Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Time-fractional Davey-Stewartson equation: Lie point symmetries, similarity reductions, conservation laws and traveling wave solutions

  • Baoyong Guo ,
  • Yong Fang ,
  • Huanhe Dong ,
Expand
  • College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

Author to whom any correspondence should be addressed

Received date: 2023-03-15

  Revised date: 2023-07-26

  Accepted date: 2023-07-26

  Online published: 2023-09-13

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

As a celebrated nonlinear water wave equation, the Davey-Stewartson equation is widely studied by researchers, especially in the field of mathematical physics. On the basis of the Riemann-Liouville fractional derivative, the time-fractional Davey-Stewartson equation is investigated in this paper. By application of the Lie symmetry analysis approach, the Lie point symmetries and symmetry groups are obtained. At the same time, the similarity reductions are derived. Furthermore, the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann-Liouville fractional derivative. By virtue of the symmetry corresponding to the scalar transformation, the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi-Kober fractional integro-differential operators. By using Noether's theorem and Ibragimov's new conservation theorem, the conserved vectors and the conservation laws are derived. Finally, the traveling wave solutions are achieved and plotted.

Cite this article

Baoyong Guo , Yong Fang , Huanhe Dong . Time-fractional Davey-Stewartson equation: Lie point symmetries, similarity reductions, conservation laws and traveling wave solutions[J]. Communications in Theoretical Physics, 2023 , 75(10) : 105002 . DOI: 10.1088/1572-9494/acea70

1. Introduction

Nonlinear partial differential equations (NPDEs) usually play an indispensable role in revealing numerous physical phenomena in nature [19]. In the last few decades, researchers have paid much attention to the study of NPDEs, including their dynamic properties and solutions. A number of methods were put forward to acquire the solutions of NPDEs, for example, the homogeneous balance method [1013], inverse scattering transform [1418], Darboux transformation [1924], Hirota's bilinear method [2533], Riemann-Hilbert approach [3443], nonlocal symmetry method and so on [4449]. However, for most NPDEs, the solutions are difficult to obtain due to their complex expressions.
As a generalization of classical calculus, fractional calculus is proposed by many researchers. Fractional derivative is an important concept of fractional calculus. The order of a fractional derivative can be an integer or a fraction, whereas the order of a classical derivative can only be an integer. The fractional derivatives used widely are Riemann-Liouville, Caputo and Grünwald-Letnikov types. For many applied disciplines, especially in fluid mechanics and materials science, compared with integer-order NPDEs, nonlinear fractional partial differential equations (NFPDEs) can be better used to explain natural processes and phenomena. This is because the systems corresponding to NFPDEs possess good time memory and global correlation, which can better reflect the historically dependent process of the development of system functions. Thus, the performance of the systems is improved.
The Lie symmetry analysis approach [5059] is mainly used to find the similarity reductions and solutions of NPDEs. This method was originally utilized to investigate the continuous transformation groups in solving differential equations. This theory was proposed by Sophus Lie and has achieved fruitful development over the last few decades. Because this method can be used to find the group-invariant solutions of NPDEs, it has become a prominent approach to studying the properties of solutions of NPDEs. Since the Lie symmetry analysis approach is mainly used to study integer-order NPDEs, it has an important theoretical research value to extend the method to NFPDEs. Although this method is not widely used in NFPDEs, there are still many achievements in this respect [6062].
This paper aimed to investigate Lie point symmetries, similarity reductions, conservation laws and traveling wave solutions for the time-fractional Davey-Stewartson (DS) equation. The DS equation is [63]
$\begin{eqnarray}\left\{\begin{array}{l}{\rm{i}}{u}_{t}+{u}_{{xx}}+{u}_{{yy}}-| u{| }^{2}u+{uv}=0,\\ {v}_{{xx}}+{v}_{{yy}}=-{\left(| u{| }^{2}\right)}_{{xx}},\end{array}\right.\end{eqnarray}$
where x and y are spatial coordinates; t is a temporal coordinate; u = u(x, y, t) is a complex analytic function that represents the amplitude of wave; and v = v(x, y, t) is a real analytic function that can be treated as a forcing effect on the wave as it propagates.
The DS equation was proposed by Davey and Stewartson. It is a two-dimensional extension of the famous (1+1)-dimensional nonlinear Schrödinger (NLS) equation. In fluid dynamics, the DS equation describes the evolution of wave envelope in water waves and has wide applications.
If the Riemann-Liouville derivative operator ${D}_{t}^{\gamma }$ is introduced, the time-fractional DS equation reads as
$\begin{eqnarray}\left\{\begin{array}{l}{\rm{i}}{D}_{t}^{\gamma }u+{u}_{{xx}}+{u}_{{yy}}-| u{| }^{2}u+{uv}=0,\\ {v}_{{xx}}+{v}_{{yy}}=-{\left(| u{| }^{2}\right)}_{{xx}},\end{array}\right.\end{eqnarray}$
where 0 < γ < 1 is the order of the Riemann-Liouville derivative.
This paper is organized as follows. In section 2, the definition and some properties of the Riemann-Liouville fractional derivative are described. In section 3, based on the Lie symmetry analysis method, the Lie point symmetries of the time-fractional DS equation are presented. In section 4, the similarity reductions of the time-fractional DS equation are obtained. Meanwhile, the original equation is converted to a system of fractional partial differential equations and two systems of fractional ordinary differential equations. In section 5, the conserved vectors and the conservation laws of the time-fractional DS equation are derived. In section 6, the traveling wave solutions are depicted and plotted. Finally, some main conclusions are presented.

2. Riemann-Liouville fractional derivative

Take $x,y$ as spatial variables and t as a temporal variable, respectively, and $n\in {\mathbb{N}}$, $\gamma \in {{\mathbb{R}}}^{+}$, then for function $f=f(x,y,t)$, its γth-order Riemann-Liouville fractional partial derivative is

$\begin{eqnarray}\begin{array}{l}{D}_{t}^{\gamma }f(x,y,t)=\displaystyle \frac{{\partial }^{\gamma }f}{\partial {t}^{\gamma }}\\ \,=\,\left\{\begin{array}{ll}\displaystyle \frac{\partial }{\partial {t}^{n}}{I}^{n-\gamma }f(x,y,t), & 0\leqslant n-1\lt \gamma \lt n,\\ \displaystyle \frac{{\partial }^{n}f}{\partial {t}^{n}}, & \gamma =n,\end{array}\right.\end{array}\end{eqnarray}$
where ${I}^{\gamma }f(x,y,t)$ is the γth-order Riemann-Liouville fractional integral, and it is defined as
$\begin{eqnarray}{I}^{\gamma }f(x,y,t)=\left\{\begin{array}{ll}\displaystyle \frac{1}{{\rm{\Gamma }}(\gamma )}{\int }_{0}^{t}{\left(t-\tau \right)}^{\gamma -1}f(x,y,\tau ){\rm{d}}\tau , & \gamma \gt 0,\\ f(x,y,t), & \gamma =0,\end{array}\right.\end{eqnarray}$
where ${\rm{\Gamma }}(\gamma )$ is the gamma function.

The properties of the Riemann-Liouville fractional derivative are

(a)${D}_{t}^{\gamma }[{\left(t-a\right)}^{\mu }]=\tfrac{{\rm{\Gamma }}(1+\mu )}{{\rm{\Gamma }}(1-\gamma +\mu )}{\left(t-a\right)}^{\mu -\gamma }$, (t > a),

particularly, if f(t) ≡ C, then ${D}_{t}^{\gamma }[f(t)]\,={D}_{t}^{\gamma }C=\tfrac{C}{{\rm{\Gamma }}(1-\gamma )}{\left(t-a\right)}^{-\gamma }$,

(b)Linear rule: ${D}_{t}^{\gamma }[{C}_{1}{f}_{1}(t)+{C}_{2}{f}_{2}(t)]={C}_{1}{D}_{t}^{\gamma }[{f}_{1}(t)]+{C}_{2}{D}_{t}^{\gamma }[{f}_{2}(t)]$,

(c)Leibnitz rule: ${D}_{t}^{\gamma }[{f}_{1}(t)\cdot {f}_{2}(t)]={\sum }_{i\,=\,0}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right){D}_{t}^{\gamma -i}[{f}_{1}(t)]\cdot {f}_{2}^{(i)}(t)$,

where $\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)=\tfrac{{\left(-1\right)}^{i-1}\gamma {\rm{\Gamma }}(i-\gamma )}{{\rm{\Gamma }}(1-\gamma ){\rm{\Gamma }}(i+1)}$.

(d)${D}_{t}^{-\gamma }[{D}_{t}^{\gamma }f(t)]=f(t)-{\sum }_{i=1}^{n}{\left[{D}_{t}^{\gamma -i}f(t)\right]}_{t=a}\displaystyle \frac{{\left(t-a\right)}^{\gamma -i}}{{\rm{\Gamma }}(\gamma -i+1)}$,

where f(t), f1(t) and f2(t) are functions of [a, b], n − 1 < γn.

3. Lie point symmetries of the time-fractional DS equation

From equation (2), it can be seen that the time-fractional DS equation is a complex coupled system. To obtain the Lie point symmetries of the system, equation (2) needs to be transformed into a real coupled system.
First, we substitute the transformation u(x, y, t) = p(x, y, t) + iq(x, y, t) into equation (2). Consequently, equation (2) is transformed to the system as follows:
$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Delta }}}_{1}={D}_{t}^{\gamma }p+{q}_{{xx}}+{q}_{{yy}}-({p}^{2}q+{q}^{3})+{qv}=0,\\ {{\rm{\Delta }}}_{2}=-{D}_{t}^{\gamma }q+{p}_{{xx}}+{p}_{{yy}}-({p}^{3}+{{pq}}^{2})+{pv}=0,\\ {{\rm{\Delta }}}_{3}={v}_{{xx}}+{v}_{{yy}}+2({p}_{x}^{2}+{{pp}}_{{xx}}+{q}_{x}^{2}+{{qq}}_{{xx}})=0,\end{array}\right.\end{eqnarray}$
where p(x, y, t) and q(x, y, t) are real functions.
The general form of equation (5) (system) is in the following:
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{t}^{\gamma }p={F}_{1}(x,y,t,p,q,v,{p}_{x},{q}_{x},{v}_{x},{p}_{y},{q}_{y},{v}_{y},{p}_{{xx}},{q}_{{xx}},{v}_{{xx}},{p}_{{yy}},{q}_{{yy}},{v}_{{yy}},\cdot \cdot \cdot ),\\ {D}_{t}^{\gamma }q={F}_{2}(x,y,t,p,q,v,{p}_{x},{q}_{x},{v}_{x},{p}_{y},{q}_{y},{v}_{y},{p}_{{xx}},{q}_{{xx}},{v}_{{xx}},{p}_{{yy}},{q}_{{yy}},{v}_{{yy}},\cdot \cdot \cdot ),\\ {F}_{3}(x,y,t,p,q,v,{p}_{x},{q}_{x},{v}_{x},{p}_{y},{q}_{y},{v}_{y},{p}_{{xx}},{q}_{{xx}},{v}_{{xx}},{p}_{{yy}},{q}_{{yy}},{v}_{{yy}},\cdot \cdot \cdot )=0,\end{array}\right.\end{eqnarray}$
where 0 < γ < 1.
The one-parameter Lie group of transformations for equation (5) has the following form:
$\begin{eqnarray}\left\{\begin{array}{l}{x}^{* }=x+{\varepsilon }{\lambda }_{1}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {y}^{* }=y+{\varepsilon }{\lambda }_{2}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {t}^{* }=t+{\varepsilon }\tau (x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {p}^{* }=p+{\varepsilon }{\phi }_{1}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {q}^{* }=q+{\varepsilon }{\phi }_{2}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {v}^{* }=v+{\varepsilon }{\phi }_{3}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {D}_{{t}^{* }}^{\gamma }{p}^{* }={D}_{t}^{\gamma }p+{\varepsilon }{\phi }_{1}^{\gamma }(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {D}_{{t}^{* }}^{\gamma }{q}^{* }={D}_{t}^{\gamma }q+{\varepsilon }{\phi }_{2}^{\gamma }(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {p}_{{x}^{* }}^{* }\,=\,{p}_{x}+{\varepsilon }{\phi }_{1}^{x}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {q}_{{x}^{* }}^{* }={q}_{x}+{\varepsilon }{\phi }_{2}^{x}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {v}_{{x}^{* }}^{* }={v}_{x}+{\varepsilon }{\phi }_{3}^{x}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {p}_{{y}^{* }}^{* }={p}_{y}+{\varepsilon }{\phi }_{1}^{y}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {q}_{{y}^{* }}^{* }={q}_{y}+{\varepsilon }{\phi }_{2}^{y}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {v}_{{y}^{* }}^{* }={v}_{y}+{\varepsilon }{\phi }_{3}^{y}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {p}_{{x}^{* }{x}^{* }}^{* }\,=\,{p}_{{xx}}+{\varepsilon }{\phi }_{1}^{{xx}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {q}_{{x}^{* }{x}^{* }}^{* }={q}_{{xx}}+{\varepsilon }{\phi }_{2}^{{xx}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {v}_{{x}^{* }{x}^{* }}^{* }={v}_{{xx}}+{\varepsilon }{\phi }_{3}^{{xx}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {p}_{{y}^{* }{y}^{* }}^{* }\,=\,{p}_{{yy}}+{\varepsilon }{\phi }_{1}^{{yy}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {q}_{{y}^{* }{y}^{* }}^{* }={q}_{{yy}}+{\varepsilon }{\phi }_{2}^{{yy}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\\ {v}_{{y}^{* }{y}^{* }}^{* }={v}_{{yy}}+{\varepsilon }{\phi }_{3}^{{yy}}(x,y,t,p,q,v)+O({{\varepsilon }}^{2}),\end{array}\right.\end{eqnarray}$
where ε ≪ 1 is a parameter; λ1, λ2, λ3, $\tau$, φ1, φ2 and φ3 are infinitesimal functions; and ${\phi }_{1}^{\gamma },{\phi }_{2}^{\gamma },{\phi }_{1}^{x},{\phi }_{2}^{x},{\phi }_{3}^{x},{\phi }_{1}^{y},{\phi }_{2}^{y},{\phi }_{3}^{y},{\phi }_{1}^{{xx}},{\phi }_{2}^{{xx}},{\phi }_{3}^{{xx}},{\phi }_{1}^{{yy}},{\phi }_{2}^{{yy}}$ and ${\phi }_{3}^{{yy}}$ can be determined later.
Taking vector field as follows:
$\begin{eqnarray}\begin{array}{rcl}V & = & {\lambda }_{1}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial x}+{\lambda }_{2}(x,y,t,p,q,v)\\ & & \times \displaystyle \frac{\partial }{\partial y}+\tau (x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial t}\\ & & +{\phi }_{1}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial p}+{\phi }_{2}(x,y,t,p,q,v)\\ & & \times \displaystyle \frac{\partial }{\partial q}+{\phi }_{3}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial v},\end{array}\end{eqnarray}$
therefore, the second prolongation of vector field V can be
$\begin{eqnarray}\begin{array}{l}{{pr}}^{(\gamma ,2)}V={\lambda }_{1}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial x}+{\lambda }_{2}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial y}\\ \quad +\ \tau (x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial t}\\ \quad +{\phi }_{1}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial p}+{\phi }_{2}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial q}\\ \quad +{\phi }_{3}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial v}\\ \quad +{\phi }_{1}^{\gamma }(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {p}_{t}^{\gamma }}+{\phi }_{2}^{\gamma }(x,y,t,p,q,v)\\ \quad \times \displaystyle \frac{\partial }{\partial {q}_{t}^{\gamma }}\\ \quad +{\phi }_{1}^{x}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {p}_{x}}\\ \quad +{\phi }_{2}^{x}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {q}_{x}}\\ \quad +{\phi }_{1}^{{xx}}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {p}_{{xx}}}+{\phi }_{2}^{{xx}}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {q}_{{xx}}}\\ \quad +{\phi }_{3}^{{xx}}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {v}_{{xx}}}\\ \quad +{\phi }_{1}^{{yy}}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {p}_{{yy}}}+{\phi }_{2}^{{yy}}(x,y,t,p,q,v)\\ \quad \times \displaystyle \frac{\partial }{\partial {q}_{{yy}}}+{\phi }_{3}^{{yy}}(x,y,t,p,q,v)\displaystyle \frac{\partial }{\partial {v}_{{yy}}},\end{array}\end{eqnarray}$
where ${p}_{t}^{\gamma }={D}_{t}^{\gamma }p,{q}_{t}^{\gamma }={D}_{t}^{\gamma }q$, and the subscripts are denoted as partial derivatives. According to the Lie symmetry theory, pr(γ,2) should satisfy the invariance criterion, i.e.
$\begin{eqnarray}\left\{\begin{array}{l}{{pr}}^{(\gamma ,2)}V({{\rm{\Delta }}}_{1}){| }_{{{\rm{\Delta }}}_{1}=0,{{\rm{\Delta }}}_{2}=0,{{\rm{\Delta }}}_{3}=0},\\ {{pr}}^{(\gamma ,2)}V({{\rm{\Delta }}}_{2}){| }_{{{\rm{\Delta }}}_{1}=0,{{\rm{\Delta }}}_{2}=0,{{\rm{\Delta }}}_{3}=0},\\ {{pr}}^{(\gamma ,2)}V({{\rm{\Delta }}}_{3}){| }_{{{\rm{\Delta }}}_{1}=0,{{\rm{\Delta }}}_{2}=0,{{\rm{\Delta }}}_{3}=0}.\end{array}\right.\end{eqnarray}$
Acting pr(γ,2)V on Δ1, Δ2 and Δ3, respectively, and acquiring
$\begin{eqnarray}\left\{\begin{array}{l}{\phi }_{1}^{\gamma }+{\phi }_{2}^{{xx}}+{\phi }_{2}^{{yy}}-(2{pq}{\phi }_{1}+{p}^{2}{\phi }_{2}+3{q}^{2}{\phi }_{2})+v{\phi }_{2}+q{\phi }_{3}=0,\\ -{\phi }_{2}^{\gamma }+{\phi }_{1}^{{xx}}+{\phi }_{1}^{{yy}}-(3{p}^{2}{\phi }_{1}+{q}^{2}{\phi }_{1}+2{pq}{\phi }_{2})+v{\phi }_{1}+p{\phi }_{3}=0,\\ {\phi }_{3}^{{xx}}+{\phi }_{3}^{{yy}}+2({p}_{{xx}}{\phi }_{1}+2{p}_{x}{\phi }_{1}^{x}+p{\phi }_{1}^{{xx}}+{q}_{{xx}}{\phi }_{2}+2{q}_{x}{\phi }_{2}^{x}+q{\phi }_{2}^{{xx}})=0,\end{array}\right.\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{1}^{x} & = & {D}_{x}({\phi }_{1}-{\lambda }_{1}{p}_{x}-{\lambda }_{2}{p}_{y}-\tau {p}_{t})\\ & & +{\lambda }_{1}{p}_{{xx}}+{\lambda }_{2}{p}_{{xy}}+\tau {p}_{{xt}}\\ & = & {D}_{x}({\phi }_{1})-{p}_{x}{D}_{x}({\lambda }_{1})-{p}_{y}{D}_{x}({\lambda }_{2})-{p}_{t}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{2}^{x} & = & {D}_{x}({\phi }_{2}-{\lambda }_{1}{q}_{x}-{\lambda }_{2}{q}_{y}-\tau {q}_{t})\\ & & +{\lambda }_{1}{q}_{{xx}}+{\lambda }_{2}{q}_{{xy}}+\tau {q}_{{xt}}\\ & = & {D}_{x}({\phi }_{2})-{q}_{x}{D}_{x}({\lambda }_{1})-{q}_{y}{D}_{x}({\lambda }_{2})-{q}_{t}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{3}^{x} & = & {D}_{x}({\phi }_{3}-{\lambda }_{1}{v}_{x}-{\lambda }_{2}{v}_{y}-\tau {v}_{t})\\ & & +{\lambda }_{1}{v}_{{xx}}+{\lambda }_{2}{v}_{{xy}}+\tau {v}_{{xt}}\\ & = & {D}_{x}({\phi }_{3})-{v}_{x}{D}_{x}({\lambda }_{1})-{v}_{y}{D}_{x}({\lambda }_{2})-{v}_{t}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{1}^{y} & = & {D}_{y}({\phi }_{1}-{\lambda }_{1}{p}_{x}-{\lambda }_{2}{p}_{y}-\tau {p}_{t})\\ & & +{\lambda }_{1}{p}_{{xy}}+{\lambda }_{2}{p}_{{yy}}+\tau {p}_{{yt}}\\ & = & {D}_{y}({\phi }_{1})-{p}_{x}{D}_{y}({\lambda }_{1})-{p}_{y}{D}_{y}({\lambda }_{2})-{p}_{t}{D}_{y}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{2}^{y} & = & {D}_{y}({\phi }_{2}-{\lambda }_{1}{q}_{x}-{\lambda }_{2}{q}_{y}-\tau {q}_{t})+{\lambda }_{1}{q}_{{xy}}+{\lambda }_{2}{q}_{{yy}}+\tau {q}_{{yt}}\\ & = & {D}_{y}({\phi }_{2})-{q}_{x}{D}_{y}({\lambda }_{1})-{q}_{y}{D}_{y}({\lambda }_{2})-{q}_{t}{D}_{y}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{3}^{y} & = & {D}_{y}({\phi }_{3}-{\lambda }_{1}{v}_{x}-{\lambda }_{2}{v}_{y}-\tau {v}_{t})\\ & & +{\lambda }_{1}{v}_{{xy}}+{\lambda }_{2}{v}_{{yy}}+\tau {v}_{{yt}}\\ & = & {D}_{y}({\phi }_{3})-{p}_{x}{D}_{y}({\lambda }_{1})-{p}_{y}{D}_{y}({\lambda }_{2})-{p}_{t}{D}_{y}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{1}^{{xx}} & = & {D}_{x}^{2}({\phi }_{1}-{\lambda }_{1}{p}_{x}-{\lambda }_{2}{p}_{y}-\tau {p}_{t})+{\lambda }_{1}{p}_{{xxx}}\\ & & +{\lambda }_{2}{p}_{{xxy}}+\tau {p}_{{xxt}}\\ & = & {D}_{x}({\phi }_{1}^{x})-{p}_{{xx}}{D}_{x}({\lambda }_{1})-{p}_{{xy}}{D}_{x}({\lambda }_{2})-{p}_{{xt}}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{2}^{{xx}} & = & {D}_{x}^{2}({\phi }_{2}-{\lambda }_{1}{q}_{x}-{\lambda }_{2}{q}_{y}-\tau {q}_{t})+{\lambda }_{1}{q}_{{xxx}}\\ & & +{\lambda }_{2}{q}_{{xxy}}+\tau {q}_{{xxt}}\\ & = & {D}_{x}({\phi }_{2}^{x})-{q}_{{xx}}{D}_{x}({\lambda }_{1})-{q}_{{xy}}{D}_{x}({\lambda }_{2})-{q}_{{xt}}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{3}^{{xx}} & = & {D}_{x}^{2}({\phi }_{3}-{\lambda }_{1}{v}_{x}-{\lambda }_{2}{v}_{y}-\tau {v}_{t})+{\lambda }_{1}{v}_{{xxx}}\\ & & +{\lambda }_{2}{v}_{{xxy}}+\tau {v}_{{xxt}}\\ & = & {D}_{x}({\phi }_{3}^{x})-{v}_{{xx}}{D}_{x}({\lambda }_{1})-{v}_{{xy}}{D}_{x}({\lambda }_{2})-{v}_{{xt}}{D}_{x}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{1}^{{yy}} & = & {D}_{y}^{2}({\phi }_{1}-{\lambda }_{1}{p}_{x}-{\lambda }_{2}{p}_{y}-\tau {p}_{t})+{\lambda }_{1}{p}_{{xyy}}\\ & & +{\lambda }_{2}{p}_{{yyy}}+\tau {p}_{{yyt}}\\ & = & {D}_{y}({\phi }_{1}^{y})-{p}_{{xy}}{D}_{y}({\lambda }_{1})-{p}_{{yy}}{D}_{y}({\lambda }_{2})-{p}_{{yt}}{D}_{y}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{rcl}{\phi }_{2}^{{yy}} & = & {D}_{y}^{2}({\phi }_{2}-{\lambda }_{1}{q}_{x}-{\lambda }_{2}{q}_{y}-\tau {q}_{t})+{\lambda }_{1}{q}_{{xyy}}\\ & & +{\lambda }_{2}{q}_{{yyy}}+\tau {q}_{{yyt}}\\ & = & {D}_{y}({\phi }_{2}^{y})-{q}_{{xy}}{D}_{y}({\lambda }_{1})-{q}_{{yy}}{D}_{y}({\lambda }_{2})-{q}_{{yt}}{D}_{y}(\tau )\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{3}^{{yy}} & = & {D}_{y}^{2}({\phi }_{3}-{\lambda }_{1}{v}_{x}-{\lambda }_{2}{v}_{y}-\tau {v}_{t})+{\lambda }_{1}{v}_{{xyy}}\\ & & +{\lambda }_{2}{v}_{{yyy}}+\tau {v}_{{yyt}}\\ & = & {D}_{y}({\phi }_{3}^{y})-{v}_{{xy}}{D}_{y}({\lambda }_{1})-{v}_{{yy}}{D}_{y}({\lambda }_{2})-{v}_{{yt}}{D}_{y}(\tau )\end{array}\end{eqnarray}$
and Dx, Dy are denoted as the total derivatives with respect to x, y, respectively. The infinitesimal functions ${\phi }_{1}^{\gamma }$ and ${\phi }_{2}^{\gamma }$ can be represented as
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1}^{\gamma } & = & {D}_{t}^{\gamma }({\phi }_{1})+{\lambda }_{1}{D}_{t}^{\gamma }({p}_{x})-{D}_{t}^{\gamma }({\lambda }_{1}{p}_{x})\\ & & +{\lambda }_{2}{D}_{t}^{\gamma }({p}_{y})-{D}_{t}^{\gamma }({\lambda }_{2}{p}_{y})\\ & & +{D}_{t}^{\gamma }({D}_{t}(\tau )p)-{D}_{t}^{\gamma +1}(\tau p)+\tau {D}_{t}^{\gamma +1}(p),\\ {\phi }_{2}^{\gamma } & = & {D}_{t}^{\gamma }({\phi }_{2})+{\lambda }_{1}{D}_{t}^{\gamma }({q}_{x})-{D}_{t}^{\gamma }({\lambda }_{1}{q}_{x})\\ & & +{\lambda }_{2}{D}_{t}^{\gamma }({q}_{y})-{D}_{t}^{\gamma }({\lambda }_{2}{q}_{y})\\ & & +{D}_{t}^{\gamma }({D}_{t}(\tau )q)-{D}_{t}^{\gamma +1}(\tau q)+\tau {D}_{t}^{\gamma +1}(q).\end{array}\end{eqnarray}$
By utilizing the Leibnitz rule of Riemann-Liouville derivative, equation (13) can be rewritten as
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1}^{\gamma } & = & {D}_{t}^{\gamma }({\phi }_{1})-\gamma {D}_{t}(\tau )\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{1}){D}_{t}^{\gamma -n}({p}_{x})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{2}){D}_{t}^{\gamma -n}({p}_{y})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n+1}\right){D}_{t}^{n+1}(\tau ){D}_{t}^{\gamma -n}(p),\\ {\phi }_{2}^{\gamma } & = & {D}_{t}^{\gamma }({\phi }_{2})-\gamma {D}_{t}(\tau )\displaystyle \frac{{\partial }^{\gamma }q}{\partial {t}^{\gamma }}\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{1}){D}_{t}^{\gamma -n}({q}_{x})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{2}){D}_{t}^{\gamma -n}({q}_{y})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n+1}\right){D}_{t}^{n+1}(\tau ){D}_{t}^{\gamma -n}(q).\end{array}\end{eqnarray}$
According to the derivation rule for composite function, for functions f = f(x) and f = g(x), one obtains
$\begin{eqnarray*}\displaystyle \frac{{{\rm{d}}}^{n}f[g(x)]}{{\rm{d}}{t}^{n}}=\displaystyle \displaystyle \sum _{i=0}^{n}\displaystyle \displaystyle \sum _{j=0}^{i}\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\displaystyle \frac{1}{i!}{\left[-g(x)\right]}^{j}\displaystyle \frac{{{\rm{d}}}^{n}}{{\rm{d}}{t}^{n}}[{\left(g(x)\right)}^{i-j}]\displaystyle \frac{{{\rm{d}}}^{i}f(g)}{{\rm{d}}{g}^{i}}.\end{eqnarray*}$
By utilizing the preceding results, one acquires
$\begin{eqnarray}\begin{array}{l}{D}_{t}^{\gamma }({\phi }_{1})=\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1}}{\partial {t}^{\gamma }}+{\phi }_{1,p}\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}-p\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,p}}{\partial {t}^{\gamma }}+{\phi }_{1,q}\displaystyle \frac{{\partial }^{\gamma }q}{\partial {t}^{\gamma }}\\ \quad -q\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,q}}{\partial {t}^{\gamma }}+{\phi }_{1,v}\displaystyle \frac{{\partial }^{\gamma }v}{\partial {t}^{\gamma }}-v\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,v}}{\partial {t}^{\gamma }}\\ \quad +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,p}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(p)+\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,q}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(q)\\ \quad +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,v}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(v)\\ \quad +{\sigma }_{1}+{\sigma }_{2}+{\sigma }_{3},\\ {D}_{t}^{\gamma }({\phi }_{2})=\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2}}{\partial {t}^{\gamma }}+{\phi }_{2,p}\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}-p\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,p}}{\partial {t}^{\gamma }}+{\phi }_{2,q}\displaystyle \frac{{\partial }^{\gamma }q}{\partial {t}^{\gamma }}\\ \quad -q\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,q}}{\partial {t}^{\gamma }}+{\phi }_{2,v}\displaystyle \frac{{\partial }^{\gamma }v}{\partial {t}^{\gamma }}-v\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,v}}{\partial {t}^{\gamma }}\\ \quad +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,p}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(p)+\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,q}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(q)\\ \quad +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,v}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(v)\\ \quad +{\sigma }_{4}+{\sigma }_{5}+{\sigma }_{6},\end{array}\end{eqnarray}$
Where
$\begin{eqnarray*}\begin{array}{rcl}{\sigma }_{1} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-p\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({p}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{1}}{\partial {t}^{i-j}\partial {p}^{k}},\\ {\sigma }_{2} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-q\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({q}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{1}}{\partial {t}^{i-j}\partial {q}^{k}},\\ {\sigma }_{3} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-v\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({v}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{1}}{\partial {t}^{i-j}\partial {v}^{k}},\\ {\sigma }_{4} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-p\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({p}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{2}}{\partial {t}^{i-j}\partial {p}^{k}},\\ {\sigma }_{5} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-q\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({q}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{2}}{\partial {t}^{i-j}\partial {q}^{k}},\\ {\sigma }_{6} & = & \displaystyle \displaystyle \sum _{i=2}^{\infty }\displaystyle \displaystyle \sum _{j=2}^{i}\displaystyle \displaystyle \sum _{k=2}^{j}\displaystyle \displaystyle \sum _{m=0}^{k-1}\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{i}{j}\right)\left(\displaystyle \genfrac{}{}{0em}{}{k}{m}\right)\displaystyle \frac{1}{k!}\displaystyle \frac{{t}^{i-\gamma }}{{\rm{\Gamma }}(1+i-\gamma )}{\left(-v\right)}^{m}\\ & & \times \displaystyle \frac{{\partial }^{j}}{\partial {t}^{j}}({v}^{k-m})\displaystyle \frac{{\partial }^{i-j+k}{\phi }_{2}}{\partial {t}^{i-j}\partial {v}^{k}}.\end{array}\end{eqnarray*}$
Substituting equation (15) into equation (14), one achieves
$\begin{eqnarray}\begin{array}{rcl}{\phi }_{1}^{\gamma } & = & \displaystyle \frac{{\partial }^{\gamma }{\phi }_{1}}{\partial {t}^{\gamma }}+[{\phi }_{1,p}-\gamma {D}_{t}(\tau )]\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}-p\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,p}}{\partial {t}^{\gamma }}\\ & & +{\phi }_{1,q}\displaystyle \frac{{\partial }^{\gamma }q}{\partial {t}^{\gamma }}-q\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,q}}{\partial {t}^{\gamma }}+{\phi }_{1,v}\displaystyle \frac{{\partial }^{\gamma }v}{\partial {t}^{\gamma }}-v\displaystyle \frac{{\partial }^{\gamma }{\phi }_{1,v}}{\partial {t}^{\gamma }}\\ & & +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left[\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,p}}{\partial {t}^{n}}-\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n+1}\right){D}_{t}^{n+1}(\tau )\right]{D}_{t}^{\gamma -n}(p)\\ & & +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,q}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(q)+\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{1,v}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(v)\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{1}){D}_{t}^{\gamma -n}({p}_{x})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{2}){D}_{t}^{\gamma -n}({p}_{y})\\ & & +{\sigma }_{1}+{\sigma }_{2}+{\sigma }_{3},\\ {\phi }_{2}^{\gamma } & = & \displaystyle \frac{{\partial }^{\gamma }{\phi }_{2}}{\partial {t}^{\gamma }}+{\phi }_{2,p}\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}-p\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,p}}{\partial {t}^{\gamma }}\\ & & +[{\phi }_{2,q}-\gamma {D}_{t}(\tau )]\displaystyle \frac{{\partial }^{\gamma }q}{\partial {t}^{\gamma }}-q\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,q}}{\partial {t}^{\gamma }}+{\phi }_{2,v}\displaystyle \frac{{\partial }^{\gamma }v}{\partial {t}^{\gamma }}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl} & & -v\displaystyle \frac{{\partial }^{\gamma }{\phi }_{2,v}}{\partial {t}^{\gamma }}\\ & & +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,p}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(p)+\displaystyle \displaystyle \sum _{n=1}^{\infty }\left[\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,q}}{\partial {t}^{n}}\right.\\ & & \left.-\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n+1}\right){D}_{t}^{n+1}(\tau )\right]{D}_{t}^{\gamma -n}(q)\\ & & +\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right)\displaystyle \frac{{\partial }^{n}{\phi }_{2,v}}{\partial {t}^{n}}{D}_{t}^{\gamma -n}(v)-\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{1}){D}_{t}^{\gamma -n}({q}_{x})\\ & & -\displaystyle \displaystyle \sum _{n=1}^{\infty }\left(\displaystyle \genfrac{}{}{0em}{}{\gamma }{n}\right){D}_{t}^{n}({\lambda }_{2}){D}_{t}^{\gamma -n}({q}_{y})\\ & & +{\sigma }_{4}+{\sigma }_{5}+{\sigma }_{6}.\end{array}\end{eqnarray}$
Substituting equations (12) and (16) into equation (11) and equating the coefficients of the partial derivatives and powers of the functions p, q and v with respect to the independent variables x, y and t be zero, then a system of determining equations is derived. Solving the determining equations, one has
$\begin{eqnarray}\left\{\begin{array}{l}{\lambda }_{1}(x,y,t,p,q,v)=\gamma {C}_{1}x+{C}_{2},\\ {\lambda }_{2}(x,y,t,p,q,v)=\gamma {C}_{1}y+{C}_{3},\\ \tau (x,y,t,p,q,v)=2{C}_{1}t,\\ {\phi }_{1}(x,y,t,p,q,v)=-\gamma {C}_{1}p+{C}_{4}q,\\ {\phi }_{2}(x,y,t,p,q,v)=-\gamma {C}_{1}q-{C}_{4}p,\\ {\phi }_{3}(x,y,t,p,q,v)=-2\gamma {C}_{1}v,\end{array}\right.\end{eqnarray}$
where C1, C2, C3 and C4 are arbitrary constants. Therefore, the vector field V can be presented as
$\begin{eqnarray}\begin{array}{rcl}V & = & (\gamma {C}_{1}x+{C}_{2})\displaystyle \frac{\partial }{\partial x}+(\gamma {C}_{1}y+{C}_{3})\displaystyle \frac{\partial }{\partial y}+(2{C}_{1}t)\displaystyle \frac{\partial }{\partial t}\\ & & +(-\gamma {C}_{1}p+{C}_{4}q)\displaystyle \frac{\partial }{\partial p}+(-\gamma {C}_{1}q-{C}_{4}p)\displaystyle \frac{\partial }{\partial q}\\ & & +(-2\gamma {C}_{1}v)\displaystyle \frac{\partial }{\partial v}.\end{array}\end{eqnarray}$
Taking
$\begin{eqnarray}\begin{array}{rcl}{V}_{1} & = & \gamma x\displaystyle \frac{\partial }{\partial x}+\gamma y\displaystyle \frac{\partial }{\partial y}+2t\displaystyle \frac{\partial }{\partial t}-\gamma p\displaystyle \frac{\partial }{\partial p}-\gamma q\displaystyle \frac{\partial }{\partial q}-2\gamma v\displaystyle \frac{\partial }{\partial v},\\ {V}_{2} & = & \displaystyle \frac{\partial }{\partial x},\\ {V}_{3} & = & \displaystyle \frac{\partial }{\partial x},\\ {V}_{4} & = & q\displaystyle \frac{\partial }{\partial p}-p\displaystyle \frac{\partial }{\partial q},\end{array}\end{eqnarray}$
then the vector field V can be written as
$\begin{eqnarray}V={C}_{1}{V}_{1}+{C}_{2}{V}_{2}+{C}_{3}{V}_{3}+{C}_{4}{V}_{4},\end{eqnarray}$
and from that the following theorem is presented.

The Lie algebra ${ \mathcal A }$, which is spanned by ${V}_{1},{V}_{2},{V}_{3}$ and V4, has the following commutation relations (table 1).

Table 1. Commutation relations of the Lie algebra ${ \mathcal A }$.
[Vi, Vj] V1 V2 V3 V4
V1 0 γV2 γV3 0
V2 γV2 0 0 0
V3 γV3 0 0 0
V4 0 0 0 0
Where [Vi, Vj] = ViVjVjVi. It is obvious to see that the Lie algebra ${ \mathcal A }$ is closed. Consequently, the Lie point symmetries of equation (5) are generated by vector field V.
The symmetry groups can also be derived. The following theorem shows the result.

If $[p=p(x,y,t),q=q(x,y,t),v=v(x,y,t)]$ is a solution of equation (5), then

$\begin{eqnarray*}\begin{array}{l}\left[{p}_{1},{q}_{1},{v}_{1}\right]\\ \quad =\left[{{\rm{e}}}^{-\gamma {\epsilon }}p({{\rm{e}}}^{-\gamma {\epsilon }}x,{{\rm{e}}}^{-\gamma {\epsilon }}y,{{\rm{e}}}^{-2{\epsilon }}t),{{\rm{e}}}^{-\gamma {\epsilon }}q\right.\\ \quad \times ({{\rm{e}}}^{-\gamma {\epsilon }}x,{{\rm{e}}}^{-\gamma {\epsilon }}y,{{\rm{e}}}^{-2{\epsilon }}t),\\ \quad \left.{{\rm{e}}}^{-2\gamma {\epsilon }}v({{\rm{e}}}^{-\gamma {\epsilon }}x,{{\rm{e}}}^{-\gamma {\epsilon }}y,{{\rm{e}}}^{-2{\epsilon }}t)\right],\\ \quad \left[{p}_{2},{q}_{2},{v}_{2}\right]\\ \quad =\left[p(x-{\epsilon },y,t),q(x-{\epsilon },y,t),v(x-{\epsilon },y,t)\right],\\ \quad \left[{p}_{3},{q}_{3},{v}_{3}\right]\\ \quad =\left[p(x,y-{\epsilon },t),q(x,y-{\epsilon },t),v(x,y-{\epsilon },t)\right]\end{array}\end{eqnarray*}$
and
$\begin{eqnarray*}\begin{array}{l}\left[{p}_{4},{q}_{4},{v}_{4}\right]\\ \quad =\left[p(x,y,t)\cos {\epsilon }-q(x,y,t)\sin {\epsilon },p(x,y,t)\sin {\epsilon }\right.\\ \quad \left.+q(x,y,t)\cos {\epsilon },v(x,y,t)\right]\end{array}\end{eqnarray*}$
are also solutions of equation (5).

Assuming symmetry group Gi satisfies:

$\begin{eqnarray}\begin{array}{l}{G}_{i}:(x,y,t,p,q,v)\to ({x}^{* },{y}^{* },{t}^{* },{p}^{* },{q}^{* },{v}^{* })\\ \quad \times (i=1,2,3,4).\end{array}\end{eqnarray}$
Consider initial value problem, which satisfies the conditions as follows:
$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{d}{d{\epsilon }}({x}^{* },{y}^{* },{t}^{* },{p}^{* },{q}^{* },{v}^{* })=V({x}^{* },{y}^{* },{t}^{* },{p}^{* },{q}^{* },{v}^{* }),\\ ({x}^{* },{y}^{* },{t}^{* },{p}^{* },{q}^{* },{v}^{* }){| }_{{\epsilon }=0}=(x,y,t,p,q,v),\end{array}\right.\end{eqnarray}$
where ε is a parameter. Soving equation (22) results in
$\begin{eqnarray}\begin{array}{l}{G}_{1}:(x,y,t,p,q,v)\to ({{\rm{e}}}^{\gamma {\epsilon }}x,{{\rm{e}}}^{\gamma {\epsilon }}y,{{\rm{e}}}^{2{\epsilon }}t,\\ \quad {{\rm{e}}}^{-\gamma {\epsilon }}p,{{\rm{e}}}^{-\gamma {\epsilon }}q,{{\rm{e}}}^{-2\gamma {\epsilon }}v),\\ {G}_{2}:(x,y,t,p,q,v)\to (x+{\epsilon },y,t,p,q,v),\\ {G}_{3}:(x,y,t,p,q,v)\to (x,y+{\epsilon },t,p,q,v),\\ {G}_{4}:(x,y,t,p,q,v)\to (x,y,t,\\ \quad p\cos {\epsilon }+q\sin {\epsilon },p\sin {\epsilon }-q\cos {\epsilon },v).\end{array}\end{eqnarray}$
Therefore, the solutions $[{p}_{1},{q}_{1},{v}_{1}],[{p}_{2},{q}_{2},{v}_{2}],[{p}_{3},{q}_{3},{v}_{3}]$ and $[{p}_{4},{q}_{4},{v}_{4}]$ can be derived.

4. Similarity reductions of the time-fractional DS equation

In the preceding section, the Lie point symmetries are presented. With the help of these results, similarity reductions can be provided.
I: For vector field (symmetry) $V=k\tfrac{\partial }{\partial x}+l\tfrac{\partial }{\partial y}$, the characteristic equation is
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}x}{k}=\displaystyle \frac{{\rm{d}}y}{l}=\displaystyle \frac{{\rm{d}}t}{0}=\displaystyle \frac{{\rm{d}}p}{0}=\displaystyle \frac{{\rm{d}}q}{0}=\displaystyle \frac{{\rm{d}}v}{0}.\end{eqnarray*}$
Taking similarity variables ξ = − lx + ky, η = t, and the group-invariant solutions
$\begin{eqnarray}\left\{\begin{array}{l}p=p(x,y,t)=f(\xi ,\eta ),\\ q=q(x,y,t)=g(\xi ,\eta ),\\ v=v(x,y,t)=h(\xi ,\eta ).\end{array}\right.\end{eqnarray}$
Substituting equation (24) into equation (5), one has
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{\eta }^{\gamma }f+({k}^{2}+{l}^{2}){g}_{\xi \xi }-({f}^{2}g+{g}^{3})+{gh}=0,\\ -{D}_{\eta }^{\gamma }g+({k}^{2}+{l}^{2}){f}_{\xi \xi }-({f}^{3}+{{fg}}^{2})+{fh}=0,\\ \left({k}^{2}+{l}^{2}\right){h}_{\xi \xi }+2{l}^{2}\left[{\left({f}_{\xi }\right)}^{2}+{{ff}}_{\xi \xi }+{\left({g}_{\xi }\right)}^{2}+{{gg}}_{\xi \xi }\right]=0,\end{array}\right.\end{eqnarray}$
where the subscripts are denoted as the partial derivative with respect to ξ, i.e. ${\left(\cdot \right)}_{\xi }=\tfrac{\partial }{\partial \xi }(\cdot ),{\left(\cdot \right)}_{\xi \xi }=\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}(\cdot )$.
II: For vector field (symmetry) corresponding to scalar transformations, i.e. $V=\gamma x\tfrac{\partial }{\partial x}+\gamma y\tfrac{\partial }{\partial y}$ +$2t\tfrac{\partial }{\partial t}-\gamma p\tfrac{\partial }{\partial p}-\gamma q\tfrac{\partial }{\partial q}$ $-2\gamma v\tfrac{\partial }{\partial v}$, the characteristic equation is
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}x}{\gamma x}=\displaystyle \frac{{\rm{d}}y}{\gamma y}=\displaystyle \frac{{\rm{d}}t}{2t}=\displaystyle \frac{{\rm{d}}p}{-\gamma p}=\displaystyle \frac{{\rm{d}}q}{-\gamma q}=\displaystyle \frac{{\rm{d}}v}{-2\gamma v}.\end{eqnarray*}$
Selecting similarity variable $\eta =t{\left(x+y\right)}^{-\tfrac{2}{\gamma }}$ and the group-invariant solutions
$\begin{eqnarray}\left\{\begin{array}{l}p=p(x,y,t)={\left(x+y\right)}^{-1}f(\eta ),\\ q=q(x,y,t)={\left(x+y\right)}^{-1}g(\eta ),\\ v=v(x,y,t)={\left(x+y\right)}^{-1}h(\eta ).\end{array}\right.\end{eqnarray}$
Substituting equation (26) into equation (5), one has
$\begin{eqnarray}\left\{\begin{array}{l}{D}_{\eta }^{\gamma }f+4g+(\displaystyle \frac{8}{{\gamma }^{2}}+\displaystyle \frac{12}{\gamma })\eta {g}^{{\prime} }+\displaystyle \frac{8}{{\gamma }^{2}}{\eta }^{2}{g}^{{\prime\prime} }-({f}^{2}g+{g}^{3})+{gh}=0,\\ -{D}_{\eta }^{\gamma }g+4f+(\displaystyle \frac{8}{{\gamma }^{2}}+\displaystyle \frac{12}{\gamma })\eta {f}^{{\prime} }+\displaystyle \frac{8}{{\gamma }^{2}}{\eta }^{2}{g}^{{\prime\prime} }-({f}^{3}+{{fg}}^{2})+{fh}=0,\\ 6h+3({f}^{2}+{g}^{2})+(\displaystyle \frac{4}{{\gamma }^{2}}+\displaystyle \frac{10}{\gamma })\eta ({{ff}}^{{\prime} }+{{gg}}^{{\prime} }+{h}^{{\prime} })\\ +\displaystyle \frac{4}{{\gamma }^{2}}{\eta }^{2}\left[{\left({f}^{{\prime} }\right)}^{2}+{{ff}}^{{\prime\prime} }+{\left({g}^{{\prime} }\right)}^{2}+{{gg}}^{{\prime\prime} }+{h}^{{\prime\prime} }\right]=0,\end{array}\right.\end{eqnarray}$
where ${\left(\cdot \right)}^{{\prime} },{\left(\cdot \right)}^{{\prime\prime} }$ are denoted as the derivatives with respect to η, i.e. ${\left(\cdot \right)}^{{\prime} }=\tfrac{{\rm{d}}}{{\rm{d}}\eta }(\cdot ),{\left(\cdot \right)}^{{\prime\prime} }=\tfrac{{{\rm{d}}}^{2}}{{\rm{d}}{\eta }^{2}}(\cdot )$.
III: The Erdélyi-Kober fractional integro-differential operators are powerful techniques for reducing fractional partial differential equations. In this part, the Erdélyi-Kober fractional integro-differential operators are utilized to reduce equation (5).
For vector field (symmetry) $V=\gamma x\tfrac{\partial }{\partial x}+\gamma y\tfrac{\partial }{\partial y}\,+2t\tfrac{\partial }{\partial t}-\gamma p\tfrac{\partial }{\partial p}-\gamma q\tfrac{\partial }{\partial q}-2\gamma v\tfrac{\partial }{\partial v}$, the characteristic equation
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}x}{\gamma x}=\displaystyle \frac{{\rm{d}}y}{\gamma y}=\displaystyle \frac{{\rm{d}}t}{2t}=\displaystyle \frac{{\rm{d}}p}{-\gamma p}=\displaystyle \frac{{\rm{d}}q}{-\gamma q}=\displaystyle \frac{{\rm{d}}v}{-2\gamma v}.\end{eqnarray*}$
Choosing similarity variable $\mu =(x+y){t}^{-\tfrac{\gamma }{2}}$ and the group-invariant solution
$\begin{eqnarray}\left\{\begin{array}{l}p=p(x,y,t)={t}^{-\tfrac{\gamma }{2}}f(\mu ),\\ q=q(x,y,t)={t}^{-\tfrac{\gamma }{2}}g(\mu ),\\ v=v(x,y,t)={t}^{-\gamma }h(\mu ).\end{array}\right.\end{eqnarray}$
According to equations (3) and (4), one has
$\begin{eqnarray}\begin{array}{l}{D}_{t}^{\gamma }\left[p(x,y,t)\right]=\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}=\displaystyle \frac{{\partial }^{n}}{\partial {t}^{n}}\\ \quad \times \left\{\displaystyle \frac{1}{{\rm{\Gamma }}(n-\gamma )}{\int }_{0}^{t}\displaystyle \frac{1}{{\left(t-\tau \right)}^{1-n+\gamma }}{\tau }^{-\tfrac{\gamma }{2}}f[(x+y){\tau }^{-\tfrac{\gamma }{2}}]{\rm{d}}\tau \right\}.\end{array}\end{eqnarray}$
Choosing variable transformation
$\begin{eqnarray*}\varsigma =\displaystyle \frac{t}{\tau },\end{eqnarray*}$
then
$\begin{eqnarray*}{\rm{d}}\tau =-\displaystyle \frac{t}{{\varsigma }^{2}}{\rm{d}}\varsigma .\end{eqnarray*}$
Therefore, equation (29) leads to
$\begin{eqnarray}\begin{array}{l}{D}_{t}^{\gamma }\left[p(x,\,y,\,t)\right]=\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}=\displaystyle \frac{{\partial }^{n}}{\partial {t}^{n}}\left\{{t}^{n-\tfrac{3}{2}\gamma }\displaystyle \frac{1}{{\rm{\Gamma }}(n-\gamma )}\right.\\ \quad \left.\times {\int }_{1}^{\infty }\displaystyle \frac{1}{{\left(\varsigma -1\right)}^{1-n+\gamma }}{\varsigma }^{-(n-\tfrac{3}{2}\gamma +1)}f({\varsigma }^{\tfrac{\gamma }{2}}\mu ){\rm{d}}\varsigma \right\}\\ =\ \displaystyle \frac{{\partial }^{n}}{\partial {t}^{n}}\left[{t}^{n-\tfrac{3}{2}\gamma }\left({{ \mathcal K }}_{\tfrac{2}{\gamma }}^{1-\tfrac{\gamma }{2},\,n-\gamma }f\right)(\mu )\right]\\ =\ \displaystyle \frac{{\partial }^{n-1}}{\partial {t}^{n-1}}\left\{\displaystyle \frac{\partial }{\partial t}\left[{t}^{n-\tfrac{3}{2}\gamma }\left({{ \mathcal K }}_{\tfrac{2}{\gamma }}^{1-\tfrac{\gamma }{2},\,n-\gamma }f\right)(\mu )\right]\right\}\\ =\ \displaystyle \frac{{\partial }^{n-1}}{\partial {t}^{n-1}}\left[{t}^{n-\tfrac{3}{2}\gamma -1}\left(n-\displaystyle \frac{3}{2}\gamma -\displaystyle \frac{\gamma }{2}\mu \displaystyle \frac{{\rm{d}}}{{\rm{d}}\mu }\right)\left({{ \mathcal K }}_{\tfrac{2}{\gamma }}^{1-\tfrac{\gamma }{2},n-\gamma }f\right)(\mu )\right].\end{array}\end{eqnarray}$
Repeating the preceding process n − 1 times, one has
$\begin{eqnarray}\begin{array}{l}{D}_{t}^{\gamma }\left[p(x,y,t)\right]=\displaystyle \frac{{\partial }^{\gamma }p}{\partial {t}^{\gamma }}=\displaystyle \frac{{\partial }^{n-1}}{\partial {t}^{n-1}}\\ \quad \times \left[{t}^{n-\tfrac{3}{2}\gamma -1}\left(n-\displaystyle \frac{3}{2}\gamma -\displaystyle \frac{\gamma }{2}\mu \displaystyle \frac{{\rm{d}}}{{\rm{d}}\mu }\right)\left({{ \mathcal K }}_{\tfrac{2}{\gamma }}^{1-\tfrac{\gamma }{2},n-\gamma }f\right)(\mu )\right]\\ \quad ={t}^{-\tfrac{3}{2}\gamma }\left[\displaystyle \displaystyle \prod _{i=0}^{n-1}\left(1-\displaystyle \frac{3}{2}\gamma +i-\displaystyle \frac{\gamma }{2}\mu \displaystyle \frac{{\rm{d}}}{{\rm{d}}\mu }\right)\left({{ \mathcal K }}_{\tfrac{2}{\gamma }}^{1-\tfrac{\gamma }{2},n-\gamma }f\right)(\mu )\right]\\ \quad ={t}^{-\tfrac{3}{2}\gamma }\left({{ \mathcal P }}_{\tfrac{2}{\gamma }}^{1-\tfrac{3}{2}\gamma ,\gamma }f\right)(\mu ),\end{array}\end{eqnarray}$
where the Erdélyi-Kober fractional integral operator is
$\begin{eqnarray*}\begin{array}{l}\left({{ \mathcal K }}_{\delta }^{\xi ,\eta }f\right)(\mu )\\ \quad =\left\{\begin{array}{ll}\displaystyle \frac{1}{{\rm{\Gamma }}(\eta )}{\int }_{1}^{\infty }{\left(\zeta -1\right)}^{\eta -1}{\zeta }^{-(\xi +\eta )}f({\zeta }^{\tfrac{1}{\delta }}\mu ){\rm{d}}\zeta , & \eta \gt 0,\\ f(\mu ), & \eta =0,\end{array}\right.\end{array}\end{eqnarray*}$
and the Erdélyi-Kober fractional differential operator is
$\begin{eqnarray*}\left({{ \mathcal P }}_{\delta }^{\xi ,\eta }f\right)(\mu )=\displaystyle \prod _{i=0}^{n-1}\left(\xi +i-\displaystyle \frac{1}{\delta }\mu \displaystyle \frac{{\rm{d}}}{{\rm{d}}\mu }\right)\left({{ \mathcal K }}_{\delta }^{\xi +\eta ,n-\eta }f\right)(\mu ),\end{eqnarray*}$
and
$\begin{eqnarray*}n=\left\{\begin{array}{ll}[\eta ]+1, & \eta \notin {\mathbb{N}},\\ \eta , & \eta \in {\mathbb{N}}.\end{array}\right.\end{eqnarray*}$
Similarly,
$\begin{eqnarray}{D}_{t}^{\gamma }\left[q(x,y,t)\right]={t}^{-\tfrac{3}{2}\gamma }\left({{ \mathcal P }}_{\tfrac{2}{\gamma }}^{1-\tfrac{3}{2}\gamma ,\gamma }g\right)(\mu ).\end{eqnarray}$
Substituting equations (31) and (32) into equation (5), one has
$\begin{eqnarray}\left\{\begin{array}{l}\left({{ \mathcal P }}_{\tfrac{2}{\gamma }}^{1-\tfrac{3}{2}\gamma ,\gamma }f\right)(\mu )+2{g}^{{\prime\prime} }-({f}^{2}g+{g}^{3})+{gh}=0,\\ -\left({{ \mathcal P }}_{\tfrac{2}{\gamma }}^{1-\tfrac{3}{2}\gamma ,\gamma }g\right)(\mu )+2{f}^{{\prime\prime} }-({f}^{3}+{{fg}}^{2})+{fh}=0,\\ {\left({f}^{{\prime} }\right)}^{2}+{{ff}}^{{\prime\prime} }+{\left({g}^{{\prime} }\right)}^{2}+{{gg}}^{{\prime\prime} }+{h}^{{\prime\prime} }=0,\end{array}\right.\end{eqnarray}$
where ${\left(\cdot \right)}^{{\prime} },{\left(\cdot \right)}^{{\prime\prime} }$ are denoted as the derivatives with respect to μ, i.e. ${\left(\cdot \right)}^{{\prime} }=\tfrac{{\rm{d}}}{{\rm{d}}\mu }(\cdot ),{\left(\cdot \right)}^{{\prime\prime} }=\tfrac{{{\rm{d}}}^{2}}{{\rm{d}}{\mu }^{2}}(\cdot )$.

5. Nonlinear self-adjointness and conservation laws of the time-fractional DS equation

The conservation law is closely related to the integrability of NPDEs; therefore, it is an important aspect in the study of NPDEs. As is known to all, if an NPDE has N-soliton (N ≥ 3) solutions, it is integrable. This equation has infinitely many conservation laws. In addition, conservation laws can be used to reveal a number of physical laws. The three famous physical laws in nature, namely conservation of mass, conservation of momentum and conservation of energy, are all important representations of conservation laws. From this perspective, conservation laws link mathematical representations to physical laws skillfully. In recent decades, conservation laws have been studied widely by many researchers, and a large number of new natural laws and phenomena are explained. Many methods of constructing conservation laws have been presented. Among these achievements, Noether's theorem and Ibragimov's new conservation theorem are extensively used [64, 65]. In addition, making use of pairs of symmetries and adjoint symmetries, a general one-to-one correspondence between conservation laws and non-Lagrangian equations is established and has been applied to the computation of conservation densities of the nonlinear evolution equations, including heat equations, Burgers equation and Korteweg-de Vries equation [66].

5.1. Nonlinear self-adjointness of the time-fractional DS equation

Introducing new dependent variables α = α(x, y, t), β = β(x, y, t) and ζ = ζ(x, y, t) and taking
$\begin{eqnarray}\begin{array}{rcl}{ \mathcal F } & = & \alpha {{\rm{\Delta }}}_{1}+\beta {{\rm{\Delta }}}_{2}+\zeta {{\rm{\Delta }}}_{3}\\ & = & \alpha \left[{D}_{t}^{\gamma }p+{q}_{{xx}}+{q}_{{yy}}-({p}^{2}q+{q}^{3})+{qv}\right]\\ & & +\beta \left[-{D}_{t}^{\gamma }q+{p}_{{xx}}+{p}_{{yy}}-({p}^{3}+{{pq}}^{2})+{pv}\right]\\ & & +\zeta \left[{v}_{{xx}}+{v}_{{yy}}+2({p}_{x}^{2}+{{pp}}_{{xx}}+{q}_{x}^{2}+{{qq}}_{{xx}})\right],\end{array}\end{eqnarray}$
where ${ \mathcal F }$ is called formal Lagrangian. The action integral of equation (34) is
$\begin{eqnarray}\begin{array}{l}{\int }_{0}^{T}{\int }_{{{\rm{\Omega }}}_{2}}{\int }_{{{\rm{\Omega }}}_{1}}{ \mathcal F }(x,y,t,p,q,v,\alpha ,\beta ,\zeta ,\\ \quad {D}_{t}^{\gamma }p,{p}_{{xx}},{p}_{{yy}},{D}_{t}^{\gamma }q,{q}_{{xx}},{q}_{{yy}},{v}_{{xx}},{v}_{{yy}}){\rm{d}}x{\rm{d}}y{\rm{d}}t,\end{array}\end{eqnarray}$
where (x, y, t) ∈ Ω1 × Ω2 × T. For equation (5), the adjoint equation is
$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Delta }}}_{1}^{* }=\displaystyle \frac{\delta { \mathcal F }}{\delta p}={\left({D}_{t}^{\gamma }\right)}^{* }\alpha -2\alpha {pq}+2{\zeta }_{{xx}}p+{\beta }_{{xx}}+{\beta }_{{yy}}-3\beta {p}^{2}-\beta {q}^{2}+\beta v=0,\\ {{\rm{\Delta }}}_{2}^{* }=\displaystyle \frac{\delta { \mathcal F }}{\delta q}=-{\left({D}_{t}^{\gamma }\right)}^{* }\beta -2\beta {pq}+2{\zeta }_{{xx}}q+{\alpha }_{{xx}}+{\alpha }_{{yy}}-\alpha {p}^{2}-3\alpha {q}^{2}+\alpha v=0,\\ {{\rm{\Delta }}}_{3}^{* }=\displaystyle \frac{\delta { \mathcal F }}{\delta v}=\alpha q+\beta p+{\zeta }_{{xx}}+{\zeta }_{{yy}}=0,\end{array}\right.\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{rcl}\displaystyle \frac{\delta }{\delta p} & = & \displaystyle \frac{\partial }{\partial p}+{\left({D}_{t}^{\gamma }\right)}^{* }\displaystyle \frac{\partial }{\partial ({D}_{t}^{\gamma }p)}+\displaystyle \displaystyle \sum _{n=1}^{\infty }{\left(-1\right)}^{n}{D}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}\displaystyle \frac{\partial }{\partial {p}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}}\\ & = & \displaystyle \frac{\partial }{\partial p}+{\left({D}_{t}^{\gamma }\right)}^{* }\displaystyle \frac{\partial }{\partial ({D}_{t}^{\gamma }p)}-{D}_{x}\displaystyle \frac{\partial }{\partial {p}_{x}}+{D}_{{xx}}\displaystyle \frac{\partial }{\partial {p}_{{xx}}}\\ & & -{D}_{y}\displaystyle \frac{\partial }{\partial {p}_{y}}+{D}_{{yy}}\displaystyle \frac{\partial }{\partial {p}_{{yy}}},\\ \displaystyle \frac{\delta }{\delta q} & = & \displaystyle \frac{\partial }{\partial q}+{\left({D}_{t}^{\gamma }\right)}^{* }\displaystyle \frac{\partial }{\partial ({D}_{t}^{\gamma }q)}+\displaystyle \displaystyle \sum _{n=1}^{\infty }{\left(-1\right)}^{n}{D}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}\displaystyle \frac{\partial }{\partial {q}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}}\\ & = & \displaystyle \frac{\partial }{\partial q}+{\left({D}_{t}^{\gamma }\right)}^{* }\displaystyle \frac{\partial }{\partial ({D}_{t}^{\gamma }q)}-{D}_{x}\displaystyle \frac{\partial }{\partial {q}_{x}}+{D}_{{xx}}\displaystyle \frac{\partial }{\partial {q}_{{xx}}}\\ & & -{D}_{y}\displaystyle \frac{\partial }{\partial {q}_{y}}+{D}_{{yy}}\displaystyle \frac{\partial }{\partial {q}_{{yy}}},\\ \displaystyle \frac{\delta }{\delta v} & = & \displaystyle \frac{\partial }{\partial v}+\displaystyle \displaystyle \sum _{n=1}^{\infty }{\left(-1\right)}^{n}{D}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}\displaystyle \frac{\partial }{\partial {v}_{{i}_{1}{i}_{2}\cdot \cdot \cdot {i}_{n}}}\\ & = & \displaystyle \frac{\partial }{\partial v}-{D}_{x}\displaystyle \frac{\partial }{\partial {v}_{x}}+{D}_{{xx}}\displaystyle \frac{\partial }{\partial {v}_{{xx}}}-{D}_{y}\displaystyle \frac{\partial }{\partial {v}_{y}}+{D}_{{yy}}\displaystyle \frac{\partial }{\partial {v}_{{yy}}},\end{array}\end{eqnarray*}$
and Dx, Dy are denoted as the total derivatives with respect to x, y, respectively. ${\left({D}_{t}^{\gamma }\right)}^{* }={I}_{T}^{n-\gamma }{D}_{t}^{n}$ is the adjoint operator of ${D}_{t}^{\gamma }$, and ${I}_{T}^{n-\gamma }$ is the (nγ)th-order right-hand-sided Riemann-Liouville integral operator, which is presented as
$\begin{eqnarray*}{I}_{T}^{n-\gamma }f(x,y,t)=\displaystyle \frac{{\left(-1\right)}^{n}}{{\rm{\Gamma }}(n-\gamma )}{\int }_{t}^{T}\displaystyle \frac{f(x,y,\xi )}{{\left(\xi -t\right)}^{1+\gamma -n}}{\rm{d}}\xi ,\end{eqnarray*}$
where Γ(γ) is the gamma function. Introducing dependent variables Ξ1, Ξ2, Ξ3 such that
$\begin{eqnarray}\begin{array}{rcl}\alpha & = & \alpha (x,y,t)={{\rm{\Xi }}}_{1}(x,y,t,p,q,v),\\ \beta & = & \beta (x,y,t)={{\rm{\Xi }}}_{2}(x,y,t,p,q,v),\\ \zeta & = & \zeta (x,y,t)={{\rm{\Xi }}}_{3}(x,y,t,p,q,v).\end{array}\end{eqnarray}$
Equation (36) is nonlinear self-adjoint if Ξ1, Ξ2, Ξ3 are not all zeros, and there exists cij(1 ≤ i, j ≤ 3) so that the following equation holds:
$\begin{eqnarray}\left\{\begin{array}{l}\displaystyle \frac{\delta { \mathcal F }}{\delta p}{| }_{\alpha ={{\rm{\Xi }}}_{1},\beta ={{\rm{\Xi }}}_{2},\zeta ={{\rm{\Xi }}}_{3}}={c}_{11}{{\rm{\Delta }}}_{1}+{c}_{12}{{\rm{\Delta }}}_{2}+{c}_{13}{{\rm{\Delta }}}_{3},\\ \displaystyle \frac{\delta { \mathcal F }}{\delta q}{| }_{\alpha ={{\rm{\Xi }}}_{1},\beta ={{\rm{\Xi }}}_{2},\zeta ={{\rm{\Xi }}}_{3}}={c}_{21}{{\rm{\Delta }}}_{1}+{c}_{22}{{\rm{\Delta }}}_{2}+{c}_{23}{{\rm{\Delta }}}_{3},\\ \displaystyle \frac{\delta { \mathcal F }}{\delta v}{| }_{\alpha ={{\rm{\Xi }}}_{1},\beta ={{\rm{\Xi }}}_{2},\zeta ={{\rm{\Xi }}}_{3}}={c}_{31}{{\rm{\Delta }}}_{1}+{c}_{32}{{\rm{\Delta }}}_{2}+{c}_{33}{{\rm{\Delta }}}_{3}.\end{array}\right.\end{eqnarray}$
Combining equations (36), (37) and (38) leads to
$\begin{eqnarray}\left\{\begin{array}{l}{\left({D}_{t}^{\gamma }\right)}^{* }{{\rm{\Xi }}}_{1}-2{{\rm{\Xi }}}_{1}{pq}+2\left[{{\rm{\Xi }}}_{3,{xx}}+2({{\rm{\Xi }}}_{3,{xp}}{p}_{x}+{{\rm{\Xi }}}_{3,{xq}}{q}_{x}+{{\rm{\Xi }}}_{3,{xv}}{v}_{x})\right.\\ +({{\rm{\Xi }}}_{3,{pp}}{p}_{x}^{2}+{{\rm{\Xi }}}_{3,{pq}}{q}_{x}^{2}+{{\rm{\Xi }}}_{3,{vv}}{v}_{x}^{2})+2({{\rm{\Xi }}}_{3,{pq}}{p}_{x}{q}_{x}+{{\rm{\Xi }}}_{3,{pv}}{p}_{x}{v}_{x}+{{\rm{\Xi }}}_{3,{qv}}{q}_{x}{v}_{x})\\ \left.+{{\rm{\Xi }}}_{3,p}{p}_{{xx}}+{{\rm{\Xi }}}_{3,q}{q}_{{xx}}+{{\rm{\Xi }}}_{3,v}{v}_{{xx}}\right]p+\left[{{\rm{\Xi }}}_{2,{xx}}+2({{\rm{\Xi }}}_{2,{xp}}{p}_{x}+{{\rm{\Xi }}}_{2,{xq}}{q}_{x}+{{\rm{\Xi }}}_{2,{xv}}{v}_{x})\right.\\ +({{\rm{\Xi }}}_{2,{pp}}{p}_{x}^{2}+{{\rm{\Xi }}}_{2,{pq}}{q}_{x}^{2}+{{\rm{\Xi }}}_{2,{vv}}{v}_{x}^{2})+2({{\rm{\Xi }}}_{2,{pq}}{p}_{x}{q}_{x}+{{\rm{\Xi }}}_{2,{pv}}{p}_{x}{v}_{x}+{{\rm{\Xi }}}_{2,{qv}}{q}_{x}{v}_{x})\\ \left.+{{\rm{\Xi }}}_{2,p}{p}_{{xx}}+{{\rm{\Xi }}}_{2,q}{q}_{{xx}}+{{\rm{\Xi }}}_{2,v}{v}_{{xx}}\right]+\left[{{\rm{\Xi }}}_{2,{yy}}+2({{\rm{\Xi }}}_{2,{yp}}{p}_{y}+{{\rm{\Xi }}}_{2,{yq}}{q}_{y}+{{\rm{\Xi }}}_{2,{yv}}{v}_{y})\right.\\ +({{\rm{\Xi }}}_{2,{pp}}{p}_{y}^{2}+{{\rm{\Xi }}}_{2,{pq}}{q}_{y}^{2}+{{\rm{\Xi }}}_{2,{vv}}{v}_{y}^{2})+2({{\rm{\Xi }}}_{2,{pq}}{p}_{y}{q}_{y}+{{\rm{\Xi }}}_{2,{pv}}{p}_{y}{v}_{y}+{{\rm{\Xi }}}_{2,{qv}}{q}_{y}{v}_{y})\\ \left.+{{\rm{\Xi }}}_{2,p}{p}_{{yy}}+{{\rm{\Xi }}}_{2,q}{q}_{{yy}}+{{\rm{\Xi }}}_{2,v}{v}_{{yy}}\right]-3{{\rm{\Xi }}}_{2}{p}^{2}-{{\rm{\Xi }}}_{2}{q}^{2}+{{\rm{\Xi }}}_{2}v={c}_{11}{{\rm{\Delta }}}_{1}+{c}_{12}{{\rm{\Delta }}}_{2}+{c}_{13}{{\rm{\Delta }}}_{3},\\ \\ -{\left({D}_{t}^{\gamma }\right)}^{* }{{\rm{\Xi }}}_{2}-2{{\rm{\Xi }}}_{2}{pq}+2\left[{{\rm{\Xi }}}_{3,{xx}}+2({{\rm{\Xi }}}_{3,{xp}}{p}_{x}+{{\rm{\Xi }}}_{3,{xq}}{q}_{x}+{{\rm{\Xi }}}_{3,{xv}}{v}_{x})\right.\\ +({{\rm{\Xi }}}_{3,{pp}}{p}_{x}^{2}+{{\rm{\Xi }}}_{3,{pq}}{q}_{x}^{2}+{{\rm{\Xi }}}_{3,{vv}}{v}_{x}^{2})+2({{\rm{\Xi }}}_{3,{pq}}{p}_{x}{q}_{x}+{{\rm{\Xi }}}_{3,{pv}}{p}_{x}{v}_{x}+{{\rm{\Xi }}}_{3,{qv}}{q}_{x}{v}_{x})\\ \left.+{{\rm{\Xi }}}_{3,p}{p}_{{xx}}+{{\rm{\Xi }}}_{3,q}{q}_{{xx}}+{{\rm{\Xi }}}_{3,v}{v}_{{xx}}\right]q+\left[{{\rm{\Xi }}}_{1,{xx}}+2({{\rm{\Xi }}}_{1,{xp}}{p}_{x}+{{\rm{\Xi }}}_{1,{xq}}{q}_{x}+{{\rm{\Xi }}}_{1,{xv}}{v}_{x})\right.\\ +({{\rm{\Xi }}}_{1,{pp}}{p}_{x}^{2}+{{\rm{\Xi }}}_{1,{pq}}{q}_{x}^{2}+{{\rm{\Xi }}}_{1,{vv}}{v}_{x}^{2})+2({{\rm{\Xi }}}_{1,{pq}}{p}_{x}{q}_{x}+{{\rm{\Xi }}}_{1,{pv}}{p}_{x}{v}_{x}+{{\rm{\Xi }}}_{1,{qv}}{q}_{x}{v}_{x})\\ \left.+{{\rm{\Xi }}}_{1,p}{p}_{{xx}}+{{\rm{\Xi }}}_{1,q}{q}_{{xx}}+{{\rm{\Xi }}}_{1,v}{v}_{{xx}}\right]+\left[{{\rm{\Xi }}}_{1,{yy}}+2({{\rm{\Xi }}}_{1,{yp}}{p}_{y}+{{\rm{\Xi }}}_{1,{yq}}{q}_{y}+{{\rm{\Xi }}}_{1,{yv}}{v}_{y})\right.\\ +({{\rm{\Xi }}}_{1,{pp}}{p}_{y}^{2}+{{\rm{\Xi }}}_{1,{pq}}{q}_{y}^{2}+{{\rm{\Xi }}}_{1,{vv}}{v}_{y}^{2})+2({{\rm{\Xi }}}_{1,{pq}}{p}_{y}{q}_{y}+{{\rm{\Xi }}}_{1,{pv}}{p}_{y}{v}_{y}+{{\rm{\Xi }}}_{1,{qv}}{q}_{y}{v}_{y})\\ \left.+{{\rm{\Xi }}}_{1,p}{p}_{{yy}}+{{\rm{\Xi }}}_{1,q}{q}_{{yy}}+{{\rm{\Xi }}}_{1,v}{v}_{{yy}}\right]-{{\rm{\Xi }}}_{1}{p}^{2}-3{{\rm{\Xi }}}_{1}{q}^{2}+{{\rm{\Xi }}}_{1}v={c}_{21}{{\rm{\Delta }}}_{1}+{c}_{22}{{\rm{\Delta }}}_{2}+{c}_{23}{{\rm{\Delta }}}_{3},\\ \\ {{\rm{\Xi }}}_{1}q+{{\rm{\Xi }}}_{2}p+\left[{{\rm{\Xi }}}_{3,{xx}}+2({{\rm{\Xi }}}_{3,{xp}}{p}_{x}+{{\rm{\Xi }}}_{3,{xq}}{q}_{x}+{{\rm{\Xi }}}_{3,{xv}}{v}_{x})\right.\\ +({{\rm{\Xi }}}_{3,{pp}}{p}_{x}^{2}+{{\rm{\Xi }}}_{3,{pq}}{q}_{x}^{2}+{{\rm{\Xi }}}_{3,{vv}}{v}_{x}^{2})+2({{\rm{\Xi }}}_{3,{pq}}{p}_{x}{q}_{x}+{{\rm{\Xi }}}_{3,{pv}}{p}_{x}{v}_{x}+{{\rm{\Xi }}}_{3,{qv}}{q}_{x}{v}_{x})\\ \left.+{{\rm{\Xi }}}_{3,p}{p}_{{xx}}+{{\rm{\Xi }}}_{3,q}{q}_{{xx}}+{{\rm{\Xi }}}_{3,v}{v}_{{xx}}\right]+\left[{{\rm{\Xi }}}_{3,{yy}}+2({{\rm{\Xi }}}_{3,{yp}}{p}_{y}+{{\rm{\Xi }}}_{3,{yq}}{q}_{y}+{{\rm{\Xi }}}_{3,{yv}}{v}_{y})\right.\\ +({{\rm{\Xi }}}_{3,{pp}}{p}_{y}^{2}+{{\rm{\Xi }}}_{3,{pq}}{q}_{y}^{2}+{{\rm{\Xi }}}_{3,{vv}}{v}_{y}^{2})+2({{\rm{\Xi }}}_{3,{pq}}{p}_{y}{q}_{y}+{{\rm{\Xi }}}_{3,{pv}}{p}_{y}{v}_{y}+{{\rm{\Xi }}}_{3,{qv}}{q}_{y}{v}_{y})\\ \left.+{{\rm{\Xi }}}_{3,p}{p}_{{yy}}+{{\rm{\Xi }}}_{3,q}{q}_{{yy}}+{{\rm{\Xi }}}_{3,v}{v}_{{yy}}\right]={c}_{31}{{\rm{\Delta }}}_{1}+{c}_{32}{{\rm{\Delta }}}_{2}+{c}_{33}{{\rm{\Delta }}}_{3}.\end{array}\right.\end{eqnarray}$
Solving equation (39) results in
$\begin{eqnarray}\left\{\begin{array}{l}{{\rm{\Xi }}}_{1}(x,y,t,p,q,v)=0,\\ {{\rm{\Xi }}}_{2}(x,y,t,p,q,v)=0,\\ {{\rm{\Xi }}}_{3}(x,y,t,p,q,v)=F(t),\\ {c}_{{ij}}=0\quad {\rm{for}}\quad 1\leqslant i,j\leqslant 3.\end{array}\right.\end{eqnarray}$
where F(t) is an arbitrary function of t. Consequently, equation (5) is nonlinear self-adjoint.

5.2. Conservation laws of the time-fractional DS equation

Next, on the basis of the presented results, the conservation vectors and the conservation laws of equation (5) can be constructed.

Taking ${V}^{\bigtriangleup }=({V}^{x},{V}^{y},{V}^{t})$, if ${V}^{\bigtriangleup }$ satisfies the following equation:

$\begin{eqnarray}{D}_{t}({V}^{t})+{D}_{x}({V}^{x})+{D}_{y}({V}^{y}){| }_{(5)}=0,\end{eqnarray}$

then V is called the conservation vector of equation (5), and equation (41) is called the conservation law equation, where Dx, Dy and Dt are denoted as the total derivatives with respect to x, y and t, respectively. By using Noether's theorem and Ibragimov's new conservation theorem, the conserved vector can be obtained as
$\begin{eqnarray}\begin{array}{rcl}{V}^{t} & = & \tau { \mathcal F }+\displaystyle \displaystyle \sum _{i=0}^{n-1}{\left(-1\right)}^{i}{D}_{t}^{\gamma -1-i}({{ \mathcal N }}^{p}){D}_{t}^{i}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }p)}\right]\\ & & -{\left(-1\right)}^{n}{ \mathcal J }\left[{{ \mathcal N }}^{p},{D}_{t}^{n}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }p)}\right)\right]\\ & & +\displaystyle \displaystyle \sum _{i=0}^{n-1}{\left(-1\right)}^{i}{D}_{t}^{\gamma -1-i}({{ \mathcal N }}^{q}){D}_{t}^{i}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }q)}\right]-{\left(-1\right)}^{n}{ \mathcal J }\\ & & \times \left[{{ \mathcal N }}^{q},{D}_{t}^{n}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }q)}\right)\right]\\ & & +\displaystyle \displaystyle \sum _{i=0}^{n-1}{\left(-1\right)}^{i}{D}_{t}^{\gamma -1-i}({{ \mathcal N }}^{v}){D}_{t}^{i}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }v)}\right]-{\left(-1\right)}^{n}{ \mathcal J }\\ & & \times \left[{{ \mathcal N }}^{v},{D}_{t}^{n}(\displaystyle \frac{\partial { \mathcal F }}{\partial ({D}_{t}^{\gamma }v)})\right],\\ {V}^{x} & = & {\lambda }_{1}{ \mathcal F }+{{ \mathcal N }}^{p}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{x}}-{D}_{x}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{{xx}}}\right)\right]+{D}_{x}({{ \mathcal N }}^{p})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{{xx}}}\right)\\ & & +{{ \mathcal N }}^{q}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{x}}-{D}_{x}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{{xx}}}\right)\right]+{D}_{x}({{ \mathcal N }}^{q})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{{xx}}}\right)\\ & & +{{ \mathcal N }}^{v}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{x}}-{D}_{x}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{{xx}}}\right)\right]+{D}_{x}({{ \mathcal N }}^{v})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{{xx}}}\right),\\ {V}^{y} & = & {\lambda }_{2}{ \mathcal F }+{{ \mathcal N }}^{p}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{y}}-{D}_{y}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{{yy}}}\right)\right]+{D}_{y}({{ \mathcal N }}^{p})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {p}_{{yy}}}\right)\\ & & +{{ \mathcal N }}^{q}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{y}}-{D}_{y}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{{yy}}}\right)\right]+{D}_{y}({{ \mathcal N }}^{q})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {q}_{{yy}}}\right)\\ & & +{{ \mathcal N }}^{v}\left[\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{y}}-{D}_{y}\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{{yy}}}\right)\right]+{D}_{y}({{ \mathcal N }}^{v})\left(\displaystyle \frac{\partial { \mathcal F }}{\partial {v}_{{yy}}}\right),\end{array}\end{eqnarray}$
where n = [γ] + 1; ${{ \mathcal N }}^{p}={\phi }_{1}-{\lambda }_{1}{p}_{x}-{\lambda }_{2}{p}_{y}-\tau {p}_{t}$; ${{ \mathcal N }}^{q}={\phi }_{2}-{\lambda }_{1}{q}_{x}-{\lambda }_{2}{q}_{y}-\tau {q}_{t}$; ${{ \mathcal N }}^{v}={\phi }_{3}-{\lambda }_{1}{v}_{x}-{\lambda }_{2}{v}_{y}-\tau {v}_{t}$; and λ1, λ2, $\tau$, φ1, φ2 and φ3 satisfy vector field (symmetry) $V={\lambda }_{1}\tfrac{\partial }{\partial x}+{\lambda }_{2}\tfrac{\partial }{\partial y}+\tau \tfrac{\partial }{\partial t}+{\phi }_{1}\tfrac{\partial }{\partial p}+{\phi }_{2}\tfrac{\partial }{\partial q}+{\phi }_{3}\tfrac{\partial }{\partial v}$ and
$\begin{eqnarray*}{ \mathcal J }({f}_{1},{f}_{2})=\displaystyle \frac{1}{{\rm{\Gamma }}(n-\gamma )}{\int }_{0}^{t}{\int }_{t}^{T}\displaystyle \frac{{f}_{1}(x,y,\xi ){f}_{2}(x,y,\eta )}{{\left(\eta -\xi \right)}^{1+\gamma -n}}{\rm{d}}\eta {\rm{d}}\xi .\end{eqnarray*}$
I: For vector field (symmetry) $V=\gamma x\tfrac{\partial }{\partial x}+\gamma y\tfrac{\partial }{\partial y}+2t\tfrac{\partial }{\partial t}-\gamma p\tfrac{\partial }{\partial p}-\gamma q\tfrac{\partial }{\partial q}-2\gamma v\tfrac{\partial }{\partial v}$,
$\begin{eqnarray*}\left\{\begin{array}{l}{\lambda }_{1}=\gamma x,{\lambda }_{2}=\gamma y,\tau =2t,{\phi }_{1}=-\gamma p,{\phi }_{2}=-\gamma q,{\phi }_{3}=-2\gamma v,\\ {{ \mathcal N }}^{p}=-\gamma p-\gamma {{xp}}_{x}-\gamma {{yp}}_{y}-2{{tp}}_{t},\\ {{ \mathcal N }}^{q}=-\gamma q-\gamma {{xq}}_{x}-\gamma {{yq}}_{y}-2{{tq}}_{t},\\ {{ \mathcal N }}^{v}=-2\gamma v-\gamma {{xv}}_{x}-\gamma {{yv}}_{y}-2{{tv}}_{t}.\end{array}\right.\end{eqnarray*}$
Therefore,
$\begin{eqnarray}\begin{array}{rcl}{V}^{t} & = & 0,\\ {V}^{x} & = & -2{p}_{x}F(\gamma p+\gamma {{xp}}_{x}+\gamma {{yp}}_{y}+2{{tp}}_{t})\\ & & -2{pF}(2\gamma {p}_{x}+\gamma {{xp}}_{{xx}}+\gamma {{yp}}_{{xy}}+2{{tp}}_{{xt}})\\ & & -2{q}_{x}F(\gamma q+\gamma {{xq}}_{x}+\gamma {{yq}}_{y}+2{{tq}}_{t})\\ & & -2{qF}(2\gamma {q}_{x}+\gamma {{xq}}_{{xx}}+\gamma {{yq}}_{{xy}}+2{{tq}}_{{xt}})\\ & & -F(3\gamma {v}_{x}+\gamma {{xv}}_{{xx}}+\gamma {{yv}}_{{xy}}+2{{tv}}_{{xt}}),\\ {V}^{y} & = & -F(3\gamma {v}_{y}+\gamma {{xv}}_{{xy}}+\gamma {{yv}}_{{yy}}+2{{tv}}_{{yt}}).\end{array}\end{eqnarray}$
II: For vector field (symmetry) $V=\tfrac{\partial }{\partial x}$,
$\begin{eqnarray*}\left\{\begin{array}{l}{\lambda }_{1}=1,{\lambda }_{2}=\tau ={\phi }_{1}={\phi }_{2}={\phi }_{3}=0,\\ {{ \mathcal N }}^{p}=-{p}_{x},\\ {{ \mathcal N }}^{q}=-{q}_{x},\\ {{ \mathcal N }}^{v}=-{v}_{x}.\end{array}\right.\end{eqnarray*}$
Therefore,
$\begin{eqnarray}\begin{array}{rcl}{V}^{t} & = & 0,\\ {V}^{x} & = & -F[2({p}_{x}^{2}+{{pp}}_{{xx}}+{q}_{x}^{2}+{{qq}}_{{xx}})+{v}_{{xx}}]={{Fv}}_{{yy}},\\ {V}^{y} & = & -{{Fv}}_{{xy}}.\end{array}\end{eqnarray}$
III: For vector field (symmetry) $V=\tfrac{\partial }{\partial y}$,
$\begin{eqnarray*}\left\{\begin{array}{l}{\lambda }_{1}=\tau ={\phi }_{1}={\phi }_{2}={\phi }_{3}=0,{\lambda }_{2}=1,\\ {{ \mathcal N }}^{p}=-{p}_{y},\\ {{ \mathcal N }}^{q}=-{q}_{y},\\ {{ \mathcal N }}^{v}=-{v}_{y}.\end{array}\right.\end{eqnarray*}$
Therefore,
$\begin{eqnarray}\begin{array}{rcl}{V}^{t} & = & 0,\\ {V}^{x} & = & -F[2({p}_{x}{p}_{y}+{{pp}}_{{xy}}+{q}_{x}{q}_{y}+{{qq}}_{{xy}})+{v}_{{xy}}],\\ {V}^{y} & = & -{{Fv}}_{{yy}}.\end{array}\end{eqnarray}$
IV: For vector field (symmetry) $V=q\tfrac{\partial }{\partial p}-p\tfrac{\partial }{\partial q}$,
$\begin{eqnarray*}\left\{\begin{array}{l}{\lambda }_{1}={\lambda }_{2}=\tau ={\phi }_{3}=0,{\phi }_{1}=q,{\phi }_{2}=-p,\\ {{ \mathcal N }}^{p}=q,\\ {{ \mathcal N }}^{q}=-p,\\ {{ \mathcal N }}^{v}=0.\end{array}\right.\end{eqnarray*}$
Therefore,
$\begin{eqnarray}\begin{array}{rcl}{V}^{t} & = & 0,\\ {V}^{x} & = & 0,\\ {V}^{y} & = & 0.\end{array}\end{eqnarray}$
It is verified that equations (43)-(46) all satisfy equation (41).

6. Traveling wave solutions of the time-fractional DS equation

In this section, the traveling wave solutions of equation (5) can be provided.
For variable transformation
$\begin{eqnarray}T=n\displaystyle \frac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )},\end{eqnarray}$
one has
$\begin{eqnarray}{D}_{t}^{\gamma }=n\displaystyle \frac{\partial }{{\partial }_{T}},\end{eqnarray}$
where n is a nonzero constant. Taking
$\begin{eqnarray}\begin{array}{rcl}p(x,y,t) & = & {p}^{* }(x,y,T)=F(\xi )\cos \mu ,\\ q(x,y,t) & = & {q}^{* }(x,y,T)=F(\xi )\sin \mu ,\\ v(x,y,t) & = & {v}^{* }(x,y,T)=G(\xi ).\end{array}\end{eqnarray}$
where F and G are two real-valued functions, and
$\begin{eqnarray*}\begin{array}{rcl}\xi & = & {k}_{1}x+{k}_{2}y+{k}_{3}T,\\ \mu & = & {k}_{4}x+{k}_{5}y+{k}_{6}T,\end{array}\end{eqnarray*}$
where k1, k2, k3, k4, k5 and k6 are nonzero real-valued constants to be determined. Equation (49) leads to
$\begin{eqnarray}\begin{array}{rcl}{D}_{t}^{\gamma }p & = & {{np}}_{T}=n({k}_{3}{F}^{{\prime} }\cos \mu -{k}_{6}F\sin \mu ),\\ {p}_{x} & = & {k}_{1}{F}^{{\prime} }\cos \mu -{k}_{4}F\sin \mu ,\\ {p}_{{xx}} & = & ({k}_{1}^{2}{F}^{{\prime\prime} }-{k}_{4}^{2}F)\cos \mu -2{k}_{1}{k}_{4}{F}^{{\prime} }\sin \mu ,\\ {p}_{y} & = & {k}_{2}{F}^{{\prime} }\cos \mu -{k}_{5}F\sin \mu ,\\ {p}_{{yy}} & = & ({k}_{2}^{2}{F}^{{\prime\prime} }-{k}_{5}^{2}F)\cos \mu -2{k}_{2}{k}_{5}{F}^{{\prime} }\sin \mu ,\\ {D}_{t}^{\gamma }q & = & {{nq}}_{T}=n({k}_{3}{F}^{{\prime} }\sin \mu +{k}_{6}F\cos \mu ),\\ {q}_{x} & = & {k}_{1}{F}^{{\prime} }\sin \mu +{k}_{4}F\cos \mu ,\\ {q}_{{xx}} & = & ({k}_{1}^{2}{F}^{{\prime\prime} }-{k}_{4}^{2}F)\sin \mu +2{k}_{1}{k}_{4}{F}^{{\prime} }\cos \mu ,\\ {q}_{y} & = & {k}_{2}{F}^{{\prime} }\sin \mu +{k}_{5}F\cos \mu ,\\ {q}_{{yy}} & = & ({k}_{2}^{2}{F}^{{\prime\prime} }-{k}_{5}^{2}F)\sin \mu +2{k}_{2}{k}_{5}{F}^{{\prime} }\cos \mu ,\\ {v}_{x} & = & {k}_{1}{G}^{{\prime} },\quad \quad \quad {v}_{{xx}}={k}_{1}^{2}{G}^{{\prime\prime} },\\ {v}_{y} & = & {k}_{2}{G}^{{\prime} },\quad \quad \quad {v}_{{yy}}={k}_{2}^{2}{G}^{{\prime\prime} },\end{array}\end{eqnarray}$
where the subscripts are denoted as the derivatives with respect to ξ. Substituting equation (50) into equation (5), one obtains
$\begin{eqnarray}\left\{\begin{array}{l}n({k}_{3}{F}^{{\prime} }\cos \mu -{k}_{6}F\sin \mu )+({k}_{1}^{2}{F}^{{\prime\prime} }-{k}_{4}^{2}F)\sin \mu +2{k}_{1}{k}_{4}{F}^{{\prime} }\cos \mu \\ +({k}_{2}^{2}{F}^{{\prime\prime} }-{k}_{5}^{2}F)\sin \mu +2{k}_{2}{k}_{5}{F}^{{\prime} }\cos \mu -{F}^{3}\sin \mu +{FG}\sin \mu =0,\\ -n({k}_{3}{F}^{{\prime} }\sin \mu +{k}_{6}F\cos \mu )+({k}_{1}^{2}{F}^{{\prime\prime} }-{k}_{4}^{2}F)\cos \mu -2{k}_{1}{k}_{4}{F}^{{\prime} }\sin \mu \\ +({k}_{2}^{2}{F}^{{\prime\prime} }-{k}_{5}^{2}F)\cos \mu -2{k}_{2}{k}_{5}{F}^{{\prime} }\sin \mu -{F}^{3}\cos \mu +{FG}\cos \mu =0,\\ ({k}_{1}^{2}+{k}_{2}^{2}){G}^{{\prime\prime} }+{k}_{1}^{2}{\left({F}^{2}\right)}^{{\prime\prime} }=0.\end{array}\right.\end{eqnarray}$
Accordingly,
$\begin{eqnarray}\left\{\begin{array}{l}{{nk}}_{3}{F}^{{\prime} }+2{k}_{1}{k}_{4}{F}^{{\prime} }+2{k}_{2}{k}_{5}{F}^{{\prime} }=0,\\ -{{nk}}_{6}F+({k}_{1}^{2}+{k}_{2}^{2}){F}^{{\prime\prime} }-({k}_{4}^{2}+{k}_{5}^{2})F-{F}^{3}+{FG}=0,\\ ({k}_{1}^{2}+{k}_{2}^{2}){G}^{{\prime\prime} }+{k}_{1}^{2}{\left({F}^{2}\right)}^{{\prime\prime} }=0.\end{array}\right.\end{eqnarray}$
From the third equality of equation (52), one acquires
$\begin{eqnarray}G=-\displaystyle \frac{{k}_{1}^{2}}{{k}_{1}^{2}+{k}_{2}^{2}}{F}^{2}.\end{eqnarray}$
Substituting equation (53) into equation (52) comes
$\begin{eqnarray}\begin{array}{l}({k}_{1}^{2}+{k}_{2}^{2}){F}^{{\prime\prime} }-({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})F\\ \quad -\left(1+\displaystyle \frac{{k}_{1}^{2}}{{k}_{1}^{2}+{k}_{2}^{2}}\right){F}^{3}=0.\end{array}\end{eqnarray}$
Accordingly,
$\begin{eqnarray}\begin{array}{l}({k}_{1}^{2}+{k}_{2}^{2}){F}^{{\prime\prime} }{F}^{{\prime} }-({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2}){{FF}}^{{\prime} }\\ \quad -\left(1+\displaystyle \frac{{k}_{1}^{2}}{{k}_{1}^{2}+{k}_{2}^{2}}\right){F}^{3}{F}^{{\prime} }=0.\end{array}\end{eqnarray}$
Integrating equation (55) with respect to ξ, one obtains
$\begin{eqnarray}({k}_{1}^{2}+{k}_{2}^{2}){\left({F}^{{\prime} }\right)}^{2}=({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2}){F}^{2}+\displaystyle \frac{2{k}_{1}^{2}+{k}_{2}^{2}}{2({k}_{1}^{2}+{k}_{2}^{2})}{F}^{4}.\end{eqnarray}$
Equation (56) derives
$\begin{eqnarray}{F}^{{\prime} }=\displaystyle \frac{F\sqrt{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})+(2{k}_{1}^{2}+{k}_{2}^{2}){F}^{2}}}{\sqrt{2}({k}_{1}^{2}+{k}_{2}^{2})}.\end{eqnarray}$
Solving equation (57), one achieves
$\begin{eqnarray}\begin{array}{l}\xi =\sqrt{2}({k}_{1}^{2}+{k}_{2}^{2})\\ \quad \times \int \displaystyle \frac{{\rm{d}}F}{F\sqrt{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})+(2{k}_{1}^{2}+{k}_{2}^{2}){F}^{2}}},\end{array}\end{eqnarray}$
i.e.
$\begin{eqnarray}\begin{array}{l}{k}_{1}x+{k}_{2}y+{k}_{3}T=\sqrt{2}({k}_{1}^{2}+{k}_{2}^{2})\\ \quad \times \int \displaystyle \frac{{\rm{d}}F}{F\sqrt{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})+(2{k}_{1}^{2}+{k}_{2}^{2}){F}^{2}}}.\end{array}\end{eqnarray}$
Therefore,
$\begin{eqnarray}F=\sqrt{\displaystyle \frac{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})}{2{k}_{1}^{2}+{k}_{2}^{2}}}{\rm{sech}} \displaystyle \frac{{k}_{1}x+{k}_{2}y+{k}_{3}T}{\sqrt{{k}_{1}^{2}+{k}_{2}^{2}}}.\end{eqnarray}$
Finally,
$\begin{eqnarray}\begin{array}{l}p(x,y,t)=F(\xi )\cos \mu \\ \quad =\sqrt{\displaystyle \frac{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})}{2{k}_{1}^{2}+{k}_{2}^{2}}}\\ \quad {\rm{sech}} \displaystyle \frac{{k}_{1}x+{k}_{2}y+{k}_{3}n\tfrac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )}}{\sqrt{{k}_{1}^{2}+{k}_{2}^{2}}}\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\quad \cos \left({k}_{4}x+{k}_{5}y+{k}_{6}n\displaystyle \frac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )}\right),\\ \quad q(x,y,t)=F(\xi )\sin \mu \\ \quad =\sqrt{\displaystyle \frac{2({k}_{1}^{2}+{k}_{2}^{2})({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})}{2{k}_{1}^{2}+{k}_{2}^{2}}}\\ \quad {\rm{sech}} \displaystyle \frac{{k}_{1}x+{k}_{2}y+{k}_{3}n\tfrac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )}}{\sqrt{{k}_{1}^{2}+{k}_{2}^{2}}}\\ \quad \sin \left({k}_{4}x+{k}_{5}y+{k}_{6}n\displaystyle \frac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )}\right),\\ \quad v(x,y,t)=G(\xi )=-\displaystyle \frac{2{k}_{1}^{2}({{nk}}_{6}+{k}_{4}^{2}+{k}_{5}^{2})}{2{k}_{1}^{2}+{k}_{2}^{2}}\\ {{\rm{sech}} }^{2}\displaystyle \frac{{k}_{1}x+{k}_{2}y+{k}_{3}n\tfrac{{t}^{\gamma }}{{\rm{\Gamma }}(1+\gamma )}}{\sqrt{{k}_{1}^{2}+{k}_{2}^{2}}},\end{array}\end{eqnarray}$
where k1, k2, k3, k4, k5 and k6 are nonzero real-valued constants.
Figure 1 shows the traveling wave solutions of p, q and v when the parameter values are taken as $t=2,{k}_{1}={k}_{2}\,={k}_{3}={k}_{4}={k}_{5}={k}_{6}=1,n=1\,\mathrm{and}\,\gamma =\tfrac{1}{2}$. In figure 2, t = 200, and the values of the other parameters are the same as those in figure 1. It can be observed that when the waves of p, q and v propagate, their shapes and amplitudes remain the same. From sectional drawings (b), (d) and (f) in figures 1 and 2, it can be seen that the wave shapes of p, q and v have symmetry properties. It can also be seen that when x → ∞ or y → ∞ , the solutions p → 0, q → 0 and v → 0.
Figure 1. (a) Three-dimensional drawing of the traveling wave solution p, (b) sectional drawing of p, (c) three-dimensional drawing of the traveling wave solution q, (d) sectional drawing of q, (e) three-dimensional drawing of the traveling wave solution v and (f) sectional drawing of v. The parameter values are taken as $t=2,{k}_{1}={k}_{2}={k}_{3}={k}_{4}={k}_{5}={k}_{6}=1,n=1\,\mathrm{and}\,\gamma =\tfrac{1}{2}$.
Figure 2. (a) Three-dimensional drawing of the traveling wave solution p, (b) sectional drawing of p, (c) three-dimensional drawing of the traveling wave solution q, (d) sectional drawing of q, (e) three-dimensional drawing of the traveling wave solution v and (f) sectional drawing of v. The parameter values are taken as $t=200,{k}_{1}={k}_{2}={k}_{3}={k}_{4}={k}_{5}={k}_{6}=1,n=1\,\mathrm{and}\,\gamma =\tfrac{1}{2}$.

7. Conclusions

In this paper, on the basis of the Riemann-Liouville fractional derivative, the time-fractional DS equation was investigated. By making use of the Lie symmetry analysis approach, the Lie point symmetries, symmetry groups, similarity reductions and traveling wave solutions were presented. For the first symmetry, the time-fractional DS equation was converted to a (1+1)-dimensional system of fractional partial differential equations. For the second symmetry, the equation was transformed into a system of fractional ordinary differential equations. Meanwhile, the equation can also be converted to a system of fractional ordinary differential equations in the sense of the Erdélyi-Kober fractional integro-differential operators. By application of Noether's theorem and Ibragimov's new conservation theorem, the conserved vectors and conservation laws were derived. Finally, the traveling wave solutions were deduced. The results profoundly revealed that the Lie symmetry analysis approach can be effectively applied to the theoretical research for NFPDEs. It should also be interesting to see if traveling wave solutions could be similarly determined for nonlocal integrable equations, for example, nonlocal NLS models [67].

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11975143).

Declaration of interest

The authors declare that they have no conflicts of interest.

The authors would like to thank all editors and reviewers for their comments to the improvement of this paper.

1
Benson D A Wheatcraft S W Meerschaert M M 2000 Application of a fractional advection-dispersion equation Water Resour. Res. 36 1403 1412

DOI

2
Yang H W Chen X Guo M Chen Y D 2018 A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property Nonlinear Dyn. 91 2019 2032

DOI

3
Seadawy A R 2014 Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma Comput. Math. Appl. 67 172 180

DOI

4
Zhang R G Yang L G Liu Q S Yin X J 2019 Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography Appl. Math. Comput. 346 666 679

DOI

5
Mulase M 1984 Complete integrability of the Kadomtsev-Petviashvili equation Adv. Math. 54 57 66

DOI

6
Chai J Tian B Wu X Y Liu L 2017 Fusion and fission phenomena for the soliton interactions in a plasma Eur. Phys. J. Plus 132 60

DOI

7
Sindi C T Manafian J 2017 Soliton solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas Eur. Phys. J. Plus 132 67

DOI

8
Feng Y J Gao Y T Yu X 2018 Soliton dynamics for a nonintegrable model of light-colloid interactive fluids Nonlinear Dyn. 91 29 38

DOI

9
Helal M A 2002 Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics Chaos Solit. Fractals 13 1917 1929

DOI

10
Wang S F 2022 Novel multi-soliton solutions in (2+1)-dimensional PT-symmetric couplers with varying coefficients Optik 252 168495

DOI

11
Wang M L Zhang J L Liu Z G Li E Q 2022 Soliton-like solutions of general variable coefficient (2+1)-dimensional KdV equation with linear damping term Appl. Math. Lett. 129 107929

DOI

12
Wang M L Zhou Y B Li Z B 1996 Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics Phys. Lett. A 216 67 75

DOI

13
Fan E G 2000 Two new applications of the homogeneous balance method Phys. Lett. A 265 353 357

DOI

14
Ablowitz M J Kaup D J Newell A C Segur H 1974 The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249 315

DOI

15
Ji J L Zhu Z N 2017 Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform J. Math. Anal. Appl. 453 973 984

DOI

16
Geng X G Chen M M Wang K D 2019 Long-time asymptotics of the coupled modified Korteweg-de Vries equation J. Geom. Phys. 142 151 167

DOI

17
Zhang X E Chen Y 2019 Inverse scattering transformation for generalized nonlinear Schrödinger equation Appl. Math. Lett. 98 306 313

DOI

18
Ma W X Huang Y H Wang F D 2020 Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies Stud. Appl. Math. 145 563 585

DOI

19
Chen J C Ma Z Y Hu Y H 2018 Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation J. Math. Anal. Appl. 460 987 1003

DOI

20
Zhai Y Y Ji T Geng X G 2021 Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber Appl. Math. Comput. 411 126551

DOI

21
Sun H Q Zhu Z N 2022 Darboux transformation and soliton solutions of the spatial discrete coupled complex short pulse equation Physica D 436 133312

DOI

22
Geng X G Li Y H Wei J Zhai Y Y 2021 Darboux transformation of a two-component generalized Sasa-Satsuma equation and explicit solutions Math. Methods Appl. Sci. 44 12727 12745

DOI

23
Li J Xia T C 2022 Darboux transformation to the nonlocal complex short pulse equation Appl. Math. Lett. 126 107809

DOI

24
Li R M Geng X G Xue B 2019 Darboux transformations for a matrix long-wave-short-wave equation and higher-order rational rogue-wave solutions Math. Methods Appl. Sci. 43 948 967

DOI

25
Ma W X 2015 Lump solutions to the Kadomtsev-Petviashvili equation Phys. Lett. A 379 1975 1978

DOI

26
Wang Y H 2021 Nonautonomous lump solutions for a variable-coefficient Kadomtsev-Petviashvili equation Appl. Math. Lett. 119 107201

DOI

27
Ma W X Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms J. Differ. Equ. 264 2633 2059

DOI

28
Fang T Wang Y H 2018 Interaction solutions for a dimensionally reduced Hirota bilinear equation Comput. Math. Appl. 76 1476 1485

DOI

29
Ma W X 2018 Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs J. Geom. Phys. 133 10 16

DOI

30
Li Q Chaolu T Wang Y H 2019 Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation Comput. Math. Appl. 77 2077 2085

DOI

31
Liu W H Zhang Y F 2019 Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation Appl. Math. Lett. 98 184 190

DOI

32
Qin C Y Tian S F Wang X B Zhang T T Li J 2018 Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation Comput. Math. Appl. 75 4221 4231

DOI

33
Peng W Q Tian S F Zhang T T Fang Y 2019 Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation Math. Methods Appl. Sci. 42 6865 6877

DOI

34
Ma W X 2022 Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies Physica D 430 133078

DOI

35
Yang J J Tian S F Li Z Q 2022 Riemann-Hilbert method and multi-soliton solutions of an extended modified Korteweg-de Vries equation with N distinct arbitrary-order poles J. Math. Anal. Appl. 511 126103

DOI

36
Ma W X 2018 Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system J. Geom. Phys. 132 45 54

DOI

37
Yang J J Tian S F Li Z Q 2022 Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions Physica D 432 133162

DOI

38
Ma W X 2022 Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions J. Geom. Phys. 177 104522

DOI

39
Peng W Q Tian S F Wang X B Zhang T T Fang Y 2019 Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations J. Geom. Phys. 146 103508

DOI

40
Bilmana D Buckingham R Wang D S 2021 Far-field asymptotics for multiple-pole solitons in the large-order limit J. Differ. Equ. 297 320 369

DOI

41
Tian S F 2017 Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method J. Differ. Equ. 262 506 558

DOI

42
Wang D S Zhu X D 2022 Long-time asymptotics of the good Boussinesq equation with qxx-term and its modified version J. Math. Phys. 63 123501

DOI

43
Li J Xia T C 2021 N-soliton solutions for the nonlocal Fokas-Lenells equation via RHP Appl. Math. Lett. 113 106850

DOI

44
Wang H Wang Y H 2017 CRE solvability and soliton-cnoidal wave interaction solutions of the dissipative (2+1)-dimensional AKNS equation Appl. Math. Lett. 69 161 167

DOI

45
Xin X P Liu H Z Zhang L L Wang Z G 2019 High order nonlocal symmetries and exact interaction solutions of the variable coefficient KdV equation Appl. Math. Lett. 88 132 140

DOI

46
Wang Y H Wang H 2017 Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-Schiff equation Nonlinear Dyn. 89 235 241

DOI

47
Xin X P Liu Y T Liu X Q 2016 Nonlocal symmetries, exact solutions and conservation laws of the coupled Hirota equations Appl. Math. Lett. 55 63 71

DOI

48
Wang Y H Wang H 2018 A coupled KdV system: consistent tanh expansion, soliton-cnoidal wave solutions and nonlocal symmetries Chin. J. Phys. 56 598 604

DOI

49
Hu X R Li Y Q 2016 Nonlocal symmetry and soliton-cnoidal wave solutions of the Bogoyavlenskii coupled KdV system Appl. Math. Lett. 51 20 26

DOI

50
Zhang Y F Mei J Q Guan H Y 2020 A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries J. Geom. Phys. 147 103538

DOI

51
Sahoo S Garai G Saha Ray S 2017 Lie symmetry analysis for similarity reduction and exact solutions of modified KdV-Zakharov-Kuznetsov equation Nonlinear Dyn. 87 1995 2000

DOI

52
Kumar S Kumar D 2019 Solitary wave solutions of (3+1)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach Comput. Math. Appl. 77 2096 2113

DOI

53
Liu M S Li X Y Zhao Q L 2019 Exact solutions to Euler equation and Navier-Stokes equation Z. Angew. Math. Phys. 70 43

DOI

54
Lu H H Zhang Y F 2021 New symmetries, group-invariant solutions, linear differential constraints of a generalized Burgers-KdV equation and its reduction J. Mod. Phys. B 35 2150031

DOI

55
Wang D S Yin Y B 2016 Symmetry analysis and reductions of the two-dimensional generalized Benney system via geometric approach Comput. Math. Appl. 71 748 757

DOI

56
Osman M S Baleanu D Adem A R Hosseini K Mirzazadeh M Eslami M 2020 Double-wave solutions and Lie symmetry analysis to the (2+1)-dimensional coupled Burgers equations Chin. J. Phys. 63 122 129

DOI

57
Wang D S Xu L Xuan Z X 2022 The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation J. Nonlinear Sci. 32 3

DOI

58
Liu J Wang D S Yin Y B 2017 Lie symmetry analysis of the inhomogeneous Toda lattice equation via semi-discrete exterior calculus Commun. Theor. Phys. 67 643 647

DOI

59
Kumar S Jadaun V Ma W X 2021 Application of the Lie symmetry approach to an extended Jimbo-Miwa equation in (3+1) dimensions Eur. Phys. J. Plus 136 843

DOI

60
Sahoo S Saha Ray S 2018 The conservation laws with Lie symmetry analysis for time fractional integrable coupled KdV-mKdV system Int. J. Non-Linear Mech. 98 114 121

DOI

61
Najafi R Bahrami F Hashemi M S 2017 Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations Nonlinear Dyn. 87 1785 1796

DOI

62
Liu J G Yang X J Feng Y Y Cui P 2020 On group analysis of the time fractional extended (2+1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas Math. Comput. Simul. 178 407 421

DOI

63
Wei G M Lu Y L Xie Y Q Zheng W X 2018 Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation Comput. Math. Appl. 75 3420 3430

DOI

64
Ibragimov N H 2007 A new conservation theorem J. Math. Anal. Appl. 333 311 328

DOI

65
Ibragimov N H Avdonina E D 2013 Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws Russ. Math. Surv. 68 111 146

DOI

66
Ma W X 2018 Conservation laws by symmetries and adjoint symmetries Discrete Contin. Dyn. Syst. Ser. S 11 707 721

DOI

67
Ma W X 2022 Reduced non-local integrable NLS hierarchies by pairs of local and non-local constraints Int. J. Appl. Comput. Math. 8 206

DOI

Outlines

/