Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions

  • M Mamun Miah 1, 2 ,
  • M Ashik Iqbal 3 ,
  • M S Osman , 4,
Expand
  • 1Department of Mathematics, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh
  • 2Division of Mathematical and Physical Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
  • 3Department of Mathematics and Physics, Khulna Agricultural University, Khulna-9100, Bangladesh
  • 4Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt

Author to whom any correspondence should be addressed.

Received date: 2023-02-15

  Revised date: 2023-04-30

  Accepted date: 2023-06-25

  Online published: 2023-07-31

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible, useful, and influential method named the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method. Computer software, like Mathematica, is used to complete this discussion. The obtained solutions of the proposed equation are classified into trigonometric, hyperbolic, and rational types which play an important role in searching for numerous scientific events. The technique employed here is an extension of the ($G^{\prime} /G$)-expansion technique for finding all previously discovered solutions. To illustrate our findings more clearly, we provide 2D and 3D charts of the various recovery methods. We then contrasted our findings with those of past solutions. The graphical illustrations of the acquired solutions are singular periodic solitons and kink solitons which are added at the end of this paper.

Cite this article

M Mamun Miah , M Ashik Iqbal , M S Osman . A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions[J]. Communications in Theoretical Physics, 2023 , 75(8) : 085008 . DOI: 10.1088/1572-9494/ace155

1. Introduction

Most of the events occurred in nature are modeled by nonlinear partial differential equations (NLPDEs), especially in the science and engineering. Therefore, we are looking for the solutions of NLPDEs to give the scientific explanation of all the occurrences occurred in nature especially in the region of applied science, engineering, quantum physics, plasma physics, solid-state physics, plasma waves, fluid mechanics, electrodynamics, string theory, chemistry, biology, general relativity, astrophysics, biological science, genetic science, and others [145]. In the research community, many researchers have constructed different kinds of formulae to find the exact dynamic wave solutions of NLPDEs such as the Jacobi elliptic expansion method [1, 2], the new auxiliary equation method [3], the F-expansion method [4], the direct algebraic method [5], the tanh-function method [6, 7], the Hirota's bilinear transformation method [8, 9], the homogeneous balance method [10, 11], the tanh/coth method [12, 13], the first integral method [14, 15], the finite different approach [16], the auxiliary equation method [17], the exp($-\phi \left(\xi \right)$)-expansion method [18, 19], the exponential function method [20, 21], the variational iteration method [22], the Lie group method [23], the generalized Kudryshov method [2426], the Cole–Hopf transformation method [27], the Backlund transform method [28], the Riccati equation method [29], the $\left(G^{\prime} /G\right)$-expansion method [3032], the improved $\left(G^{\prime} /G\right)$-expansion method [33, 34], the generalized $\left(G^{\prime} /G\right)$-expansion method [35], the modified $\left(G^{\prime} /G\right)$-expansion method [36], the enhanced $\left(G^{\prime} /G\right)$-expansion method [37] and others [3845].
Lately, Miah et al [46] and Mustafa et al [47] have proposed dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method to solve the integro-differential equations and the Kaup–Kupershmidt equation, respectively. Furthermore, many of the researchers [4850] have applied this method to solve the NLPDEs. In this work, we discuss the dynamic solitary perturb solution of the unidirectional stochastic longitudinal wave equation in an magneto-electro-elastic (MEE) annular bar. To track down and interpret the various kinds of traveling wave and coefficient function solutions to the stochastic longitudinal wave equation in an MEE annular bar, we have used the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method. And effectively, we set up many new and simpler traveling wave and coefficient function solutions together with soliton type's solutions, trigonometric function solutions, hyperbolic function solutions, and rational function solutions. The unidirectional stochastic longitudinal wave equation in an MEE annular bar has the following form:
$\begin{eqnarray}{u}_{tt}-{v}_{0}^{2}{u}_{xx}-{\left(\displaystyle \frac{{v}_{0}^{2}}{2}{u}^{2}+n{u}_{tt}\right)}_{xx}=0,\end{eqnarray}$
where $u=u(x,t)$ is the longitudinal displacement function, ${v}_{0}$ is the velocity of wave, and $n$ is the diffusion parameter which are all influenced by the rod's geometry and material characteristics. The unidirectional stochastic longitudinal wave equation in an MEE annular bar has been studied using a variety of computational strategies (Ma et al [51] and Khan et al [52]). We believe that the double (G′/G, 1/G)-expansion method has not yet been used to study this model.
Our article is designed in the following manners: introduction is stated in section 1. In section 2, the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method has been investigated. In section 3, the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method is applied to discuss different solutions of the given unidirectional nonlinear longitudinal wave equation. In section 4, the graphical representations of the attained solutions are provided. The conclusion is given in the last section.

2. Interpretation of the dual $\left({\boldsymbol{G}}^{\prime} /{\boldsymbol{G}},\,1/{\boldsymbol{G}}\right)$-expansion method

In this section, we analyze the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method. To this end, we take into account a linear ordinary differential equation of order two:
$\begin{eqnarray}G^{\prime\prime} (\zeta )+\lambda G(\zeta )=m,\end{eqnarray}$
and taking the two new functions with the following assumptions:
$\begin{eqnarray}Y=G^{\prime} /G,\,Z=1/G.\end{eqnarray}$
From equations (2.1) and (2.2), we can set up the next two connections between $Y$ and $Z$ as the following:
$\begin{eqnarray}Y^{\prime} =-{Y}^{2}+mZ-\lambda ,\,Z^{\prime} =-YZ.\end{eqnarray}$
Based on the signs of $\lambda ,$ equation (2.1) gives three categories of solutions which are given below,
Category 1. For $\lambda \gt 0,$ we get a trigonometric function solution of equation (2.1) as
$\begin{eqnarray}G\left(\zeta \right)={\mu }_{1}\,\sin \left(\sqrt{\lambda }\zeta \right)+{\mu }_{2}\,\cos \left(\sqrt{\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda },\end{eqnarray}$
and hence, we get
$\begin{eqnarray}{Z}^{2}=\displaystyle \frac{\lambda ({Y}^{2}-2mZ+\lambda )}{{\lambda }^{2}{r}_{1}-{m}^{2}},\end{eqnarray}$
where ${r}_{1}={{\mu }_{1}}^{2}+{{\mu }_{2}}^{2}$ and ${\mu }_{1}$ and ${\mu }_{2}$ are constants.
Category 2. For $\lambda \lt 0,$ we have a hyperbolic function solution of equation (2.1) as
$\begin{eqnarray}G\left(\zeta \right)={\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda },\end{eqnarray}$
and hence, we get
$\begin{eqnarray}{Z}^{2}=\displaystyle \frac{-\lambda ({Y}^{2}-2mZ+\lambda )}{{\lambda }^{2}{r}_{2}+{m}^{2}},\end{eqnarray}$
where ${r}_{2}={{\mu }_{1}}^{2}-{{\mu }_{2}}^{2}.$
Category 3. For $\lambda =0,$ a rational function solution has been obtained from equation (2.1) which is given below
$\begin{eqnarray}G\left(\zeta \right)=\displaystyle \frac{m}{2}{\zeta }^{2}+{\mu }_{1}\zeta +{\mu }_{2},\end{eqnarray}$
and we get
$\begin{eqnarray}{Z}^{2}=\displaystyle \frac{({Y}^{2}-2mZ)}{{\mu }_{1}^{2}-2m{\mu }_{2}}.\end{eqnarray}$
Now, we assume an NLPDE with a polynomial $P$ in $u(x,\,t)$ and its partial derivatives as the following:
$\begin{eqnarray}P\left(u,\,{u}_{x},\,{u}_{t},\,{u}_{xx},\,{u}_{tt},\,{u}_{xt},\,\ldots \,=\,0\right).\end{eqnarray}$
Now, we will discuss the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method step by step in the following way.
Step I. By using the conventional wave transformation method, we transform the function $u$ as a function of single parameter as
$\begin{eqnarray}u\left(x,\,t\right)=u\left(\zeta \right),\,\zeta =f(x-ct),\end{eqnarray}$
where $f$ and $c$ imply the frequency and wave number respectively.
Now, the corresponding ordinary differential equation of equation (2.11) is given below,
$\begin{eqnarray}O\left(u,\,-cu^{\prime} ,\,u^{\prime} ,\,{v}_{0}^{2}u^{\prime\prime} ,\,u^{\prime\prime} ,\,\ldots \right)=0,\end{eqnarray}$
where $O$ is a polynomial in $u(\zeta )$ and its derivative regarding to $\zeta .$
Step II. We write the solution of equation (2.12) as a combination of the function of $Y(\zeta )$ and $Z(\zeta )$ in the following format
$\begin{eqnarray}u\left(\zeta \right)=\sum _{i=0}^{Q}{a}_{i}{Y}^{i}+\sum _{i=1}^{Q}{b}_{i}{Y}^{i-1}Z,\end{eqnarray}$
and the constants ${a}_{i}\left(i=0,\,1,\,2,\,\ldots ,\,Q\right),$ ${b}_{i}\left(i=1,\,2,\,\ldots ,\,Q\right)$ and $c,\,\lambda ,\,m$ can be found by step III. The balance number can be found from the heights order derivative and heights order nonlinear term by the homogenous balance rule. Again, by substituting the required balance number in equation (2.13) and plugging this reformed equation into equation (2.12) and by using equations (2.3) and (2.5) (by considering category 1 as an example), we transform the left hand part of equation (2.12) in the function of $Y\,{\rm{and}}\,Z,$ where the degree of Z cannot be greater than one and the degree of $Y$ can be taken from zero up to any positive integer value.
Step III. By balancing the same power of the given expression from the two sides, we obtain a pattern of algebraic solutions in terms of ${a}_{i},$ ${b}_{i},$ $c,$ $\lambda ,$ $m,$ ${\mu }_{1},\,{\rm{and}}\,{\mu }_{2}.$ Now, we can use any computation software (Mathematica or Maple) to get the solution of the required algebraic system. By inserting the required values into equation (2.13), we get the solutions of equation (2.12) and also by putting the value $\zeta =f\left(x-ct\right)$ in the solutions of equation (2.12), we get the desirable dynamic wave solutions of equation (2.10).

3. Solutions of stochastic longitudinal wave equation in an MEE annular bar

In this part, we apply the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method to trace the constructive solutions of the given longitudinal wave equation. By applying wave conversion method cited in equation (2.11), we transform the longitudinal wave equation given in equation (1.1) into a nonlinear ordinary differential equation as follows:
$\begin{eqnarray}\left({c}^{2}-{v}_{0}^{2}\right)u^{\prime} -\displaystyle \frac{1}{2}{v}_{0}^{2}{\left({u}^{2}\right)}^{{\prime\prime} }-{f}^{2}{c}^{{2}nu^{\prime\prime\prime\prime}} =0.\end{eqnarray}$
Integrating equation (3.1) for two times and omitting the constants of integration, we get
$\begin{eqnarray}u\left({c}^{2}-{v}_{0}^{2}\right)-\displaystyle \frac{1}{2}{u}^{2}{v}_{0}^{2}-{f}^{2}{c}^{2}nu^{\prime\prime} =0,\end{eqnarray}$
where the prime refers to the derivatives with respect to $\zeta .$
By using the homogeneous balance method in equation (3.2), we get the balance number $Q=2$ and inserting this balance number in equation (2.13), we have the following form
$\begin{eqnarray}u\left(\zeta \right)={a}_{0}+{a}_{1}Y\left(\zeta \right)+{a}_{2}{Y}^{2}\left(\zeta \right)+{b}_{1}Z\left(\zeta \right)+{b}_{2}Y\left(\zeta \right)\,Z\left(\zeta \right),\end{eqnarray}$
where ${a}_{i}(i=0,\,1,\,2)$ and ${b}_{i}(i=1,\,2)$ are constant coefficients and the functions $Y\left(\zeta \right)$ and $Z\left(\zeta \right)$ are given by equation (2.3). Now, for three signs of λ, we get the basic three pattern of solutions of equation (3.2) which are given below periodically.
Case 1. For ${\boldsymbol{\lambda }}\gt {\bf{0}}.$
After differentiating of equation (3.3) for two times and with the help of equations (2.3) and (2.5), we transform the left side of equation (3.2) in terms of $Y\,{\rm{and}}\,Z$ and then setting the coefficients of the acquired expression identical zero, we get three pairs of algebraic equations in ${a}_{0},$ ${a}_{1},$ ${a}_{2},$ ${b}_{1},$ ${b}_{2},$ $\lambda ,$ $f,\,{\rm{and}}\,c.$ Now, by using the computer program Mathematica, we gain two sets of solutions as follows
Set 1:
$\begin{eqnarray}\begin{array}{l}{a}_{0}=-\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}},\,{a}_{1}=0,\,{a}_{2}=-\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},\\ {b}_{1}=\displaystyle \frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},{b}_{2}=\pm \displaystyle \frac{6\sqrt{{\lambda }^{2}{r}_{1}-{m}^{2}}}{\lambda \sqrt{\lambda }}\displaystyle \frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \,{\rm{and}}\,f=\pm \displaystyle \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}\sqrt{\lambda }}.\end{array}\end{eqnarray}$
Set 2:
$\begin{eqnarray}\begin{array}{l}{a}_{0}=\displaystyle \frac{4\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}},\,{a}_{1}=0,\,{a}_{2}=\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},\,\\ {b}_{1}=-\displaystyle \frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},{b}_{2}=\pm \displaystyle \frac{6\sqrt{{\lambda }^{2}{r}_{1}-{m}^{2}}}{\lambda \sqrt{\lambda }}\displaystyle \frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}},\\ \,{\rm{and}}\,f=\pm \displaystyle \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}\sqrt{\lambda }}.\end{array}\end{eqnarray}$
By setting these values from the above two sets into equation (3.3), we attain the solutions of equation (3.2). By using set 1, we have
$\begin{eqnarray}\begin{array}{l}u\left(\zeta \right)=-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \,-\,\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}{\left[\frac{{\mu }_{1}\,\cos \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)-{\mu }_{2}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)}{{\mu }_{1}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+{\mu }_{2}\,\cos \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+\displaystyle \frac{m}{{\rm{\lambda }}}}\right]}^{2}\\ \,+\,\frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}}\frac{1}{\left[{\mu }_{1}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+{\mu }_{2}\,\cos \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+\displaystyle \frac{m}{{\rm{\lambda }}}\right]}\\ \,\pm \,\frac{6\sqrt{{{\rm{\lambda }}}^{2}{r}_{1}-{m}^{2}}}{{\rm{\lambda }}}\frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,\frac{\left[{\mu }_{1}\,\cos \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)-{\mu }_{2}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)\right]}{{\left[{\mu }_{1}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+{\mu }_{2}\,\cos \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+\displaystyle \frac{m}{{\rm{\lambda }}}\right]}^{2}}.\end{array}\end{eqnarray}$
Putting $\zeta =\pm \displaystyle \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}\sqrt{\lambda }}\left(x-ct\right)$ in equation (3.6) and choosing ${\mu }_{1}=0,\,m=0\,{\rm{and}}\,{\mu }_{2}\ne 0,$ we get a particular solution of equation (1.1) as the following
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}{\text{sec}}^{2}\left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \,\pm \,\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\,\tan \left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \times \,\sec \left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
Again, choosing ${\mu }_{2}=0,$ $m=0\,{\rm{and}}\,{\mu }_{1}\ne 0,$ we have another particular solution of equation (1.1) as follows
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\mathrm{cosec}}^{2}\left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \,\pm \,\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\,\cot \left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \times \,\mathrm{cosec}\left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
By the same way, using equation (3.5) in equation (3.3), we get the following equation:
$\begin{eqnarray}\begin{array}{l}u\left(\zeta \right)=\frac{4\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}+\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\left[\frac{{\mu }_{1}\,\cos \left(\sqrt{\lambda }{\rm{\zeta }}\right)-{\mu }_{2}\,\sin \left(\sqrt{\lambda }{\rm{\zeta }}\right)}{{\mu }_{1}\,\sin \left(\sqrt{{\rm{\lambda }}}{\rm{\zeta }}\right)+{\mu }_{2}\,\cos \left(\sqrt{\lambda }{\rm{\zeta }}\right)+\displaystyle \frac{m}{\lambda }}\right]}^{2}\\ \,-\,\frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}}\frac{1}{\left[{\mu }_{1}\,\sin \left(\sqrt{\lambda }{\rm{\zeta }}\right)+{\mu }_{2}\,\cos \left(\sqrt{\lambda }{\rm{\zeta }}\right)+\displaystyle \frac{m}{\lambda }\right]}\\ \,\pm \,\frac{6\sqrt{{\lambda }^{2}{r}_{1}-{m}^{2}}}{\lambda }\,\frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,\frac{\left[{\mu }_{1}\,\cos \left(\sqrt{\lambda }{\rm{\zeta }}\right)-{\mu }_{2}\,\sin \left(\sqrt{\lambda }\zeta \right)\right]}{{\left[{\mu }_{1}\,\sin \left(\sqrt{\lambda }\zeta \right)+{\mu }_{2}\,\cos \left(\sqrt{\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }\right]}^{2}}.\end{array}\end{eqnarray}$
Setting $\zeta =\pm \displaystyle \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}\sqrt{\lambda }}\left(x-ct\right)$ in equation (3.9) and for a special solution for equation (1.1), we can choose ${\mu }_{1}=0,$ $m=0\,{\rm{and}}\,{\mu }_{2}\ne 0,$ so we get
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=-\frac{4\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}-\frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\tan }^{2}\left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \pm \,\frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}\,\tan \left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \times \,\sec \left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
Now, for ${\mu }_{2}=0,$ $m=0\,{\rm{and}}\,{\mu }_{1}\ne 0,$ we have one more particular solution of equation (1.1) as follows
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=-\frac{4\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}-\frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\cot }^{2}\left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \,\pm \,\frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}\,\cot \left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \times \,\mathrm{cosec}\left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
Case 2. For ${\boldsymbol{\lambda }}\lt {\bf{0}}.$
Similar to condition 1, we attain two sets of solutions as follows
Set 1:
$\begin{eqnarray}\begin{array}{l}{a}_{0}=-\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}},\,{a}_{1}=0,\,{a}_{2}=-\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},\\ \,{b}_{1}=\displaystyle \frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},{b}_{2}=\pm \displaystyle \frac{6\sqrt{{\lambda }^{2}{r}_{2}+{m}^{2}}}{\lambda \sqrt{-\lambda }}\displaystyle \frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \,{\rm{and}}\,f\pm \displaystyle \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}\sqrt{-\lambda }}.\end{array}\end{eqnarray}$
Set 2:
$\begin{eqnarray}\begin{array}{l}{a}_{0}=\displaystyle \frac{4\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}},\,{a}_{1}=0,\,{a}_{2}=\displaystyle \frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},\\ {b}_{1}=-\displaystyle \frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}},\\ {b}_{2}=\pm \displaystyle \frac{6\sqrt{{\lambda }^{2}{r}_{2}+{m}^{2}}}{\lambda \sqrt{-\lambda }}\displaystyle \frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \,{\rm{and}}\,f\pm \displaystyle \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}\sqrt{-\lambda }}.\end{array}\end{eqnarray}$
Substituting the values of the sets of constants from equations (3.12) and (3.13), respectively into equation (3.3), we get the solution of equation (3.2). Now, for set 1, we have solution as follows
$\begin{eqnarray}\begin{array}{l}u\left(\zeta \right)=-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}+\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\left[\frac{{\mu }_{1}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\sinh \left(\sqrt{-\lambda }\zeta \right)}{{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }}\right]}^{2}\\ \,+\,\frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}}\\ \times \,\frac{1}{\left[{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }\right]}\\ \,\pm \,\frac{6\sqrt{{\lambda }^{2}{r}_{2}+{m}^{2}\,}}{\lambda }\frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,\frac{\left[{\mu }_{1}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\sinh \left(\sqrt{-\lambda }\zeta \right)\right]}{{\left[{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }\right]}^{2}}.\end{array}\end{eqnarray}$
Now, we put $\zeta =\pm \displaystyle \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}\sqrt{-\lambda }}\left(x-ct\right)$ in equation (3.14) and for a special solution, we consider ${\mu }_{2}=0,$ $m=0\,{\rm{and}}\,{\mu }_{1}\ne 0,$ we get an individual solution of equation (1.1) as follows
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=-\frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}{\mathrm{cosech}}^{2}\\ \times \,\left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\pm \frac{6\left({c}^{2}-{v}_{0}^{2}\right)}{{v}_{0}^{2}}\\ \times \,\coth \left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \times \,\mathrm{cosech}\left[\pm \frac{\sqrt{\left({c}^{2}-{v}_{0}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
Again, for set 2, we have another solution of equation (3.2) as follows
$\begin{eqnarray}\begin{array}{l}u\left(\zeta \right)=\frac{4\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\left[\frac{{\mu }_{1}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\sinh \left(\sqrt{-\lambda }\zeta \right)}{{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }}\right]}^{2}\\ -\frac{6m\left({v}_{0}^{2}-{c}^{2}\right)}{\lambda {v}_{0}^{2}}\\ \times \,\frac{1}{\left[{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }\right]}\\ \,\pm \,\frac{6\sqrt{{\lambda }^{2}{r}_{2}+{m}^{2}\,}}{\lambda }\frac{\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,\frac{\left[{\mu }_{1}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\sinh \left(\sqrt{-\lambda }\zeta \right)\right]}{{\left[{\mu }_{1}\,\sinh \left(\sqrt{-\lambda }\zeta \right)+{\mu }_{2}\,\cosh \left(\sqrt{-\lambda }\zeta \right)+\displaystyle \frac{m}{\lambda }\right]}^{2}}.\end{array}\end{eqnarray}$
Again, we put $\zeta =\pm \displaystyle \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}\sqrt{-\lambda }}\left(x-ct\right)$ in equation(3.16). The other solution can be obtained by choosing ${\mu }_{2}=0,$ $m=0\,{\rm{and}}\,{\mu }_{1}\ne 0,$ so we have
$\begin{eqnarray}\begin{array}{l}u\left(x,\,t\right)=\frac{4\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}-\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\\ \times \,{\coth }^{2}\left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right]\\ \pm \,\frac{6\left({v}_{0}^{2}-{c}^{2}\right)}{{v}_{0}^{2}}\,\coth \left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-\,ct\right)\mathrm{cosech}\right.\\ \times \,\left[\pm \frac{\sqrt{\left({v}_{0}^{2}-{c}^{2}\right)}}{c\sqrt{n}}\left(x-ct\right)\right].\end{array}\end{eqnarray}$
Case 3. For ${\boldsymbol{\lambda }}={\bf{0}}.$
In this case, only one set of values of arbitrary constants exists which is given below
$\begin{eqnarray}\begin{array}{l}{a}_{0}=0,\,{a}_{1}=0,\,{a}_{2}=-6n{f}^{2},\,{b}_{1}=6nm{f}^{2},\\ {b}_{2}=\pm 6n{f}^{2}\sqrt{{{\mu }_{1}}^{2}-2m{\mu }_{2}}\,{\rm{and}}\,c=\pm {v}_{0}.\end{array}\end{eqnarray}$
Using equation (3.18) in equation (3.3), we get the solution of equation (3.2) as follows
$\begin{eqnarray}\begin{array}{l}u\left(\zeta \right)=-6n{f}^{2}{\left(\displaystyle \frac{m\zeta +{\mu }_{1}}{\displaystyle \frac{m}{2}{\zeta }^{2}+{\mu }_{1}\zeta +{\mu }_{2}}\right)}^{2}+\displaystyle \frac{6nm{f}^{2}}{\displaystyle \frac{m}{2}{\zeta }^{2}+{\mu }_{1}\zeta +{\mu }_{2}}\\ \pm 6n{f}^{2}\sqrt{{{\mu }_{1}}^{2}-2m{\mu }_{2}}\displaystyle \frac{m\zeta +{\mu }_{1}}{{\left(\displaystyle \frac{m}{2}{\zeta }^{2}+{\mu }_{1}\zeta +{\mu }_{2}\right)}^{2}}.\end{array}\end{eqnarray}$
Now, we place $\zeta =f\left(x\pm {v}_{0}t\right)$ in equation (3.19) and we choose ${\mu }_{2}=0,$ $m=0\,{\rm{and}}\,{\mu }_{1}\ne 0,$ then we have a rational function solution of equation (1.1) as follows
$\begin{eqnarray}u\left(x,\,t\right)=-\displaystyle \frac{12n}{{\left(x\pm {v}_{0}t\right)}^{2}}.\end{eqnarray}$

4. Numerical simulation results with discussion

In this section, the physical explanation of the obtained solutions of the unidirectional nonlinear longitudinal wave equation in a MEE annular rod has been presented. The acquired solutions are classified into trigonometric, hyperbolic, and rational function types with the aid of the Mathematica program. These solutions are sketched in 3D, contour and 2D plots which are given in figures 115 through the intervals $x\in \left[-10,\,10\right]$ and $t\in \left[-10,\,10\right].$ The given 3D shapes imply the structure of a singular periodic soliton and singular kink shape soliton. For the values $c=1,$ ${v}_{0}=2,$ $n=2;$ $c=2,$ ${v}_{0}=1,$ $n=3$ and $c=2,$ ${v}_{0}=1,$ $n=1,$ in figures 1, 4, and 10 the solutions in equations (3.7), (3.11), and equation (3.17), respectively exhibit the singular periodic solitary wave solution and its similar contour shapes are in figures 2, 5, and 11. Further, for $t=1,$ $t=2,$ and $t=2,$ we obtain similar 2D graphs in figures 3, 6, and 12, respectively. Similarly, for $c=2,$ ${v}_{0}=1,$ $n=1$ and ${v}_{0}=1,$ $n=2,$ in figures 7 and 13 the solutions in equation (3.15) and in equation (3.20) show the singular kink soliton and its corresponding contour shapes in figures 8 and 14. Also, for $t=1$ and $t=2,$ we get a similar 2D graph in figures 9 and 15, respectively.
Figure 1. The 3D figure in equation (3.7) implying the singular periodic soliton for $c=1,$ ${v}_{0}=2,$ $n=2.$
Figure 2. The contour figure in equation (3.7) for $c=1,$ ${v}_{0}=2,$ $n=2.$
Figure 3. The 2D surface in equation (3.7) for $c=1,$ ${v}_{0}=2,$ $n=2,$ $t=1.$
Figure 4. The 3D shape in equation (3.11) implying the singular periodic solitary wave solution for $c=2,$ ${v}_{0}=1,$ $n=3.$
Figure 5. The contour graph in equation (3.11) for $c=2,$ ${v}_{0}=1,$ $n=3.$
Figure 6. The 2D graph in equation (3.11) for $c=2,$ ${v}_{0}=1,$ $n=3$, $t=2.$
Figure 7. The 3D structure in equation (3.15) indicating the singular kink shape soliton for $c=2,$ ${v}_{0}=1,$ $n=1.$
Figure 8. The contour figure in equation (3.15) for $c=2,$ ${v}_{0}=1,$ $n=1.$
Figure 9. The 2D structure in equation (3.15) for $c=2,$ ${v}_{0}=1,$ $n=1,$ $t=1.$
Figure 10. The 3D graph in equation (3.17) implying the singular periodic soliton for $c=2,$ ${v}_{0}=1,$ $n=1.$
Figure 11. The contour graph in equation (3.17) for $c=2,$ ${v}_{0}=1,$ $n=1.$
Figure 12. The 2D structure in equation (3.17) for $c=2,$ ${v}_{0}=1,$ $n=1\,,\,t=2.$
Figure 13. The 3D structure in equation (3.20) indicating the singular kink shape soliton for ${v}_{0}=1,$ $n=2.$
Figure 14. The contour figure in equation (3.20) for ${v}_{0}=1,$ $n=2.$
Figure 15. The 2D graph in equation (3.20) for ${v}_{0}=1,$ $n=2,$ $t=2.$
The current examination of the model discussed here confirms several new wave solutions and recovers some old results that existed in [51, 52]. The results are expanded to highlight the distinctive dynamic properties of nonlinear waves in two-dimensional, three-dimensional, and contour diagrams by adjusting the parameters involved. Using the computer application ‘Mathematica', the wave profiles were created, and their accuracy was verified by re-integrating the results into the initial governing model.

5. Conclusion

In this study, the unidirectional stochastic longitudinal wave equation in a MEE annular body has been solved by employing the dual $\left(G^{\prime} /G,\,1/G\right)$-expansion method. The solutions of this equation carry a momentous induction in multifarious scientific and engineering sectors such as the field of sensors and actuators. The exact solutions of the above proposed unidirectional partial differential equation refer to the three fundamental solutions which are trigonometric, hyperbolic, and rational function solutions and all of these fundamental solutions represent different types of solitary wave solutions in an electromagnetic potential field. The attained solitary wave solutions such as singular periodic solition and kink solition solutions are represented by three-dimensional, two-dimensional, and contour graphs. These obtained solutions can give a clear concept of many engineering and scientific phenomena spatially in electric and magnetic fields. Consequently, we mention that the presented expansion technique is efficient, transparent, and almost compatible with linear and nonlinear components.

1
Chen Y Wang Q 2005 Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1 + 1)-dimensional dispersive long wave equation Chaos Solit. Fractals 24 745 757

DOI

2
Alphonse H Abbagari S Saliou Y Akinyemi L Doka S Y 2023 Modulation instability gain and wave patterns in birefringent fibers induced by coupled nonlinear Schrödinger equation Wave Motion 118 103111

3
Usman Y Ren J Akinyemi L Rezazadeh H 2023 On the multiple explicit exact solutions to the double-chain DNA dynamical system Math. Methods Appl. Sci. 46 6309 6323

4
Abdou M A 2007 The extended F-expansion method and its applications for a class of nonlinear evolution equations Chaos Solit. Fractals 31 95 104

DOI

5
Seadawy A R El-Rashidy K 2013 Travelling wave solution for some coupled nonlinear evolution Math. Comput. Modelling 57 1371 1379

DOI

6
Fan E G 2000 Extended tanh-function method and its applications to nonlinear equations Phys. Lett. A 277 212 218

DOI

7
Parkes E J Duffy B R 1996 An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations Comput. Phys. Commun. 98 288 300

DOI

8
Akinyemi L 2023 Shallow ocean soliton and localized waves in extended (2 + 1)-dimensional nonlinear evolution equations Phys. Lett. A 463 128668

DOI

9
Wazwaz A M 2008 The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada–Kotera–Kadomstsev–Petviashvili equation Appl. Math. Comput. 200 160 166

10
Radha B Duraisamy C 2021 The homogeneous balance method and its applications for finding the exact solutions for non-linear equations J. Ambient Intell. Humaniz. Comput. 12 6591 6597

DOI

11
Wang M L Zhou Y B Li Z B 1996 Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics Phys. Lett. A 216 67 75

DOI

12
Bekir A Cevikel A C 2011 The tanh-coth method combined with the Riccati equation for solving nonlinear coupled equation in mathematical physics J. King Saud Univ.-Sci. 23 127 132

DOI

13
Malfliet W 1992 Solitary wave solutions of nonlinear wave equations Am. J. Phys. 60 650 654

DOI

14
Rezazadeh H Manafian J Samsami Khodadad F Nazari F 2018 Traveling wave solutions for density dependent conformable fractional diffusion-reaction equation by the first integral method and the improved tan ($\varphi \left(\xi \right)/2$)-expansion method Opt. Quantum Electron. 50 1 15

15
Mahak N Akram G 2020 Exact solitary wave solutions of the (1 + 1)-dimensional Fokas–Lenells equation Int. J. Light Electron Opt. 208 1 9

16
Yao S W Abu Arqub O Tayebi S Osman M S Mahmoud W Inc M Alsulami H 2023 A novel collective algorithm using cubic uniform spline and finite difference approaches to solving fractional diffusion singular wave model through damping-reaction forces Fractals 31 2340069

17
Na S 2007 Auxiliary equation method and new solutions of Klein-Gordon equation Chaos Solit. Fractals 31 943 950

18
Raza N Aslam M R Rezazadeh H 2019 Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media Opt. Quantum Electron. 51 59

19
Abdelrahman M A E Zahran E H M Khater M M A 2015 The exp ($-\phi \left(\xi \right)$)-expansion method and its application for solving nonlinear evolution equation Int. J. Mod. Nonlinear Theory Appl. 4 37 47

20
Chadwick E Hatam A Kazem S 2016 Exponential function method for solving nonlinear ordinary differential equations with constant coefficients on a semi-infinite domain Proc.-Math.Sci. 126 79 97

21
Bekir A 2010 Application of the exp-function method for nonlinear differential-difference equations Appl. Math. Comput. 215 4049 4053

DOI

22
Neamaty A Agheli B Darzi R 2015 Variational iteration method and He's polynomials for time fractional partial differential equations Prog. Fractional Differ. Appl. 1 47 55

23
Jafari H Kadkhoda N Baleanu D 2015 Fractional Lie group method of the time-fractional Boussinesq equation Nonlinear Dyn. 81 1569 1574

DOI

24
Rahman M M Habib M A Ali H M S Miah M M 2019 The generalized Kudryshov method: a renewed mechanism for performing exact solitary wave solutions of some NLEEs J. Mech. Continue Math. Sci. 14 323 339

25
Ali H M S Habib M A Miah M M Akbar M A 2019 A modification of the generalized Kudryshov method for the system of some nonlinear evolution equations J. Mech. Continue Math. Sci. 14 91 109

26
Habib M A Ali H M S Miah M M Akbar M A 2019 The generalized Kudryshov method for new closed form travelling wave solutions to some NLEEs AIMS Mathematics 4 896 909

27
Sales A H Gomez C A 2010 Application of the Cole–Hopf transformation for finding exact solutions to several forms of the seventh-order KDV equation Math. Problems Eng. 2010 194329

28
Lamb G L 1974 Backlund transformations for certain nonlinear evolution equations J. Math. Phys. 15 2157

DOI

29
Malwe B H Betchewe G Doka S Y Kofane T C 2015 Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method Nonlinear Dyn. 84 171 177

30
Kangalgil F 2018 Travelling wave solutions of the Perturbed Wadati–Segur–Ablowitz equation by $\left(G^{\prime} /G\right)$-expansion method Int. J. Sci. Res. Manag. 06 59 64

31
Feng Q Zheng B 2010 Traveling wave solutions for three nonlinear equations by $\left(G^{\prime} /G\right)$-expansion method WSEAS Trans. Comput. 9 225 234

32
Hossain M D Alam M K Akbar M A 2018 Abundant wave solutions of the Boussinesq equation and the (2 + 1)-dimensional extended shallow water wave equation Ocean Eng. 165 69 76

DOI

33
Naher H Abdullah F A 2014 The improved $\left(G^{\prime} /G\right)$-expansion method to the (2 + 1)-dimensional breaking soliton equation J. Comput. Anal. Appl. 16 220 235

34
Zhang J Jiang F Zhao X 2009 An improved $\left(G^{\prime} /G\right)$-expansion method for solving nonlinear evolution equations Int. J. Comput. Math. 87 1716 1725

35
Hossain M D Kulsum U Alam M K Akbar M A 2018 Kink and periodic solutions to the Jimbo–Miwa equation and the Calogero–Bogoyavlenskii–Schiff equation J. Mech. Continue Math. Sci. 13 50 66

36
Shakeel M Mohyud-Din S T 2013 Modified $\left(G^{\prime} /G\right)$-expansion method with generalized Riccati equation to the sixth-order Boussinesq equation Ital. J. Pure Appl. Math. 30 393 410

37
Islam M E Khan K Akbar M A Islam R 2013 Travelling wave solution of nonlinear evolution equation via enhanced $\left(G^{\prime} /G\right)$-expansion method J. Bangladesh Math. Soc. 33 83 92

38
Akinyemi L Morazara E 2023 Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended Kadomtsev–Petviashvili equation Nonlinear Dyn. 111 4683 4707

DOI

39
El-Beeh M E El-Badawi A A Amin A H Qari S H Ramadan M F Filfilan W M El-Sayyad H I H 2022 Anti-aging trait of whey protein against brain damage of senile rats J. Umm Al-Qura Univ. Appl. Sci. 8 8 20

DOI

40
Nisar K S Ilhan O A Abdulazeez S T Manafian J Mohammed S A Osman M S 2021 Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method Results Phys. 21 103769

DOI

41
Abbagari S Houwe A Akinyemi L Inc M Bouetou B T 2023 Discrete modulation instability and localized modes in chiral molecular chains with first-and third-neighbor interactions Phys. Scr. 98 025210

DOI

42
Siddique I Jaradat M M Zafar A Mehdi K B Osman M S 2021 Exact traveling wave solutions for two prolific conformable M-Fractional differential equations via three diverse approaches Results Phys. 28 104557

DOI

43
Aljahdali M El-Sherif A A Shoukry M M Mohamed S E 2013 Potentiometric and thermodynamic studies of binary and ternary transition metal (II) complexes of imidazole-4-acetic acid and some bio-relevant ligands J. Solut. Chem. 42 1028 1050

DOI

44
Park C Nuruddeen R I Ali K K Muhammad L Osman M S Baleanu D 2020 Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg–de Vries equations Adv. Difference Equ. 2020 627

45
Zafar A Bilal M 2013 Lanczos potential for arbitrary Petrov type II spacetimes Int. J. Theor. Phys. 52 4275 4282

46
Miah M M Ali H M S Akbar M A Seadawy A R 2019 New applications of the two variable $\left(G^{\prime} /G,\,1/G\right)$-expansion method for closed form traveling wave solutions of integro-differential equations J. Ocean Eng. Sci. 4 132 143

DOI

47
Inc M Miah M M Chowdhury A Ali H M S Rezazadeh H Akinlar M A Ming Chu Y 2020 New exact solutions for Kaup–Kupershmidt equation AIMS Math. 5 6726 6738

DOI

48
Rajib M Miah M M Osman M S 2023 A new implementation of a novel analytical method for finding the analytical solutions of the (2 + 1)-dimensional KP-BBM equation Heliyon 9 e15690

49
Ali H M S Miah M M Akbar M A 2018 Study of abundant explicit wave solutions of the Drinfeld–Sokolov–Satsuma–Hirota (DSSH) Propulsion Power Res. 7 320 328

DOI

50
Miah M M Ali H M S Akbar M A Wazwaz A M 2017 Some applications of the $\left(G^{\prime} /G,\,1/G\right)$-expansion method to find new exact solutions of NLEEs Eur. Phys. J. Plus 132 252

51
Ma X Pan Y Chang L 2013 Explicit travelling wave solutions in a magneto-electro-elastic circular rod Int. J. Comput. Sci. Issues (IJCSI) 10 62

52
Khan K Koppelaar H Akbar M A 2016 Exact and numerical soliton solutions to nonlinear wave equations Caspian J. Comput. Math. Eng. 2 5 22

Outlines

/