i | (i)Linear PTP: linear φ and $\mathrm{tr}[\phi (X)]=1\ \mathrm{for}\ \mathrm{all}\ X;$ |
ii | (ii)NINO: linear φ and $\mathrm{tr}[\phi (X)]\ne 1\ \mathrm{for}\ \mathrm{some}\ X;$ |
iii | (iii)State-dependent PTP: nonlinear φ and $\mathrm{tr}[\phi (X)]\,=1\ \mathrm{for}\ \mathrm{all}\ X;$ |
iv | (iv)General normalized PTP: nonlinear φ and $\mathrm{tr}[\phi (X)]\ne 1\ \mathrm{for}\ \mathrm{some}\ X$. |
1. PSD cone
Figure 1. Extended state space of a qubit. On the left, the subspace with fixed trace is shown as a green circle, but it is really a Bloch ball with radius $\tau$. |
2. Linear and NINO channels
Table 1. Jump operators used in this paper. The σ1, σ2, σ3 are Pauli matrices. The $m\in {\mathbb{R}}$ are constants determining mean jump frequencies, which we assume to be individually controllable. |
α | Bα | ${B}_{\alpha }^{\dagger }{B}_{\alpha }$ | ${B}_{\alpha }{B}_{\alpha }^{\dagger }$ | ξα | Gα | Cα |
---|---|---|---|---|---|---|
0 | m(σ2 + iσ3) | 2m2(I2 − σ1) | 2m2(I2 + σ1) | m(0, 0, 1, i) | ${m}^{2}\left(\begin{array}{ccc}-2 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right)$ | ${m}^{2}\left(\begin{array}{c}2\\ 0\\ 0\end{array}\right)$ |
1 | m(σ1 + σ2) | 2m2I2 | 2m2I2 | m(0, 1, 1, 0) | ${m}^{2}\left(\begin{array}{ccc}0 & 2 & 0\\ 2 & 0 & 0\\ 0 & 0 & -2\end{array}\right)$ | 0 |
2 | m(I2 + σ3) | 2m2(I2 + σ3) | 2m2(I2 + σ3) | m(1, 0, 0, 1) | ${m}^{2}\left(\begin{array}{ccc}0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 2\end{array}\right)$ | ${m}^{2}\left(\begin{array}{c}0\\ 0\\ 2\end{array}\right)$ |
3 | mσ3 | m2I2 | m2I2 | m(0, 0, 0, 1) | ${m}^{2}\left(\begin{array}{ccc}-1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1\end{array}\right)$ | 0 |