_{2}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\right]\\ +{\delta }_{14,+}{\delta }_{24,-}{\delta }_{34,+}{\delta }_{13,-}{\delta }_{23,+}{\delta }_{12,+}\\ \times \cosh \left[{r}_{1}\Space{0ex}{2.5ex}{0ex}(y-\displaystyle \frac{{y}_{01}}{2}\Space{0ex}{2.5ex}{0ex})-{r}_{2}\left(y-\displaystyle \frac{{y}_{02}}{2}\right)\right]\\ +{\delta }_{14,-}{\delta }_{24,+}{\delta }_{34,+}{\delta }_{13,+}{\delta }_{23,-}{\delta }_{12,+}\\ \times \cosh \left[{k}_{1}\Space{0ex}{2.5ex}{0ex}(x-\displaystyle \frac{{x}_{0}}{2}\Space{0ex}{2.5ex}{0ex})-\displaystyle \frac{({k}_{1}^{4}-4{r}_{1}^{2})}{4{k}_{1}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)-{k}_{2}\left(x-\displaystyle \frac{{x}_{0}}{2}\right)\right.\\ \left.+\displaystyle \frac{({k}_{2}^{4}-4{r}_{2}^{2})}{4{k}_{2}}\left(t-\displaystyle \frac{{t}_{0}}{2}\right)\right],\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}{\delta }_{i^{\prime} j,\pm }=\sqrt{3{k}_{i^{\prime} }^{2}{k}_{j}^{2}{\left({k}_{i^{\prime} }\pm {k}_{j}\right)}^{2}+4{\left({k}_{i^{\prime} }{r}_{j}-{k}_{j}{r}_{i^{\prime} }\right)}^{2}},\end{eqnarray*}$
and
$\begin{eqnarray*}\begin{array}{rcl}{k}_{4} & = & -{k}_{2},{k}_{3}=-{k}_{1},{r}_{4}={r}_{2},\\ {r}_{3} & = & {r}_{1},{y}_{04}={y}_{02},{y}_{03}={y}_{01}.\end{array}\end{eqnarray*}$
At time t = 0, for N = 2 case, figures 1(a) and 2(a) give density plot and three-dimensional plot of A of the ncKP system expressed by equations (10) with equations (19) and (21) where the parameters are fixed by
$\begin{eqnarray}\begin{array}{rcl}{f}_{1} & = & {f}_{2}={x}_{0}={t}_{0}={\eta }_{01}={\eta }_{02}={y}_{01}={y}_{02}=0,\\ {f}_{3} & = & 2,\alpha =2,{k}_{1}=-{k}_{2}=1,{r}_{1}={r}_{2}=1;\end{array}\end{eqnarray}$
as for N = 4 case, figures 1(b) and 2(b) give density plot and three-dimensional plot of A of the ncKPI system where the parameters are fixed by
$\begin{eqnarray}\begin{array}{rcl}{f}_{1} & = & {f}_{2}={x}_{0}={t}_{0}={\eta }_{0j}={y}_{0j}=0,(j=1,2,\cdots ,4),\\ {f}_{3} & = & 2,\alpha =1,{k}_{1}=-{k}_{3}=1,\\ {k}_{2} & = & -{k}_{4}=2,{r}_{1}={r}_{2}={r}_{3}={r}_{4}=1.\end{array}\end{eqnarray}$
Because F2 (or F4) in equations (23) (or (24)) depends similarly on the coordinates of x, y and t, the multiple soliton interaction behaviors of A depending on other variable pairs (x, t) and (y, t) are similar to those in figures 1 and 2.
Figure 1. (a) The density plot of the solution A of the ncKPI system at time t = 0 for N = 2 case with parameters being fixed by equation (25); (b) the density plot of the solution A of the ncKPI system at time t = 0 for N = 4 case with parameters being fixed by equation (26).
Figure 2. (a) The three-dimensional plot of the solution A of the ncKPI system at time t = 0 for N = 2 case with parameters being fixed by equation (25); (b) the three-dimensional plot of the solution A of the ncKPI system at time t = 0 for N = 4 case with parameters being fixed by equation (26).
When rj(j = 1, 2, 3, ⋯ ,N) in equation (19) are taken to be a pure imaginary number, these N-soliton solutions become breather solutions. To illustrate this point, for the N = 2 case, when we take the parameters as
$\begin{eqnarray}\begin{array}{rcl}{f}_{1} & = & {f}_{2}={x}_{0}={y}_{01}={y}_{02}={t}_{0}={\eta }_{01}={\eta }_{02}=0,\\ {f}_{3} & = & 2,{k}_{1}=-{k}_{2}=1,\\ {r}_{1} & = & {r}_{2}=\sqrt{-1},\alpha =2,\end{array}\end{eqnarray}$
we get breathers at time t = 0 in figure 3.
Figure 3. Breather solutions of the ncKPI system at time t = 0 for: (a) the density plots of the variable A; (b) the three-dimensional plots of the variable A. The parameters are fixed by equation (27).
It is well known that the KP equation has lump solutions, we can verify that the cKPI system has the following solution
$\begin{eqnarray}\begin{array}{l}u=-\displaystyle \frac{1}{\alpha }v=-\alpha w=\displaystyle \frac{{L}_{1}}{{L}_{2}},\\ {L}_{1}=32{d}^{2}{x}^{2}+32[{d}^{2}({{dt}}_{0}-{x}_{0})-2{d}^{3}t]x-32{d}^{3}{y}^{2}\\ +64{d}^{3}{{yy}}_{0}+32{d}^{4}{t}^{2}-32{d}^{3}({{dt}}_{0}-{x}_{0})t\\ +8d({d}^{3}{t}_{0}^{2}-2{d}^{2}{t}_{0}{x}_{0}-4{d}^{2}{y}_{0}^{2}+{{dx}}_{0}^{2}-3),\\ {L}_{2}=\left[4{{dx}}^{2}+4d[({{dt}}_{0}-{x}_{0})-2{dt}]x+4{d}^{2}{y}^{2}-8{d}^{2}{{yy}}_{0}\right.\\ {\left.+4{d}^{3}{t}^{2}-4{d}^{2}({{dt}}_{0}-{x}_{0})t+d{\left({{dt}}_{0}-{x}_{0}\right)}^{2}+4{d}^{2}{y}_{0}^{2}+3\right]}^{2},\end{array}\end{eqnarray}$
with arbitrary constants d, x0, y0, t0, which leads to lump-type solutions of the ncKP system by substituting equation (28) into equations (10) with equation (21). Figure 4 demonstrates a lump-type solution of the ncKPI system for the variable A, where the parameters are fixed by
$\begin{eqnarray}{f}_{1}={f}_{2}={f}_{3}={x}_{0}={y}_{0}={t}_{0}=0,d=1.\end{eqnarray}$
Figure 4. Plots of lump solution of A of the ncKPI system at time t = 0, while the parameters being fixed by equation (29): (a) density plot; (b) three-dimensional plot.

3. Symmetry reduction solutions of the the ncKPII system

Symmetry analysis plays an important role in solving nonlinear systems [29, 30], in this section we apply the standard Lie symmetry method on the ncKPII system. To this end, we first give the Lie point symmetry of this system in the form
$\begin{eqnarray}\begin{array}{rcl}V & = & X\displaystyle \frac{\partial }{\partial x}+Y\displaystyle \frac{\partial }{\partial y}+T\displaystyle \frac{\partial }{\partial t}+{{\rm{\Gamma }}}_{1}\displaystyle \frac{\partial }{\partial A}+{{\rm{\Lambda }}}_{1}\displaystyle \frac{\partial }{\partial B}\\ & & +{{\rm{\Gamma }}}_{2}\displaystyle \frac{\partial }{\partial C}+{{\rm{\Lambda }}}_{2}\displaystyle \frac{\partial }{\partial E}+{{\rm{\Gamma }}}_{3}\displaystyle \frac{\partial }{\partial F}+{{\rm{\Lambda }}}_{2}\displaystyle \frac{\partial }{\partial G},\end{array}\end{eqnarray}$
where X, Y, T, Γ1, Γ2, Γ3, Λ1, Λ2, Λ3 are functions of x, y, t, A, B, C, E, F, G that needs to be determined. In other words, the ncKPII system is invariant under the following transformation
$\begin{eqnarray*}\begin{array}{l}\{x,y,t,A,B,C,E,F,G\}\\ \quad \to \{x+\epsilon X,y+\epsilon Y,t+\epsilon T,A+\epsilon {{\rm{\Gamma }}}_{1},B+\epsilon {{\rm{\Lambda }}}_{1},\\ \quad C+\epsilon {{\rm{\Gamma }}}_{2},E+\epsilon {{\rm{\Lambda }}}_{2},\\ \quad F+\epsilon {{\rm{\Gamma }}}_{3},G+\epsilon {{\rm{\Lambda }}}_{3}\},\end{array}\end{eqnarray*}$
with infinitesimal parameter ε. The symmetry of equation (30) can be written in function form as
$\begin{eqnarray}{\sigma }_{A}={{XA}}_{x}+{{YA}}_{y}+{{TA}}_{t}-{{\rm{\Gamma }}}_{1},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{B}={{XB}}_{x}+{{YB}}_{y}+{{TB}}_{t}-{{\rm{\Lambda }}}_{1},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{C}={{XC}}_{x}+{{YC}}_{y}+{{TC}}_{t}-{{\rm{\Gamma }}}_{2},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{E}={{XB}}_{x}+{{YB}}_{y}+{{TB}}_{t}-{{\rm{\Lambda }}}_{2},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{F}={{XF}}_{x}+{{YF}}_{y}+{{TF}}_{t}-{{\rm{\Gamma }}}_{3},\end{eqnarray}$
$\begin{eqnarray}{\sigma }_{G}={{XG}}_{x}+{{YG}}_{y}+{{TG}}_{t}-{{\rm{\Lambda }}}_{3},\end{eqnarray}$
which satisfy the linearized equations of the ncKPII system
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{3}{4}({\sigma }_{E,x}-{\sigma }_{C,x}){A}_{x}-\displaystyle \frac{3}{4}({\sigma }_{E,x}+3{\sigma }_{C,x}){B}_{x}\\ \quad -\displaystyle \frac{3}{4}(3{\sigma }_{B,x}+{\sigma }_{A,x}){C}_{x}+\displaystyle \frac{3}{4}({\sigma }_{A,x}-{\sigma }_{B,x}){E}_{x}\\ -\displaystyle \frac{3}{8}(3{\sigma }_{C}+{\sigma }_{E}){A}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{E}-{\sigma }_{C}){B}_{{xx}}\\ \quad -\displaystyle \frac{3}{8}(3{\sigma }_{A}+{\sigma }_{B}){C}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{B}-{\sigma }_{A}){E}_{{xx}}\\ \quad +\displaystyle \frac{1}{4}{\sigma }_{C,{xxxx}}-\displaystyle \frac{3}{8}(3C+E){\sigma }_{A,{xx}}\\ \quad +\displaystyle \frac{3}{8}(E-C){\sigma }_{B,{xx}}+{\sigma }_{C,{xt}}-\displaystyle \frac{3}{8}(3A+B){\sigma }_{C,{xx}}\\ \quad +{\sigma }_{C,{yy}}+\displaystyle \frac{3}{8}(B-A){\sigma }_{E,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{3}{4}({\sigma }_{C,x}-{\sigma }_{E,x}){B}_{x}-\displaystyle \frac{3}{4}({\sigma }_{C,x}+3{\sigma }_{E,x}){A}_{x}\\ \quad -\displaystyle \frac{3}{4}(3{\sigma }_{A,x}+{\sigma }_{B,x}){E}_{x}+\displaystyle \frac{3}{4}({\sigma }_{B,x}-{\sigma }_{A,x}){C}_{x}\\ \quad -\displaystyle \frac{3}{8}(3{\sigma }_{E}+{\sigma }_{C}){B}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{C}-{\sigma }_{E}){A}_{{xx}}\\ \quad -\displaystyle \frac{3}{8}(3{\sigma }_{B}+{\sigma }_{A}){E}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{A}-{\sigma }_{B}){C}_{{xx}}\\ \quad +\displaystyle \frac{1}{4}{\sigma }_{E,{xxxx}}-\displaystyle \frac{3}{8}(3E+C){\sigma }_{B,{xx}}\\ \quad +\displaystyle \frac{3}{8}(C-E){\sigma }_{A,{xx}}+{\sigma }_{E,{xt}}-\displaystyle \frac{3}{8}(3B+A){\sigma }_{E,{xx}}\\ \quad +{\sigma }_{E,{yy}}+\displaystyle \frac{3}{8}(A-B){\sigma }_{C,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{3}{4}(3{\sigma }_{F,x}+{\sigma }_{G,x}){A}_{x}+\displaystyle \frac{3}{4}({\sigma }_{F,x}-{\sigma }_{G,x}){B}_{x}\\ \quad +\displaystyle \frac{3}{4}({\sigma }_{B,x}+3{\sigma }_{A,x}){F}_{x}\\ \quad -\displaystyle \frac{3}{4}({\sigma }_{B,x}-{\sigma }_{A,x}){G}_{x}+\displaystyle \frac{3}{8}(3{\sigma }_{F}+{\sigma }_{G}){A}_{{xx}}\\ +\displaystyle \frac{3}{8}({\sigma }_{F}-{\sigma }_{G}){B}_{{xx}}+\displaystyle \frac{3}{8}(3{\sigma }_{A}+{\sigma }_{B}){F}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{A}-{\sigma }_{B}){G}_{{xx}}\\ \quad -\displaystyle \frac{1}{4}{\sigma }_{F,{xxxx}}+\displaystyle \frac{3}{8}(3F+G){\sigma }_{A,{xx}}+\displaystyle \frac{3}{8}(F-G){\sigma }_{B,{xx}}\\ -{\sigma }_{F,{xt}}+\displaystyle \frac{3}{8}(3A+B){\sigma }_{F,{xx}}-{\sigma }_{F,{yy}}+\displaystyle \frac{3}{8}(A-B){\sigma }_{G,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{3}{4}(3{\sigma }_{G,x}+{\sigma }_{F,x}){B}_{x}+\displaystyle \frac{3}{4}({\sigma }_{G,x}-{\sigma }_{F,x}){A}_{x}\\ \quad +\displaystyle \frac{3}{4}({\sigma }_{A,x}+3{\sigma }_{B,x}){G}_{x}\\ \quad -\displaystyle \frac{3}{4}({\sigma }_{A,x}-{\sigma }_{B,x}){F}_{x}+\displaystyle \frac{3}{8}(3{\sigma }_{G}+{\sigma }_{F}){B}_{{xx}}\\ +\displaystyle \frac{3}{8}({\sigma }_{G}-{\sigma }_{F}){A}_{{xx}}+\displaystyle \frac{3}{8}(3{\sigma }_{B}+{\sigma }_{A}){G}_{{xx}}\\ \quad +\displaystyle \frac{3}{8}({\sigma }_{B}-{\sigma }_{A}){F}_{{xx}}-\displaystyle \frac{1}{4}{\sigma }_{G,{xxxx}}\\ \quad +\displaystyle \frac{3}{8}(3G+F){\sigma }_{B,{xx}}+\displaystyle \frac{3}{8}(G-F){\sigma }_{A,{xx}}\\ -{\sigma }_{G,{xt}}+\displaystyle \frac{3}{8}(3B+A){\sigma }_{G,{xx}}-{\sigma }_{G,{yy}}+\displaystyle \frac{3}{8}(B-A){\sigma }_{F,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\sigma }_{A,{xt}}-\displaystyle \frac{3}{4}({\sigma }_{B,x}+3{\sigma }_{A,x}){A}_{x}\\ \quad +\displaystyle \frac{3}{4}({\sigma }_{B,x}-{\sigma }_{A,x}){B}_{x}\\ \quad -\displaystyle \frac{3}{8}(3{\sigma }_{F,x}+{\sigma }_{G,x}){C}_{x}+\displaystyle \frac{3}{8}({\sigma }_{G,x}-{\sigma }_{F,x}){E}_{x}\\ \quad -\displaystyle \frac{3}{8}({\sigma }_{E,x}+3{\sigma }_{C,x}){F}_{x}+\displaystyle \frac{3}{8}({\sigma }_{E,x}-{\sigma }_{C,x}){G}_{x}-\displaystyle \frac{3}{8}(3{\sigma }_{A}\\ \quad +{\sigma }_{B}){A}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{B}-{\sigma }_{A}){B}_{{xx}}-\displaystyle \frac{3}{16}(3{\sigma }_{F}+{\sigma }_{G}){C}_{{xx}}\\ \quad +\displaystyle \frac{3}{16}({\sigma }_{G}-{\sigma }_{F}){E}_{{xx}}-\displaystyle \frac{3}{16}({\sigma }_{E}+3{\sigma }_{C}){F}_{{xx}}\\ \quad -\displaystyle \frac{3}{16}({\sigma }_{C}-{\sigma }_{E}){G}_{{xx}}+\displaystyle \frac{1}{4}{\sigma }_{A,{xxxx}}-\displaystyle \frac{3}{8}(3A+B){\sigma }_{A,{xx}}+{\sigma }_{A,{yy}}\\ \quad +\displaystyle \frac{3}{8}(B-A){\sigma }_{B,{xx}}-\displaystyle \frac{3}{16}(3F+G){\sigma }_{C,{xx}}\\ \quad +\displaystyle \frac{3}{16}(G-F){\sigma }_{E,{xx}}\\ \quad -\displaystyle \frac{3}{16}(E+3C){\sigma }_{F,{xx}}-\displaystyle \frac{3}{16}(C-E){\sigma }_{G,{xx}}=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\sigma }_{B,{xt}}-\displaystyle \frac{3}{4}({\sigma }_{A,x}+3{\sigma }_{B,x}){B}_{x}+\displaystyle \frac{3}{4}({\sigma }_{A,x}-{\sigma }_{B,x}){A}_{x}\\ \quad -\displaystyle \frac{3}{8}(3{\sigma }_{G,x}+{\sigma }_{F,x}){E}_{x}+\displaystyle \frac{3}{8}({\sigma }_{F,x}-{\sigma }_{G,x}){C}_{x}\\ -\displaystyle \frac{3}{8}({\sigma }_{C,x}+3{\sigma }_{E,x}){G}_{x}+\displaystyle \frac{3}{8}({\sigma }_{C,x}-{\sigma }_{E,x}){F}_{x}-\displaystyle \frac{3}{8}(3{\sigma }_{B}\\ \quad +{\sigma }_{A}){B}_{{xx}}+\displaystyle \frac{3}{8}({\sigma }_{A}-{\sigma }_{B}){A}_{{xx}}-\displaystyle \frac{3}{16}(3{\sigma }_{G}+{\sigma }_{F}){E}_{{xx}}\\ \quad +\displaystyle \frac{3}{16}({\sigma }_{F}-{\sigma }_{G}){C}_{{xx}}-\displaystyle \frac{3}{16}({\sigma }_{C}+3{\sigma }_{E}){G}_{{xx}}\\ \quad -\displaystyle \frac{3}{16}({\sigma }_{E}-{\sigma }_{C}){F}_{{xx}}+\displaystyle \frac{1}{4}{\sigma }_{B,{xxxx}}-\displaystyle \frac{3}{8}(3B+A){\sigma }_{B,{xx}}+{\sigma }_{B,{yy}}\\ \quad +\displaystyle \frac{3}{8}(A-B){\sigma }_{A,{xx}}-\displaystyle \frac{3}{16}(3G+F){\sigma }_{E,{xx}}\\ \quad +\displaystyle \frac{3}{16}(F-G){\sigma }_{C,{xx}}\\ \quad -\displaystyle \frac{3}{16}(C+3E){\sigma }_{G,{xx}}-\displaystyle \frac{3}{16}(E-C){\sigma }_{F,{xx}}=0,\end{array}\end{eqnarray}$
and also the nonlocal condition
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{A} & = & {\sigma }_{B}(-x+{x}_{0},y,-t+{t}_{0}),\\ {\sigma }_{C} & = & {\sigma }_{E}(-x+{x}_{0},y,-t+{t}_{0}),\\ {\sigma }_{F} & = & {\sigma }_{G}(-x+{x}_{0},y,-t+{t}_{0}).\end{array}\end{eqnarray}$
By substituting equations (31) into equation (32) and eliminating Axt, Bxt, Cxt, Ext, Fxt, Gxt by the ncKPII system, we obtain a system of the functions X, Y, T, Γ1, Γ2, Γ3, Λ1, Λ2, Λ3. By vanishing all independent partial derivatives of variables A, B, C, E, F, G we obtain a system of over determined linear equations, which can be solved by software like maple. After considering the nonlocal relation of equation (32g), we have
$\begin{eqnarray*}\begin{array}{rcl}X & = & \displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3},\\ Y & = & \displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2},T={f}_{1},\\ {{\rm{\Gamma }}}_{1} & = & \displaystyle \frac{1}{9}\dddot{{f}_{1}}{y}^{2}-\displaystyle \frac{2}{3}\dot{{f}_{1}}A-\displaystyle \frac{2}{9}\ddot{{f}_{1}}x+\displaystyle \frac{1}{3}\ddot{{f}_{2}}y-\displaystyle \frac{2}{3}\dot{{f}_{3}},\\ {{\rm{\Lambda }}}_{1} & = & \displaystyle \frac{1}{9}\dddot{{f}_{1}}{y}^{2}-\displaystyle \frac{2}{3}\dot{{f}_{1}}B-\displaystyle \frac{2}{9}\ddot{{f}_{1}}x\\ & & +\displaystyle \frac{1}{3}\ddot{{f}_{2}}y-\displaystyle \frac{2}{3}\dot{{f}_{3}},\\ {{\rm{\Gamma }}}_{2} & = & -\displaystyle \frac{2}{3}C\dot{{f}_{1}}-{e}_{1}E-{e}_{1}C,{{\rm{\Lambda }}}_{2}=-\displaystyle \frac{2}{3}\dot{{f}_{1}}E+{e}_{1}C+{e}_{1}E,\\ {{\rm{\Gamma }}}_{3} & = & -\displaystyle \frac{2}{3}\dot{{f}_{1}}F+{e}_{1}G+{e}_{1}F,\\ {{\rm{\Lambda }}}_{3} & = & -\displaystyle \frac{2}{3}\dot{{f}_{1}}G-{e}_{1}G-{e}_{1}F,\end{array}\end{eqnarray*}$
where f1, f2, f3 are arbitrary functions of t satisfying the condition of (22). So the explicit expressions of equation (31) are
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{A} & = & {f}_{1}{A}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){A}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){A}_{y}-\displaystyle \frac{1}{9}\dddot{{f}_{1}}{y}^{2}+\displaystyle \frac{2}{3}\dot{{f}_{1}}A\\ & & +\displaystyle \frac{2}{9}\ddot{{f}_{1}}x-\displaystyle \frac{1}{3}\ddot{{f}_{2}}y+\displaystyle \frac{2}{3}\dot{{f}_{3}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{B} & = & {f}_{1}{B}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){B}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){B}_{y}-\displaystyle \frac{1}{9}\dddot{{f}_{1}}{y}^{2}+\displaystyle \frac{2}{3}\dot{{f}_{1}}B\\ & & +\displaystyle \frac{2}{9}\ddot{{f}_{1}}x-\displaystyle \frac{1}{3}\ddot{{f}_{2}}y+\displaystyle \frac{2}{3}\dot{{f}_{3}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{C} & = & {f}_{1}{C}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){C}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){C}_{y}+\displaystyle \frac{2}{3}C\dot{{f}_{1}}+{e}_{1}(C+E),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{E} & = & {f}_{1}{E}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){E}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){E}_{y}+\displaystyle \frac{2}{3}E\dot{{f}_{1}}\\ & & -{e}_{1}(C+E),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{F} & = & {f}_{1}{F}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){F}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){F}_{y}+\displaystyle \frac{2}{3}F\dot{{f}_{1}}-{e}_{1}(F+G),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\sigma }_{G} & = & {f}_{1}{G}_{t}+\left(\displaystyle \frac{1}{3}\dot{{f}_{1}}x-\displaystyle \frac{1}{6}\ddot{{f}_{1}}{y}^{2}-\displaystyle \frac{1}{2}\dot{{f}_{2}}y+{f}_{3}\right){G}_{x}\\ & & +\left(\displaystyle \frac{2}{3}\dot{{f}_{1}}y+{f}_{2}\right){G}_{y}+\displaystyle \frac{2}{3}G\dot{{f}_{1}}\\ & & +{e}_{1}(F+G).\end{array}\end{eqnarray}$
Group invariant solutions of the ncKPII system can be obtained by solving equation (33) under the condition σA = σB = σC = σE = σF = σG = 0, which is equivalent to solving the characteristic equation
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{dx}}{\tfrac{1}{3}\dot{{f}_{1}}x-\tfrac{1}{6}\ddot{{f}_{1}}{y}^{2}-\tfrac{1}{2}\dot{{f}_{2}}y+{f}_{3}}=\displaystyle \frac{{dt}}{{f}_{1}}\\ \quad =\displaystyle \frac{{dA}}{\tfrac{1}{9}\dddot{{f}_{1}}{y}^{2}-\tfrac{2}{3}\dot{{f}_{1}}A-\tfrac{2}{9}\ddot{{f}_{1}}x+\tfrac{1}{3}\ddot{{f}_{2}}y-\tfrac{2}{3}\dot{{f}_{3}}}\\ =\displaystyle \frac{{dB}}{\tfrac{1}{9}\dddot{{f}_{1}}{y}^{2}-\tfrac{2}{3}\dot{{f}_{1}}B-\tfrac{2}{9}\ddot{{f}_{1}}x+\tfrac{1}{3}\ddot{{f}_{2}}y-\tfrac{2}{3}\dot{{f}_{3}}}\\ \quad =\displaystyle \frac{{dC}}{-\tfrac{2}{3}C\dot{{f}_{1}}-{e}_{1}E-{e}_{1}C}\\ \quad =\displaystyle \frac{{dE}}{-\tfrac{2}{3}\dot{{f}_{1}}E+{e}_{1}C+{e}_{1}E}\\ \quad =\displaystyle \frac{{dF}}{-\tfrac{2}{3}\dot{{f}_{1}}F+{e}_{1}G+{e}_{1}F}\\ \quad =\displaystyle \frac{{dG}}{-\tfrac{2}{3}\dot{{f}_{1}}G-{e}_{1}G-{e}_{1}F}.\end{array}\end{eqnarray}$
After solving equation (34) we get symmetry reduction solutions of the ncKPII system
$\begin{eqnarray}\begin{array}{rcl}A & = & -\displaystyle \frac{{\left({m}_{1}+\eta \right)}^{2}\dddot{{m}_{3}}}{9{\dot{{m}_{3}}}^{\tfrac{7}{3}}}+\displaystyle \frac{({m}_{1}+\eta )\ddot{{m}_{1}}}{3{\dot{{m}_{3}}}^{\tfrac{4}{3}}}\\ & & +\left[-\displaystyle \frac{4({m}_{1}+\eta )\dot{{m}_{1}}}{9{\dot{{m}_{3}}}^{\tfrac{7}{3}}}+\displaystyle \frac{{m}_{2}+2\xi }{9{\dot{{m}_{3}}}^{\tfrac{4}{3}}}\right]\ddot{{m}_{3}}\\ & & +\displaystyle \frac{5{\left({m}_{1}+\eta \right)}^{2}{\ddot{{m}_{3}}}^{2}}{27{\dot{{m}_{3}}}^{\tfrac{10}{3}}}+\displaystyle \frac{{\dot{{m}_{1}}}^{2}}{6{\dot{{m}_{3}}}^{\tfrac{4}{3}}}-\displaystyle \frac{\dot{{m}_{2}}}{3{\dot{{m}_{3}}}^{\tfrac{1}{3}}}+{\dot{{m}_{3}}}^{\tfrac{2}{3}}{A}_{1},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}B & = & -\displaystyle \frac{{\left({m}_{1}+\eta \right)}^{2}\dddot{{m}_{3}}}{9{\dot{{m}_{3}}}^{\tfrac{7}{3}}}+\displaystyle \frac{({m}_{1}+\eta )\ddot{{m}_{1}}}{3{\dot{{m}_{3}}}^{\tfrac{4}{3}}}\\ & & +\left[-\displaystyle \frac{4({m}_{1}+\eta )\dot{{m}_{1}}}{9{\dot{{m}_{3}}}^{\tfrac{7}{3}}}+\displaystyle \frac{{m}_{2}+2\xi }{9{\dot{{m}_{3}}}^{\tfrac{4}{3}}}\right]\ddot{{m}_{3}}\\ & & +\displaystyle \frac{5{\left({m}_{1}+\eta \right)}^{2}{\ddot{{m}_{3}}}^{2}}{27{\dot{{m}_{3}}}^{\tfrac{10}{3}}}+\displaystyle \frac{{\dot{{m}_{1}}}^{2}}{6{\dot{{m}_{3}}}^{\tfrac{4}{3}}}\\ & & -\displaystyle \frac{\dot{{m}_{2}}}{3{\dot{{m}_{3}}}^{\tfrac{1}{3}}}+{\dot{{m}_{3}}}^{\tfrac{2}{3}}{B}_{1},\end{array}\end{eqnarray}$
$\begin{eqnarray}C=-{\dot{{m}_{3}}}^{\displaystyle \frac{2}{3}}[({e}_{1}{m}_{3}-1){C}_{1}+{E}_{1}],\end{eqnarray}$
$\begin{eqnarray}E={\dot{{m}_{3}}}^{\displaystyle \frac{2}{3}}({e}_{1}{m}_{3}{C}_{1}+{E}_{1}),\end{eqnarray}$
$\begin{eqnarray}F={\dot{{m}_{3}}}^{\displaystyle \frac{2}{3}}({e}_{1}{m}_{3}{G}_{1}+{F}_{1}),\end{eqnarray}$
$\begin{eqnarray}G=-{\dot{{m}_{3}}}^{\displaystyle \frac{2}{3}}[({e}_{1}{m}_{3}-1){G}_{1}+{F}_{1}],\end{eqnarray}$
where A1, B1, C1, E1, F1, G1 are invariant functions of two new invariant variables
$\begin{eqnarray}\begin{array}{l}\xi =\displaystyle \frac{\dot{{m}_{1}}}{2{\dot{{m}_{3}}}^{\tfrac{1}{3}}}y+{\dot{{m}_{3}}}^{\tfrac{1}{3}}x-\displaystyle \frac{\ddot{{m}_{3}}}{6{\left(\dot{{m}_{3}}\right)}^{\tfrac{2}{3}}}{y}^{2}\\ \quad -\displaystyle \frac{1}{2}{m}_{2},\eta =-{m}_{1}+{\dot{{m}_{3}}}^{-\tfrac{2}{3}}y.\end{array}\end{eqnarray}$
In equation (41), m1, m2, m3 are arbitrary functions of t which related to f1, f2, f3 by
$\begin{eqnarray}{f}_{1}=\displaystyle \frac{1}{\dot{{m}_{3}}},{f}_{2}=\displaystyle \frac{\dot{{m}_{1}}}{{\dot{{m}_{3}}}^{\tfrac{5}{3}}},{f}_{3}=-\displaystyle \frac{{\dot{{m}_{1}}}^{2}}{2{\dot{{m}_{3}}}^{\tfrac{7}{3}}}+\displaystyle \frac{\dot{{m}_{2}}}{2{\dot{{m}_{3}}}^{\tfrac{4}{3}}},\end{eqnarray}$
and satisfy
$\begin{eqnarray}\hat{{T}_{d}}\{{m}_{1},{m}_{2},{m}_{3}\}=\{{m}_{1},-{m}_{2},-{m}_{3}\}.\end{eqnarray}$
By substituting equations (35)–(40) into the ncKPII system, we get corresponding symmetry reduction equations
$\begin{eqnarray}\begin{array}{l}-18{A}_{1,\xi }^{2}-12{A}_{1,\xi }{B}_{1,\xi }+6{B}_{1,\xi }^{2}-6({G}_{1,\xi }+2{F}_{1,\xi }){C}_{1,\xi }\\ \quad +12{G}_{1,\xi }{E}_{1,\xi }+16{A}_{1,\eta \eta }-6({B}_{1}+3{A}_{1}){A}_{1,\xi \xi }\\ \quad +6({B}_{1}-{A}_{1}){B}_{1,\xi \xi }-3({G}_{1}+2{F}_{1}){C}_{1,\xi \xi }+6{E}_{1,\xi \xi }{G}_{1}\\ \quad -6{F}_{1,\xi \xi }{C}_{1}+3(2{E}_{1}-{C}_{1}){G}_{1,\xi \xi }+4{A}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}-18{B}_{1,\xi }^{2}-12{A}_{1,\xi }{B}_{1,\xi }+6{A}_{1,\xi }^{2}-6({G}_{1,\xi }-2{F}_{1,\xi }){C}_{1,\xi }\\ \quad -12{G}_{1,\xi }{E}_{1,\xi }+16{B}_{1,\eta \eta }-6({B}_{1}-{A}_{1}){A}_{1,\xi \xi }\\ \quad -6(3{B}_{1}+{A}_{1}){B}_{1,\xi \xi }-3({G}_{1}-2{F}_{1}){C}_{1,\xi \xi }-6{E}_{1,\xi \xi }{G}_{1}\\ \quad +6{F}_{1,\xi \xi }{C}_{1}-3(2{E}_{1}+{C}_{1}){G}_{1,\xi \xi }+4{B}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left[6(2{e}_{1}{m}_{3}-1){C}_{1,\xi }+12{E}_{1,\xi }\right]{A}_{1,\xi }+[6(2{m}_{3}{e}_{1}-3){C}_{1,\xi }\\ \quad +12{E}_{1,\xi }]{B}_{1,\xi }-8{C}_{1,\xi }{e}_{1}\\ \quad +3(2{C}_{1}{e}_{1}{m}_{3}+2{E}_{1}-3{C}_{1}){A}_{1,\xi \xi }+3(2{C}_{1}{e}_{1}{m}_{3}-{C}_{1}\\ \quad +2{E}_{1}){B}_{1,\xi \xi }-8({m}_{3}{e}_{1}-1){C}_{1,\eta \eta }\\ \quad +3(2{B}_{1}{m}_{3}{e}_{1}+2{A}_{1}{m}_{3}{e}_{1}-{B}_{1}-3{A}_{1}){C}_{1,\xi \xi }-8{E}_{1,\eta \eta }\\ \quad +6({B}_{1}+{A}_{1}){E}_{1,\xi \xi }-2({m}_{3}{e}_{1}-1){C}_{1,\xi \xi \xi \xi }\\ \quad -2{E}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left[6(2{e}_{1}{m}_{3}+1){C}_{1,\xi }+12{E}_{1,\xi }\right]{A}_{1,\xi }\\ \quad +[6(2{m}_{3}{e}_{1}-1){C}_{1,\xi }+12{E}_{1,\xi }]{B}_{1,\xi }-8{C}_{1,\xi }{e}_{1}\\ \quad +3(2{C}_{1}{e}_{1}{m}_{3}+2{E}_{1}-{C}_{1}){A}_{1,\xi \xi }+3(2{C}_{1}{e}_{1}{m}_{3}\\ \quad +{C}_{1}+2{E}_{1}){B}_{1,\xi \xi }-8{m}_{3}{e}_{1}{C}_{1,\eta \eta }\\ \quad +3(2{B}_{1}{m}_{3}{e}_{1}+2{A}_{1}{m}_{3}{e}_{1}+{B}_{1}-{A}_{1}){C}_{1,\xi \xi }-8{E}_{1,\eta \eta }\\ \quad +6({B}_{1}+{A}_{1}){E}_{1,\xi \xi }-2{m}_{3}{e}_{1}{C}_{1,\xi \xi \xi \xi }-2{E}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}6[2{F}_{1,\xi }+(2{m}_{3}{e}_{1}+1){G}_{1,\xi }]{A}_{1,\xi }\\ \quad +6[2{F}_{1,\xi }+(2{m}_{3}{e}_{1}-1){G}_{1,\xi }]{B}_{1,\xi }-8{G}_{1,\xi }{e}_{1}\\ \quad +3(2{G}_{1}{e}_{1}{m}_{3}+{G}_{1}+2{F}_{1}){A}_{1,\xi \xi }\\ \quad +3(2{G}_{1}{e}_{1}{m}_{3}-{G}_{1}+2{F}_{1}){B}_{1,\xi \xi }-8{F}_{1,\eta \eta }\\ \quad +6({B}_{1}+{A}_{1}){F}_{1,\xi \xi }-8{G}_{1,\eta \eta }{m}_{3}{e}_{1}\\ \quad +3(2{A}_{1}{m}_{3}{e}_{1}+2{B}_{1}{m}_{3}{e}_{1}+{A}_{1}-{B}_{1}){G}_{1,\xi \xi }\\ \quad -2{G}_{1,\xi \xi \xi \xi }{e}_{1}{m}_{3}-2{F}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}6[2{F}_{1,\xi }+(2{m}_{3}{e}_{1}-1){G}_{1,\xi }]{A}_{1,\xi }+6[2{F}_{1,\xi }\\ \quad +(2{m}_{3}{e}_{1}-3){G}_{1,\xi }]{B}_{1,\xi }-8{G}_{1,\xi }{e}_{1}\\ +3(2{G}_{1}{e}_{1}{m}_{3}-{G}_{1}+2{F}_{1}){A}_{1,\xi \xi }\\ \quad +3(2{G}_{1}{e}_{1}{m}_{3}-3{G}_{1}+2{F}_{1}){B}_{1,\xi \xi }-8{F}_{1,\eta \eta }\\ +6({B}_{1}+{A}_{1}){F}_{1,\xi \xi }-8({m}_{3}{e}_{1}-1){G}_{1,\eta \eta }\\ \quad +3(2{A}_{1}{m}_{3}{e}_{1}+2{B}_{1}{m}_{3}{e}_{1}-{A}_{1}-3{B}_{1}){G}_{1,\xi \xi }\\ -2({e}_{1}{m}_{3}-1){G}_{1,\xi \xi \xi \xi }-2{F}_{1,\xi \xi \xi \xi }=0,\end{array}\end{eqnarray}$
along with
$\begin{eqnarray*}\begin{array}{l}{A}_{1}(-\xi ,\eta )={B}_{1}(\xi ,\eta ),{C}_{1}(-\xi ,\\ \eta )={C}_{1}(\xi ,\eta ),{E}_{1}(-\xi ,\eta )={C}_{1}(\xi ,\eta )-{E}_{1}(\xi ,\eta ),\\ {F}_{1}(-\xi ,\eta )={G}_{1}(\xi ,\eta )-{F}_{1}(\xi ,\eta ),\\ {G}_{1}(\xi ,\eta )={G}_{1}(-\xi ,\eta ).\end{array}\end{eqnarray*}$

4. Summary

In summary, a nonlocal coupled KP system is introduced and studied by converting it into a localized system. Via this method, new solutions of the ncKP system are generated from known ones of the cKP system. An even number of singular soliton solutions are obtained in a general form, among which N = 2 and N = 4 soliton solutions are plotted and analyzed. By fixing appropriate parameters, soliton solutions of the ncKPI system become breathers and we also attained lump-type solutions. The standard Lie symmetry method is carried on the ncKPII system to obtain symmetry reduction solutions.

Compliance with ethical standards

Conflict of interest statement

The authors declare that they have no conflicts of interest to this work. There is no professional or other personal interest of any nature or kind in any product that could be construed as influencing the position presented in the manuscript entitled.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12175148, 11975156.

1
Ablowitz M J Musslimani Z H 2013 Integrable nonlocal nonlinear Schrödinger equation Phys. Rev. Lett. 110 064105

DOI

2
Gerdjikov V S Saxena A 2017 Complete integrability of nonlocal nonlinear Schrödinger equation J. Math. Phys. 58 013502

DOI

3
Ablowitz M J Musslimani Z H 2016 Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation Nonlinearity 29 915

DOI

4
Yang B Chen Y 2018 Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations Nonlinear Dyn. 94 489

DOI

5
Wang M Chen Y 2021 Dynamic behaviors of general N-solitons for the nonlocal generalized nonlinear Schrödinger equation Nonlinear Dyn. 104 2621

DOI

6
Feng B F Luo X D Ablowitz M J Musslimani Z H 2018 General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions Nonlinearity 31 5385

DOI

7
Ma L Y Zhu Z N 2016 N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation Appl. Math. Lett. 59 115

DOI

8
Yan Z 2015 Integrable PT-symmetric local and nonlocal vector nonlinear Schrödinger equations: a unified two-parameter model Appl. Math. Lett. 47 61

DOI

9
Xu Z X Chow K W 2016 Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation Appl. Math. Lett. 56 72

DOI

10
Huang X Ling L 2016 Soliton solutions for the nonlocal nonlinear Schrödinger equation Eur. Phys. J. Plus 131 148

DOI

11
Li M Xu T 2015 Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential Phys. Rev. E 91 033202

DOI

12
Song C Q Xiao D M Zhu Z N 2017 Reverse space-time nonlocal Sasa–Satsuma equation and its solutions J. Phys. Soc. Jpn. 86 054001

DOI

13
Chen K Zhang D 2018 Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction Appl. Math. Lett. 75 82

DOI

14
Liu X Z Yu J Lou Z M Qian X M 2019 A nonlocal Burgers equation in atmospheric dynamical system and its exact solutions Chin. Phys. B 28 010201

DOI

15
Li J Li B 2021 Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized PT-symmetric Scarf-II potential via PINN deep learning Commun. Theor. Phys. 73 125001

DOI

16
Lou S Y Huang F 2017 Alice–Bob physics: coherent solutions of nonlocal KdV systems Sci. Rep. 7 869

DOI

17
Lou S Y 2018 Alice-Bob systems, P^−T^−Ĉ symmetry invariant and symmetry breaking soliton solutions J. Math. Phys. 59 083507

DOI

18
Li C C Lou S Y Jia M 2018 Coherent structure of Alice–Bob modified Korteweg de-Vries equation Nonlinear Dyn. 93 1799 1808

DOI

19
Lou S Y 2017 From nothing to something II: nonlinear systems via consistent correlated bang Chin. Phys. Lett. 34 060201

DOI

20
Lou S Y 2020 Multi-place physics and multi-place nonlocal systems Commun. Theor. Phys. 72 057001

DOI

21
Wu W B Lou S Y 2019 Exact Solutions of an Alice–Bob KP Equation Commun. Theor. Phys. 71 629

DOI

22
Wazwaz A M 2010 Completely integrable coupled KdV and coupled KP systems Commun. Nonlinear Sci. Numer. Simul. 15 2828

DOI

23
Isojima S Willox R Satsuma J 2002 On various solutions of the coupled KP equation J. Phys. A: Math. Gen. 35 6893

DOI

24
Hietarinta J 1990 Partially Integrable Evolution Equations in Physics Conte R Boccara N Dordrecht Kluwer 459 478

25
Yang G Y Liu Q P 2008 A Darboux transformation for the coupled Kadomtsev–Petviashvili equation Chin. Phys. Lett. 25 1

26
Jimbo M Miwa T 1983 Solitons and infinite dimensional lie algebras Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 943

DOI

27
Hirota R Ohta Y 1991 Hierarchies of coupled soliton equations J. Phys. Soc. Jpn. 60 798

DOI

28
Isojima S Willox R Satsuma J 2003 Spider-web solutions of the coupled KP equation J. Phys. A: Math. Gen. 36 9533

DOI

29
Olver P J 1993 Applications of Lie Groups to Differential Equations NewYork Springer

30
Bluman G W Kumei S 1989 Symmetries and Differential Equation Berlin Springer

Outlines

/