1. Introduction
2. CCRSP scheme with three senders
Table 1. The relation between the partial measurement results $({M}_{{A}_{2}}$, ${M}_{{A}_{3}},{M}_{C})$ of three participants and recovery unitary operations $({R}_{{A}_{1}}{R}_{{A}_{2}}{R}_{{A}_{3}})$ when ${M}_{{A}_{1}}$ is $| {\eta }_{00}^{1}\rangle $. |
${M}_{{A}_{2}}$ | ${M}_{{A}_{3}}$ | MC | ${R}_{{A}_{1}}{R}_{{A}_{2}}{R}_{{A}_{3}}$ | MC | ${R}_{{A}_{1}}{R}_{{A}_{2}}{R}_{{A}_{3}}$ |
---|---|---|---|---|---|
$| {\eta }_{00}^{2}\rangle $ | $| {\eta }_{00}^{3}\rangle $ | ∣0〉 | I6I2I4 | ∣1〉 | Z6Z2Z4 |
$| {\eta }_{00}^{2}\rangle $ | $| {\eta }_{10}^{3}\rangle $ | ∣0〉 | Y6I2I4 | ∣1〉 | X6Z2Z4 |
$| {\eta }_{00}^{2}\rangle $ | $| {\eta }_{01}^{3}\rangle $ | ∣0〉 | Z6I2I4 | ∣1〉 | I6Z2Z4 |
$| {\eta }_{00}^{2}\rangle $ | $| {\eta }_{11}^{3}\rangle $ | ∣0〉 | X6I2I4 | ∣1〉 | Y6Z2Z4 |
| |||||
$| {\eta }_{10}^{2}\rangle $ | $| {\eta }_{00}^{3}\rangle $ | ∣0〉 | I6I2Y4 | ∣1〉 | Z6Z2X4 |
$| {\eta }_{10}^{2}\rangle $ | $| {\eta }_{10}^{3}\rangle $ | ∣0〉 | Y6I2Y4 | ∣1〉 | X6Z2X4 |
$| {\eta }_{10}^{2}\rangle $ | $| {\eta }_{01}^{3}\rangle $ | ∣0〉 | Z6I2Y4 | ∣1〉 | I6Z2X4 |
$| {\eta }_{10}^{2}\rangle $ | $| {\eta }_{11}^{3}\rangle $ | ∣0〉 | X6I2Y4 | ∣1〉 | Y6Z2X4 |
| |||||
$| {\eta }_{01}^{2}\rangle $ | $| {\eta }_{00}^{3}\rangle $ | ∣0〉 | I6I2Z4 | ∣1〉 | Z6Z2I4 |
$| {\eta }_{01}^{2}\rangle $ | $| {\eta }_{10}^{3}\rangle $ | ∣0〉 | Y6I2Z4 | ∣1〉 | X6Z2I4 |
$| {\eta }_{01}^{2}\rangle $ | $| {\eta }_{01}^{3}\rangle $ | ∣0〉 | Z6I2Z4 | ∣1〉 | I6Z2I4 |
$| {\eta }_{01}^{2}\rangle $ | $| {\eta }_{11}^{3}\rangle $ | ∣0〉 | X6I2Z4 | ∣1〉 | Y6Z2I4 |
| |||||
$| {\eta }_{11}^{2}\rangle $ | $| {\eta }_{00}^{3}\rangle $ | ∣0〉 | I6I2X4 | ∣1〉 | Z6Z2Y4 |
$| {\eta }_{11}^{2}\rangle $ | $| {\eta }_{10}^{3}\rangle $ | ∣0〉 | Y6I2X4 | ∣1〉 | X6Z2Y4 |
$| {\eta }_{11}^{2}\rangle $ | $| {\eta }_{01}^{3}\rangle $ | ∣0〉 | Z6I2X4 | ∣1〉 | I6Z2Y4 |
$| {\eta }_{11}^{2}\rangle $ | $| {\eta }_{11}^{3}\rangle $ | ∣0〉 | X6I2X4 | ∣1〉 | Y6Z2Y4 |
3. CCRSP scheme with multiple senders
4. Discussions and comparisons
Table 2. Comparison with previous protocols (n = 6). |
5. The CCRSP scheme subjects to noisy environment
5.1. Density operator representation of the CCRSP scheme
5.2. Five types of quantum noises
5.3. The output state and fidelity in a noisy environment
5.4. Analysis
Figure 1. The plot of the function between fidelity and noise parameter λ. |
Table 3. The fidelities in five types of noisy environment when the cyclically prepared state is $\tfrac{1}{\sqrt{2}}(| 0\rangle +| 1\rangle )\otimes \tfrac{1}{\sqrt{2}}(| 0\rangle \,+| 1\rangle )\otimes \tfrac{1}{\sqrt{2}}(| 0\rangle +| 1\rangle )$. |
Noise | The fidelity F* |
---|---|
Bit-flip | 1 |
Phase-flip or Bit-phase flip | $\tfrac{{\lambda }^{6}+{\widetilde{\lambda }}^{6}}{{\left(2{\lambda }^{2}-2\lambda +1\right)}^{3}}$ |
Phase-damping | $\tfrac{4{\widetilde{\lambda }}^{6}+\tfrac{1}{8}{\lambda }^{6}+\tfrac{3}{2}{\lambda }^{2}{\widetilde{\lambda }}^{4}+\tfrac{1}{8}{\lambda }^{4}{\widetilde{\lambda }}^{2}}{{\lambda }^{6}+4{\widetilde{\lambda }}^{6}+6{\lambda }^{2}{\widetilde{\lambda }}^{4}+3{\lambda }^{4}{\widetilde{\lambda }}^{2}}$ |
Amplitude- damping | $\tfrac{{\lambda }^{6}+{\left(2-\lambda \right)}^{6}+3{\lambda }^{2}{\widetilde{\lambda }}^{4}\,+\,3{\lambda }^{4}{\widetilde{\lambda }}^{2}}{8[{\lambda }^{6}+3{\lambda }^{2}{\widetilde{\lambda }}^{4}+3{\lambda }^{4}{\widetilde{\lambda }}^{2}+{\left({\lambda }^{2}-2\lambda +2\right)}^{3}]}$ |