Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Fermions dynamic equation with Lorentz invariance violation and the corrected Hawking temperature in arbitrarily accelerating black hole*

  • Xia Tan , 1, ** ,
  • Jie Zhang 1 ,
  • Ran Li 2 ,
  • Shu-Zheng Yang 2
Expand
  • 1College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
  • 2College of Physics and Astronomy, China West Normal University, Nanchong 637002, China

**Author to whom any correspondence should be addressed.

Received date: 2023-04-09

  Revised date: 2023-08-09

  Accepted date: 2023-08-09

  Online published: 2023-09-29

Supported by

*National Natural Science Foundation of China under Grant(U2031121)

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Containing Lorentz invariance violation (LIV), a new form of the fermions dynamic equation under the background of the curved space-time of the arbitrarily accelerating black hole, is studied. Firstly, we consider the new form of the fermions dynamic equation with arbitrary spin containing LIV in curved space-time, and research the fermions dynamic equation with spin $-\tfrac{1}{2}$ containing LIV. On this basis, according to the semi-classical theory and black hole quantum tunneling radiation theory, the quantum tunneling radiation of the arbitrarily accelerating Kinnersly black hole is modified correctly, and the corrected physical quantities such as black hole temperature and quantum tunneling rate are deeply discussed. The fermions dynamic equation with arbitrary spin in the arbitrarily accelerating black hole space-time and its solution are explained in detail. In order to further obtain the correction effect of the Planck scale, this article considers beyond the semi-classical theory and further obtains new expressions of the black hole temperature and tunneling radiation rate.

Cite this article

Xia Tan , Jie Zhang , Ran Li , Shu-Zheng Yang . Fermions dynamic equation with Lorentz invariance violation and the corrected Hawking temperature in arbitrarily accelerating black hole*[J]. Communications in Theoretical Physics, 2023 , 75(11) : 115402 . DOI: 10.1088/1572-9494/acee5a

1. Introduction

Black holes are a very important research object of astrophysics. In the gravitational theory, the study of black holes is divided into astronomical observation and black hole physics. The new progress in astronomical observation is that LIGO detected the gravitational wave generated by the merger of two black holes in 2016 and the photo of the M87 black hole obtained by the Event Horizon Telescope in 2021. These observations not only prove the existence of black holes but also promote people's research on black holes. In the research of black holes, Hawking proved that under the quantum effect, black holes produce radiation, which is called Hawking radiation [1]. Therefore, people have done a series of research on all kinds of black hole radiation. The quantum tunneling theory is used to explain the Hawking radiation of a black hole, that is, there are a large number of virtual particles in the event horizon of a black hole, particles pass through the event horizon by the quantum tunneling effect and change into real particles to form Hawking radiation [213]. However, the correct study of Hawking radiation of black holes with the real quantum tunneling radiation theory is carried out through the research method proposed by Kraus and others [14, 15]. This research result is a meaningful correction of the Hawking thermal radiation spectrum [1623]. On the basis of this research work, people have carried out a series of studies on the quantum tunneling radiation of black holes. In the process of further research, people use the semi-classical method to study the quantum tunneling radiation of black holes [2430]. Yang and Lin researched the dynamic equations of bosons and fermions in curved space-time by using the semi-classical theory, and proved that the dynamic equations of bosons and fermions are unified in the study of quantum tunneling radiation. Hamilton–Jacobi equation in curved space-time can be applied to the study of tunneling radiation of various black holes [3134]. This is of great significance for the study of quantum tunneling radiation of black holes.
The development of physics is a process of continuous development and innovation. For the four forces in the Universe, researchers have been trying to establish a grand unification theory. However, because it can not be renormalized, it inspires researchers to study the theory of quantum gravity. So far, Einstein–Aether's quantum gravity and other gravitational theories have been studied one after another. According to the research on the theory of quantum gravity, Lorentz invariance violation (LIV) will appear in the field of high energy. Both general relativity and quantum field theory are based on Lorentz dispersion relation. Therefore, it is very important to study the dynamic equations of bosons and fermions and their related quantum tunneling radiation by LIV in curved space-time. The dynamic equations of bosons and fermions in the curved space-time of black holes are modified in reference [3133, 3543], and some meaningful studies on the quantum tunneling radiation of black holes are carried out by solving these equations. The purpose of this paper is to make a more accurate correction to the fermions tunneling radiation of arbitrarily accelerating black holes. Firstly, the universal dynamic equation with spin $-\tfrac{1}{2}$ in arbitrarily accelerating black holes is explained in detail. Secondly, the important characteristic physical quantities such as Hawking temperature and black hole entropy of arbitrarily accelerating black holes are accurately corrected. Thirdly, we aim to explain the application of arbitrary spin fermions with spin $-\tfrac{3}{2}$,⋯. The second section below considers the correct correction of the fermions dynamic equation of spin $-\tfrac{1}{2}$ in the arbitrarily accelerating black hole by LIV. The third section is the study of quantum tunneling radiation of arbitrarily accelerating Kinnersly black hole. The last section below is the discussion and explanation for the research methods and results in this paper.

2. A new form of fermions dynamic equation containing LIV and the semi-classical theory in curved space-time of the arbitrarily accelerating black hole

Lorentz dispersion relation is a basic physical relation in general relativity and quantum field theory. However, the study of quantum gravity theory shows that in the case of high energy field, the Lorentz dispersion relationship needs to be modified in the Planck scale. Therefore, considering the LIV theory, the correction of the dispersion relationship is expressed as [4446]
$\begin{eqnarray}{{p}_{0}}^{2\,}={p}^{2}+{m}^{2}-{\left({{Lp}}_{0}\right)}^{\alpha }{p}^{\alpha },\end{eqnarray}$
where p0 is particle energy, p is particle momentum, and L is minimal length, which is of the order of the Plank length ${L}_{p}={M}_{p}^{-1}$. For α = 2 in the equation (2.1), the Dirac equation describing spin $-\tfrac{1}{2}$ in flat space-time is
$\begin{eqnarray}\left({\bar{\gamma }}^{\mu }{\partial }_{\mu }+\displaystyle \frac{m}{{\hslash }}-{\rm{i}}L{\bar{\gamma }}^{t}{\partial }_{t}{\bar{\gamma }}^{j}{\partial }_{j}\right)\psi =0.\end{eqnarray}$
The term added to this equation violates Lorentz invariance, so Lorentz invariance is broken. We can think equation (2.2) as an effective wave equation with LIV introducing preferred frame effects. For fermions with spin $-\tfrac{3}{2}$, spin $-\tfrac{5}{2}$⋯, it should be described by the Rarita–Schwinge equation. And it means that for fermions with arbitrary spin, the generalized equation (2.2) becomes
$\begin{eqnarray}\left({\bar{\gamma }}^{\mu }{\partial }_{\mu }+\displaystyle \frac{m}{{\hslash }}-{\rm{i}}L{\bar{\gamma }}^{t}{\partial }_{t}{\bar{\gamma }}^{j}{\partial }_{j}\right){\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0,\end{eqnarray}$
and the following conditions must be met,
$\begin{eqnarray}{\bar{\gamma }}^{\mu }{\psi }_{\mu {\alpha }_{2\cdots }{\alpha }_{k}}={\partial }_{\mu }{{\psi }^{\mu }}_{{\alpha }_{2\cdots }{\alpha }_{k}}={{\psi }^{\mu }}_{\mu {\alpha }_{3\cdots }{\alpha }_{k}}=0.\end{eqnarray}$
As can be seen from equations (2.4) and (2.3), for $k\,=0,{\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=\psi ,$ equation (2.3) degenerates to equation (2.4). For k = 1, equation (2.4) becomes ∂μψμ, and equation (2.3) degenerates to a fermions dynamic equation with spin $-\tfrac{1}{2}$. The correction term of equation (2.3) is a small correction on the quantum scale. Therefore, it can be considered as the coupling constant σ ≪ 1, and σ is a dimensionless real number. Thus, equation (2.3) can be rewritten as
$\begin{eqnarray}\left({\bar{\gamma }}^{\mu }{\partial }_{\mu }+\displaystyle \frac{m}{{\hslash }}-{\rm{i}}\sigma {\hslash }{\bar{\gamma }}^{t}{\partial }_{t}{\bar{\gamma }}^{j}{\partial }_{j}\right){\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0.\end{eqnarray}$
According to general relativity and Riemannian geometry, we can extend equation (2.5) to the arbitrarily accelerating black hole space-time. It is noted that the derivative calculation of flat space-time should become a covariant derivative in curved space-time. Therefore, in general, non-stationary curved space-time, containing LIV, the fermions dynamic equation with any spin is
$\begin{eqnarray}\left({\gamma }^{\mu }{D}_{\mu }+\displaystyle \frac{m}{{\hslash }}-{\rm{i}}\sigma {\hslash }{\gamma }^{v}{D}_{v}{\gamma }^{j}{D}_{j}\right){\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0,\end{eqnarray}$
where j = 1, 2, 3. The condition of this equation is
$\begin{eqnarray}{\gamma }^{\mu }{\psi }_{\mu {\alpha }_{2\cdots }{\alpha }_{k}}={D}_{\mu }{{\psi }^{\mu }}_{{\alpha }_{2\cdots }{\alpha }_{k}}={{\psi }^{\mu }}_{\mu {\alpha }_{3\cdots }{\alpha }_{k}}=0,\end{eqnarray}$
where γμ is the gamma matrix in general curved space-time, which is defined γμ = gμνγν. There are four matrices corresponding to gamma matrix γμ, namely γ0, γ1, γ2, γ3. γμ and gμν satisfy the following relations [47]
$\begin{eqnarray}{\gamma }^{\mu }{\gamma }^{\nu }+{\gamma }^{\nu }{\gamma }^{\mu }=2{g}^{\mu \nu }I.\end{eqnarray}$
Here I is the identity matrix. Dμ in equations (2.6) and (2.7) is defined as
$\begin{eqnarray}{D}_{\mu }={\partial }_{\mu }+\displaystyle \frac{{\rm{i}}}{{\hslash }}{{eA}}_{\mu }+\displaystyle \frac{{\rm{i}}}{2}{{\rm{\Gamma }}}_{\mu }^{\alpha \beta }{{\rm{\Pi }}}_{\alpha \beta },\end{eqnarray}$
and
$\begin{eqnarray}{{\rm{\Pi }}}_{\alpha \beta }=\displaystyle \frac{{\rm{i}}}{4}\left[{\gamma }^{\alpha },{\gamma }^{\beta }\right]={\rm{i}}{\tilde{{\rm{\Pi }}}}_{\alpha \beta },\end{eqnarray}$
$\tfrac{{\rm{i}}}{2}{{\rm{\Gamma }}}_{\mu }^{\alpha \beta }{{\rm{\Pi }}}_{\alpha \beta }={{\rm{\Omega }}}_{\mu }$ in equation (2.9) is a spin connection term, which will be nonzero in curved space-time. We can construct γμ according to different types of curved space-time, and then study the solution method of equation (2.6). By solving equation (2.6) in the arbitrarily accelerating black hole space-time, the modified correction in the case of LIV is made for the physical quantities such as fermions tunneling rate and Hawking temperature. According to the semi-classical Wentzel–Kramers–Brillouin (WKB) theory, the probability of tunneling at the event horizon of arbitrarily accelerating black holes is related to the particle action S. Therefore, we can rewrite the fermion wave function of any spin as
$\begin{eqnarray}{\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}={\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}{{\rm{e}}}^{\tfrac{{\rm{i}}}{\hslash }{\boldsymbol{s}}},\end{eqnarray}$
where ${\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}$ is a column matrix. By substituting equations (2.11) into (2.6), we can get a matrix equation. Before obtaining the matrix equation, it should be noted that for arbitrarily accelerating black holes in curved space-time, the advanced Eddington coordinate v is used to represent its dynamic characteristics. Therefore, the metric in the arbitrarily accelerating black hole space-time gμν is a function of v, r, θ, φ. Here v corresponds to the time coordinate. The particle action S in equation (2.11) should be $S\left(v,r,\theta ,\varphi \right)$, therefore, equation (2.11) is substituted into the following dynamic equation
$\begin{eqnarray}\left({\gamma }^{\mu }{D}_{\mu }+\displaystyle \frac{m}{{\hslash }}-{\rm{i}}\sigma {\hslash }{\gamma }^{v}{D}_{v}{\gamma }^{j}{D}_{j}\right){\psi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0.\end{eqnarray}$
The following matrix equation is obtained
$\begin{eqnarray}\begin{array}{l}\left[{\rm{i}}{\gamma }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)+m\right.\\ \quad +\,{\rm{i}}\sigma {\gamma }^{v}{\gamma }^{j}\left({\partial }_{v}S+{{eA}}_{v}\right)\left({\partial }_{j}S+{{eA}}_{j}\right)\\ \quad \left.-\,\displaystyle \frac{{\hslash }}{2}\left(\overline{{\rm{\Gamma }}}+\sigma \tilde{{\rm{\Gamma }}}\right)\right]{\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\overline{{\rm{\Gamma }}}={\gamma }^{\mu }{{\rm{\Gamma }}}_{\mu }^{\alpha \beta }{\tilde{{\rm{\Pi }}}}_{\alpha \beta },\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\tilde{{\rm{\Gamma }}}={\gamma }^{v}{\gamma }^{j}\left[\left({\partial }_{v}S+{{eA}}_{v}\right){{\rm{\Gamma }}}_{j}^{\alpha \beta }{\tilde{{\rm{\Pi }}}}_{\alpha \beta }\right.\\ \quad \left.+\,\left({\partial }_{j}S+{{eA}}_{j}\right){{\rm{\Gamma }}}_{\nu }^{\alpha \beta }{\tilde{{\rm{\Pi }}}}_{\alpha \beta }\right].\end{array}\end{eqnarray}$
In order to solve the matrix equation (2.13), we need to make
$\begin{eqnarray}\begin{array}{rcl}{\eta }^{\mu } & = & \left[1-{\rm{i}}\sigma \left({\partial }_{v}S+{{eA}}_{v}\right){\gamma }^{v}-{\rm{i}}\sigma \left({\partial }_{j}S+{{eA}}_{j}\right){\gamma }^{j}\right]{\gamma }^{\mu }\\ & = & {\gamma }^{\mu }-{\rm{i}}\sigma \left[\left({\partial }_{v}S+{{eA}}_{v}\right){\gamma }^{v}+\left({\partial }_{j}S+{{eA}}_{j}\right){\gamma }^{j}\right]{\gamma }^{\mu }.\end{array}\end{eqnarray}$
So here is
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{\eta }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)={\rm{i}}{\gamma }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\\ \quad +\,\sigma \left[\left({\partial }_{v}S+{{eA}}_{v}\right){\gamma }^{v}+\left({\partial }_{j}S+{{eA}}_{j}\right){\gamma }^{j}\right]\\ \quad {\gamma }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right).\end{array}\end{eqnarray}$
Substitute equation (2.17) into matrix equation (2.13), we can obtain
$\begin{eqnarray}\begin{array}{l}\left\{{\rm{i}}{\eta }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\right.\\ \quad -\,\sigma \left[\left({\partial }_{v}S+{{eA}}_{v}\right){\gamma }^{v}+\left({\partial }_{j}S+{{eA}}_{j}\right){\gamma }^{j}\right]\\ \quad {\gamma }^{\mu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)+m-\displaystyle \frac{{\hslash }}{2}\left(\overline{{\rm{\Gamma }}}+\sigma \tilde{{\rm{\Gamma }}}\right)\\ \quad \left.+\,{\rm{i}}\sigma {g}^{{vj}}\left({\partial }_{v}S+{{eA}}_{v}\right)\left({\partial }_{j}S+{{eA}}_{j}\right)\right\}\\ \quad {\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0.\end{array}\end{eqnarray}$
Multiplying both sides of the equation with ${\rm{i}}{\eta }^{\nu }\left({\partial }_{\nu }S+{{eA}}_{\nu }\right)$, and using the relationship between gamma matrix γμ and γν in equation (2.8), we can get
$\begin{eqnarray}\begin{array}{l}\left\{{g}^{\mu \nu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\left({\partial }_{\nu }S+{{eA}}_{\nu }\right)\right.\\ \quad +\,2\sigma m\left[\left({\partial }_{v}S+{{eA}}_{v}\right){g}^{v\mu }+\left({\partial }_{j}S+{{eA}}_{j}\right){g}^{j\mu }\right]\\ \quad \left.\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)+{m}^{2}-m{\hslash }\overline{{\rm{\Gamma }}}-{\rm{i}}2\sigma {y}_{0}\right\}{\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{y}_{0} & = & {g}^{{vj}}\left({\partial }_{v}S+{{eA}}_{v}\right)\left({\partial }_{j}S+{{eA}}_{j}\right)\left(m-\displaystyle \frac{{\hslash }}{2}\overline{{\rm{\Gamma }}}\right)\\ & & +\left({\partial }_{\rho }S+{{eA}}_{\rho }\right){\gamma }^{\rho }{g}^{\mu \nu }\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\left({\partial }_{\nu }S+{{eA}}_{\nu }\right).\end{array}\end{eqnarray}$
From this equation, it can be seen that the particularity of the term containing imaginary unit i is that the expression of ν, j and μ, after changing positions remains unchanged. It can be obtained from equation (2.19)
$\begin{eqnarray}\begin{array}{l}\left\{{g}^{\mu \nu }\left(1+2\sigma m\right)\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\left({\partial }_{\nu }S+{{eA}}_{\nu }\right)\right.\\ \quad \left.+\,{m}^{2}-m{\hslash }\overline{{\rm{\Gamma }}}-i2\sigma {y}_{0}\right\}{\xi }_{{\alpha }_{1\cdots }{\alpha }_{k}}=0.\end{array}\end{eqnarray}$
This is the fermions dynamic equation with arbitrary spin derived from the arbitrarily accelerating black hole space-time. For the sake of clarity, for fermions with spin $-\tfrac{1}{2}$, and $\psi =\xi {{\rm{e}}}^{\tfrac{{\rm{i}}}{{\hslash }}{\bf{s}}}$, there is
$\begin{eqnarray}\xi =\left(\begin{array}{c}A\\ B\end{array}\right).\end{eqnarray}$
This is a matrix equation of 2 × 1, for fermions with spin $-\tfrac{3}{2}$, there is
$\begin{eqnarray}{\xi }_{\lambda }=\left(\begin{array}{c}{A}_{\lambda }\\ {B}_{\lambda }\end{array}\right),\end{eqnarray}$
where ${A}_{\lambda }={\left(\begin{array}{cc}{a}_{\lambda } & {c}_{\lambda }\end{array}\right)}^{{\rm{T}}m},{B}_{\lambda }={\left(\begin{array}{cc}{b}_{\lambda } & {d}_{\lambda }\end{array}\right)}^{{\rm{T}}m}$.aλ, bλ, cλ and dλ represent the corresponding matrix respectively. Therefore, the matrix equation (2.21) is an eigenmatrix equation. The condition for the solution of this eigenmatrix equation is that the value of the determinant corresponding to its matrix must be zero. Therefore, the modified dynamic fermions equation by the action S is expressed as
$\begin{eqnarray}{g}^{\mu \nu }\left(1+2\sigma m\right)\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\left({\partial }_{\nu }S+{{eA}}_{\nu }\right)+{m}^{2}-m{\hslash }\overline{{\rm{\Gamma }}}=0.\end{eqnarray}$
In the process of obtaining this equation, 2, σ2, σ is ignored. In the semi-classical situation, $S\left(v,r,\theta ,\varphi \right)$ can be obtained without considering the term. If we want to make a more accurate correction of quantum properties, we need to consider the term in equation (2.24), and we can conduct more in-depth research by adopting the way beyond semi-classical theory. From equation (2.24), for a special class of arbitrarily accelerating black holes, gvv = g00 = 0, Starting from equation (2.24), the quantum tunneling radiation can still be corrected. According to the specific arbitrarily accelerating black hole space-time metric gμν or gμν, we can make necessary corrections to the black hole temperature and tunneling radiation rate from equation (2.24).

3. Correction of quantum tunneling radiation of the arbitrarily accelerating Kinnersly black hole

The fermions dynamic equation with any spin of mass m and charge e is shown in equation (2.24). In the different arbitrarily accelerating black hole space-time, the method of solving equation (2.24) is different. For an arbitrarily accelerating Kinnersly black hole, the curved space-time line element representing the dynamic characteristics with the advanced Eddington–Finkelstein coordinate v is expressed as [48]
$\begin{eqnarray}\begin{array}{rcl}{\rm{d}}{s}^{2} & = & {g}_{00}{\rm{d}}{v}^{2}-2{\rm{d}}v{\rm{d}}r-2{r}^{2}f{\rm{d}}v{\rm{d}}\theta \\ & & -2{r}^{2}G{\sin }^{2}\theta {\rm{d}}v{\rm{d}}\phi -{r}^{2}{\rm{d}}{\theta }^{2}-{r}^{2}{\sin }^{2}\theta {\rm{d}}{\varphi }^{2},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{g}_{00} & = & {g}_{{vv}}=1-2M\left(v\right){r}^{-1}\\ & & -2a\left(v\right)r\cos \theta -{r}^{2}{f}^{2}-{G}^{2}{r}^{2}{\sin }^{2}\theta ,\\ f & = & -a\left(v\right)\sin \theta +b\left(v\right)\sin \phi +c\left(v\right)\cos \varphi ,\\ G & = & {ctg}\theta \left[b\left(v\right)\cos \varphi -c\left(v\right)\sin \varphi \right],\end{array}\end{eqnarray}$
where $a\left(\upsilon \right)$ is the acceleration value and its direction always pointing towards the north pole. $b\left(\upsilon \right)$, $c\left(\upsilon \right)$ represents the change rate in the direction. It can be seen from equations (3.1) and (3.2) that the determinant of curved space-time metric and the non-zero inverse metric tensor are
$\begin{eqnarray}g=-{r}^{4}{\sin }^{2}\theta \end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{g}^{01} & = & {g}^{{vr}}={g}^{{rv}}=-1,\\ {g}^{22} & = & {g}^{\theta \theta }=-\displaystyle \frac{1}{{r}^{2}},\\ {g}^{12} & = & {g}^{r\theta }={g}^{\theta r}=-f,\\ {g}^{33} & = & {g}^{\varphi \varphi }=-\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta },\\ {g}^{11} & = & {g}^{{rr}}=-1+\displaystyle \frac{2M}{r}+2a\left(v\right)\cos \theta \\ & = & -\left(1-\displaystyle \frac{2M}{r}-2a\left(v\right)\cos \theta \right)=-{\tilde{g}}^{11},\\ {g}^{13} & = & {g}^{r\varphi }={g}^{\varphi r}=G,\end{array}\end{eqnarray}$
where gvv = g00 = 0. Ignoring the term in equation (2.24), we can get the following semi-classical equation
$\begin{eqnarray}{g}^{\mu \nu }\left(1+2\sigma m\right)\left({\partial }_{\mu }S+{{eA}}_{\mu }\right)\left({\partial }_{\nu }S+{{eA}}_{\nu }\right)+{m}^{2}=0,\end{eqnarray}$
where m can be the mass of fermion with spin $-\tfrac{1}{2}$, or the mass of fermion with spin $-\tfrac{3}{2},\cdots $. The e in equation (3.5) is the charge of fermion. Since the arbitrarily accelerating black hole represented by (3.1) is not charged, so Aμ = 0 in equation (3.5). For the convenience of narration, we let ${m}_{\tfrac{1}{2}}=m$, which denotes the fermion quality with spin $-\tfrac{1}{2}.$ Then, according to equations (3.4), (3.5) is simplified to
$\begin{eqnarray}\begin{array}{l}\left(1+2\sigma m\right){g}^{11}{\left({\partial }_{v}S\right)}^{2}\\ \quad -\,2\left(1+2\sigma m\right)\left({\partial }_{v}S{\partial }_{r}S+f{\partial }_{r}S{\partial }_{\theta }S-G{\partial }_{r}S{\partial }_{\varphi }S\right)\\ \quad -\,\left(1+2\sigma m\right)\left[\displaystyle \frac{1}{{r}^{2}}{\left({\partial }_{\theta }S\right)}^{2}+\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta }{\left({\partial }_{\varphi }S\right)}^{2}\right]+{m}^{2}=0.\end{array}\end{eqnarray}$
In order to solve this equation, we must make the following generalized tortoise coordinate transformation for equation (3.6) [12]
$\begin{eqnarray}\begin{array}{rcl}{r}_{* } & = & r-\displaystyle \frac{1}{2k}\mathrm{ln}\displaystyle \frac{r-{r}_{H}\left(v,\theta ,\varphi \right)}{{\tilde{r}}_{H}\left({v}_{0},{\theta }_{0},{\varphi }_{0}\right)},\\ {v}_{* } & = & v-{v}_{0},\\ {\theta }_{* } & = & \theta -{\theta }_{0},\\ {\varphi }_{* } & = & \varphi -{\varphi }_{0}.\end{array}\end{eqnarray}$
From this transformation, several partial derivatives closely related to equation (3.6) can be obtained, and the operations are as follows
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial }{\partial r} & = & \displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial }{\partial {r}_{* }},\\ \displaystyle \frac{\partial }{\partial v} & = & \displaystyle \frac{\partial }{\partial {v}_{* }}+\displaystyle \frac{{r}_{H,v}}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial }{\partial {r}_{* }},\\ \displaystyle \frac{\partial }{\partial \theta } & = & \displaystyle \frac{\partial }{\partial {\theta }_{* }}+\displaystyle \frac{{r}_{H,\theta }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial }{\partial {r}_{* }},\\ \displaystyle \frac{\partial }{\partial \varphi } & = & \displaystyle \frac{\partial }{\partial {\varphi }_{* }}+\displaystyle \frac{{r}_{H,\varphi }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial }{\partial {r}_{* }},\end{array}\end{eqnarray}$
where the advanced Eddington coordinate is v = t + r*. Bring equations (3.8) into (3.6), we can get
$\begin{eqnarray}\begin{array}{l}\left(1+2\sigma m\right){\tilde{g}}^{11}{\left[\displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\right]}^{2}{\left(\displaystyle \frac{\partial S}{\partial {r}_{* }}\right)}^{2}+2\left(1+2\sigma m\right)\\ \quad \times \ \{\left[\displaystyle \frac{\partial S}{\partial {v}_{* }}+\displaystyle \frac{{r}_{H,v}}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\left[\displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\\ \quad +\,f\left[\displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\left[\displaystyle \frac{\partial S}{\partial {\theta }_{* }}+\displaystyle \frac{{r}_{H,\theta }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\\ \quad \left.-\,G\left[\displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\left[\displaystyle \frac{\partial S}{\partial {\varphi }_{* }}+\displaystyle \frac{{r}_{H,\varphi }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]\right\}\\ \quad +\,\left(1+2\sigma m\right)\\ \quad \times \,\left\{\displaystyle \frac{1}{{r}^{2}}{\left[\displaystyle \frac{\partial S}{\partial {\theta }_{* }}+\displaystyle \frac{{r}_{H,\theta }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]}^{2}\right.\\ \quad \left.+\,\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta }{\left[\displaystyle \frac{\partial S}{\partial {\varphi }_{* }}+\displaystyle \frac{{r}_{H,\varphi }}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial S}{\partial {r}_{* }}\right]}^{2}\right\}-{m}^{2}=0.\end{array}\end{eqnarray}$
In this equation ${r}_{H}={r}_{H}\left(v,r,\theta ,\varphi \right)$ is the event horizon of the black hole, and rH is determined by the following null hypersurface equation, that is
$\begin{eqnarray}{g}^{\mu \nu }\displaystyle \frac{\partial F}{\partial {x}^{\mu }}\displaystyle \frac{\partial F}{\partial {x}^{\nu }}=0.\end{eqnarray}$
As a hypersurface equation $F=F\left(v,r,\theta ,\varphi \right)$ or $r\,=\,r\left(v,\theta ,\varphi \right)$, from equations (3.4)–(3.10), we can get the following equation
$\begin{eqnarray}\begin{array}{l}{\tilde{g}}^{11}+2{r}_{H,v}+2{{fr}}_{H,\theta }-2{{Gr}}_{H,\varphi }\\ \quad +\displaystyle \frac{1}{{r}^{2}}{\left({r}_{H,\theta }\right)}^{2}+\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta }{\left({r}_{H,\varphi }\right)}^{2}=0.\end{array}\end{eqnarray}$
This is the specific form of the equation satisfied by the event horizon rH of the arbitrarily accelerating black hole. In order to solve equation (3.9), we treat the left edge of equation (3.9) as a combined congener and consider the case when rrH, $\left[1-2k\left(r-{r}_{H}\right)\right]{| }_{r\to {r}_{H}}=1$ and $2k\left(r-{r}_{H}\right){| }_{r\to {r}_{H}}=0$, then equation (3.9) is rewritten as
$\begin{eqnarray}\begin{array}{l}{\left(\displaystyle \frac{\partial S}{\partial {r}_{* }}\right)}^{2}{\left[2k\left(r-{r}_{H}\right)\right]}^{-1}{| }_{r\to {r}_{H}}\\ \quad \left(1+2\sigma m\right)[{\tilde{g}}^{11}+2{r}_{H,v}+2{{fr}}_{H,\theta }-2{{Gr}}_{H,\varphi }\\ \quad +\left.\displaystyle \frac{1}{{r}^{2}}{\left({r}_{H,\theta }\right)}^{2}+\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta }{\left({r}_{H,\varphi }\right)}^{2}\right]{| }_{r\to {r}_{H}}\\ \quad +2\left(1+2\sigma m\right)\displaystyle \frac{\partial S}{\partial {v}_{* }}\displaystyle \frac{\partial S}{\partial {r}_{* }}+2\left(1+2\sigma m\right)\\ \quad \times \ \displaystyle \frac{\partial S}{\partial {r}_{* }}\left[\left(f\displaystyle \frac{\partial S}{\partial {\theta }_{* }}-G\displaystyle \frac{\partial S}{\partial {\varphi }_{* }}\right)\right.\\ \quad \left.+\,{r}_{H}^{-2}\left(\displaystyle \frac{\partial S}{\partial {\theta }_{* }}+{\sin }^{-2}\theta {r}_{H,\varphi }\displaystyle \frac{\partial S}{\partial {\varphi }_{* }}\right)\right]{| }_{r\to {r}_{H}}=0.\end{array}\end{eqnarray}$
Considering that the tunneling radiation will cause the event horizon of the black hole to shrink in fact, rH will become rHϵ, here ϵ ≪ 1. Therefore, there is a small required item in equation (3.11) which can be expressed as
$\begin{eqnarray}\begin{array}{l}{\tilde{g}}^{11}({r}_{H})+2{r}_{H,v}+2{{fr}}_{H,\theta }-2{{Gr}}_{H,\varphi }\\ \quad +\displaystyle \frac{1}{{{r}_{H}}^{2}}{\left({r}_{H,\theta }\right)}^{2}+\displaystyle \frac{1}{{{r}_{H}}^{2}{\sin }^{2}\theta }{\left({r}_{H,\varphi }\right)}^{2}+Y\left(\varepsilon \right)=0,\end{array}\end{eqnarray}$
where $Y\left(\varepsilon \right)$ is a small correction term. Obviously, in equation (3.12), the coefficient of the term of ${\left(\tfrac{\partial S}{\partial {r}_{* }}\right)}^{2}$ has $\tfrac{0}{0}$ type. Therefore, the following limit holds
$\begin{eqnarray}\begin{array}{l}\mathop{\mathrm{lim}}\limits_{r\to {r}_{H}}\displaystyle \frac{\left(1+2\sigma m\right)}{2k\left(r-{r}_{H}\right)}\\ \quad \times \left[{\tilde{g}}^{11}+2{r}_{H,v}+2{{fr}}_{H,\theta }-2{{Gr}}_{H,\varphi }\right.\\ \quad \left.+\displaystyle \frac{1}{{r}^{2}}{\left({r}_{H,\theta }\right)}^{2}+\displaystyle \frac{1}{{r}^{2}{\sin }^{2}\theta }{\left({r}_{H,\varphi }\right)}^{2}\right]=1,\end{array}\end{eqnarray}$
and we presume
$\begin{eqnarray}\displaystyle \frac{\partial S}{\partial {v}_{* }}=-\omega ,\end{eqnarray}$
$\begin{eqnarray}{\omega }_{0}={{fp}}_{\theta }-{{Gp}}_{\varphi }+{{r}_{H}}^{2}\left({p}_{\theta }+{\sin }^{-2}\theta {r}_{H,\varphi }{p}_{\varphi }\right).\end{eqnarray}$
Equation (3.12) becomes
$\begin{eqnarray}{\left(\displaystyle \frac{\partial S}{\partial {r}_{* }}\right)}^{2}-2\left(\omega -{\omega }_{0}\right)\displaystyle \frac{\partial S}{\partial {r}_{* }}=0,\end{eqnarray}$
where ω is the radiant energy, ω0 is related to the chemical potential and is often directly related to the maximum energy of non-thermal radiation [13]. pθ and pφ are the components of the generalized momentum of the radiating particles in the θ and φ direction, respectively. Available from equation (3.17), it can be obtained
$\begin{eqnarray}\displaystyle \frac{\partial {S}_{\pm }}{\partial {r}_{* }}=\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right).\end{eqnarray}$
It can also be seen from equation (3.8)
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial {S}_{\pm }}{\partial r} & = & \displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\displaystyle \frac{\partial {S}_{\pm }}{\partial {r}_{* }}\\ & = & \displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\left[\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right)\right].\end{array}\end{eqnarray}$
For rrH, the integral is obtained by the residue theorem
$\begin{eqnarray}{S}_{\pm }=\displaystyle \frac{{\rm{i}}\pi }{2k}\left[\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right)\right].\end{eqnarray}$
Here, k is the same as k in equation (3.14), and k needs to be calculated from equation (3.14). By applying L' Hospital' rule to equation (3.14) to find the limit, we can get
$\begin{eqnarray}k=\left(1+2\sigma m\right)\displaystyle \frac{1}{{{r}_{H}}^{2}}\left[M-\displaystyle \frac{1}{{r}_{H}}{\left({r}_{H,\theta }\right)}^{2}-\displaystyle \frac{1}{{r}_{H}{\sin }^{2}\theta }{\left({r}_{H,\varphi }\right)}^{2}\right]\end{eqnarray}$
Therefore, by ignoring the higher order term of σ, the particle action S± can be expressed as
$\begin{eqnarray}\begin{array}{rcl}{S}_{\pm } & = & \pm {\rm{i}}\pi \displaystyle \frac{\left(1-2\sigma m\right){{r}_{H}}^{2}\left(\omega -{\omega }_{0}\right)}{M-\tfrac{({{r}_{H,\theta })}^{2}}{{r}_{H}}-\tfrac{({{r}_{H,\varphi )}}^{2}}{{r}_{H}{\sin }^{2}\theta }}\\ & = & \pm {\rm{i}}\pi \left(1-2\sigma m\right){{r}_{H}}^{2}\left(\omega -{\omega }_{0}\right)/\left\{{r}_{H}-M\right.\\ & & -2{r}_{H}a\left(\upsilon \right)\cos \theta +2{r}_{H}{r}_{H,v}\\ & & \left.+2{{fr}}_{H}{r}_{H,\theta }-2{{Gr}}_{H}{r}_{H,\varphi }\right\}.\end{array}\end{eqnarray}$
According to the WKB theory and quantum tunneling radiation theory, we get the tunneling rate of this black hole at the event horizon rH, which is
$\begin{eqnarray}{\rm{\Gamma }}\sim \exp \left(-2\mathrm{Im}{S}_{\pm }\right)=\exp \left(-\frac{\omega -{\omega }_{0}}{{T}_{H}}\right),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{T}_{H} & = & \displaystyle \frac{1-2\sigma m}{2\pi {{r}_{H}}^{2}}\left\{{r}_{H}-M-2{r}_{H}a\left(\upsilon \right)\cos \theta \right.\\ & & \left.+2{r}_{H}{r}_{H,v}+2{{fr}}_{H}{r}_{H,\theta }-2{{Gr}}_{H}{r}_{H,\varphi }\right\}.\end{array}\end{eqnarray}$
TH is the Hawking temperature at the event horizon of this black hole. According to equation (3.24), TH is related to $a\left(v\right)$, $b\left(v\right)$, $c\left(v\right)$ and v, θ, φ, and $\tfrac{\partial {r}_{H}}{\partial v},\tfrac{\partial {r}_{H}}{\partial \theta },\tfrac{\partial {r}_{H}}{\partial \varphi }$, still has the correction term σ of LIV theory. Equation (3.24) is a new expression of Hawking temperature of Kinnersly black hole with arbitrary acceleration. For tunneling radiation with spin $-\tfrac{3}{2}$, spin $-\tfrac{5}{2},\cdots ,$ the new expressions of the corresponding quantum tunneling rate and Hawking temperature are shown in equations (3.23) and (3.24).
The above formula (2.24) is a transformation formula. From this, we can get the fermions dynamic equation with spin 1/2 after LIV correction. The above results are obtained by using the semi-classical theory. In order to reflect the higher-order quantum effect, according to equation (3.18), there are
$\begin{eqnarray}{E}_{0}=\omega -{\omega }_{0},\end{eqnarray}$
$\begin{eqnarray}{S}^{\pm }={{S}_{0}}^{\pm }={S}_{0}.\end{eqnarray}$
So after considering the ℏ perturbation, we can rewrite the energy and action of the tunneling particle as [49, 50]
$\begin{eqnarray}E={E}_{0}+\displaystyle \sum _{i}{{\hslash }}^{i}{E}_{i},\end{eqnarray}$
$\begin{eqnarray}S={S}_{0}+\displaystyle \sum _{i}{{\hslash }}^{i}{S}_{i}.\end{eqnarray}$
By (3.27), (3.28) and (3.17), we can rewrite equation (3.17) as
$\begin{eqnarray}{\left(\displaystyle \frac{\partial {S}_{0}}{\partial {r}_{* }}\right)}^{2}-2{E}_{0}\displaystyle \frac{\partial {S}_{0}}{\partial {r}_{* }}=0.\end{eqnarray}$
It can be concluded that
$\begin{eqnarray}\displaystyle \frac{\partial {{S}_{0}}^{\pm }}{\partial {r}_{* }}=\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right),\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial {{S}_{0}}^{\pm }}{\partial r} & = & \displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\left[\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right)\right]\\ & = & \displaystyle \frac{1-2k\left(r-{r}_{H}\right)}{2k\left(r-{r}_{H}\right)}\left({E}_{0}\pm {E}_{0}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}{{S}_{0}}^{\pm }=\displaystyle \frac{{\rm{i}}\pi }{2k}\left[\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right)\right]=\displaystyle \frac{{\rm{i}}\pi }{2k}\left({E}_{0}\pm {E}_{0}\right).\end{eqnarray}$
Equation (3.30) corresponds to the semi-classical result, that is, the result corresponding to 0. For 1, equation (3.29) should be
$\begin{eqnarray}{\left[\displaystyle \frac{\partial \left({S}_{0}+{\hslash }{S}_{1}\right)}{\partial {r}_{* }}\right]}^{2}-2\left({E}_{0}+{\hslash }{E}_{1}\right)\displaystyle \frac{\partial \left({S}_{0}+{\hslash }{S}_{1}\right)}{\partial {r}_{* }}=0.\end{eqnarray}$
Using equation (3.29) and ignoring the ℏ2 term, equation (3.33) can be simplified, and by the same token, here are
$\begin{eqnarray}\begin{array}{l}{{\hslash }}^{2}\,:\,{\left(\displaystyle \frac{\partial {S}_{2}}{\partial {r}_{* }}\right)}^{2}-2{E}_{2}\displaystyle \frac{\partial {S}_{2}}{\partial {r}_{* }}=0,\\ {{\hslash }}^{3}\,:\,{\left(\displaystyle \frac{\partial {S}_{3}}{\partial {r}_{* }}\right)}^{2}-2{E}_{3}\displaystyle \frac{\partial {S}_{3}}{\partial {r}_{* }}=0,\\ \vdots \cdots \end{array}\end{eqnarray}$
Obviously, the equations about S1, S2, S3, ⋯ are not independent, and they are intrinsically related to the S0 equation. There are proportional coefficients between these particle actions
$\begin{eqnarray}\displaystyle \frac{{S}_{i+1}}{{S}_{i}}={\alpha }_{i}.\end{eqnarray}$
So, considering ℏ, we can get the particle action with quantum correction meaning as
$\begin{eqnarray}S={S}_{0}+{{\hslash }}^{1}{S}_{1}+{{\hslash }}^{2}{S}_{2}+\cdots ={S}_{0}\left(1+\displaystyle \sum _{i}{{\hslash }}^{i}{\alpha }_{i}\right).\end{eqnarray}$
By substituting equation (3.33), we can get
$\begin{eqnarray}\begin{array}{rcl}{S}^{\pm } & = & {S}_{0}^{\pm }\left(1+\displaystyle \sum _{i}{{\hslash }}^{i}{\alpha }_{i}\right)\\ & = & \displaystyle \frac{i\pi }{2k}\left(1+\displaystyle \sum _{i}{{\hslash }}^{i}{\alpha }_{i}\right)\left[\left(\omega -{\omega }_{0}\right)\pm \left(\omega -{\omega }_{0}\right)\right].\end{array}\end{eqnarray}$
So we get that the tunneling rate and temperature of the black hole beyond the semi-classical theory are
$\begin{eqnarray}{{\rm{\Gamma }}}^{{\prime} }\unicode{x00303}\exp \left(-2\mathrm{Im}{S}_{\pm }\right)=\exp \left(-\frac{\omega -{\omega }_{0}}{{T}_{H}^{\mbox{'}}}\right)\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{T}_{H}^{{\prime} } & = & \displaystyle \frac{1-2\sigma m}{2\pi {r}_{H}^{2}}\left(1+\displaystyle \sum _{i}{{\hslash }}^{i}{\alpha }_{i}\right)\left\{{r}_{H}-M-2{r}_{H}a\left(\upsilon \right)\cos \theta \right.\\ & & \left.+2{r}_{H}{r}_{H,v}+2{{fr}}_{H}{r}_{H,\theta }-2{{Gr}}_{H}{r}_{H,\varphi }\right\}.\end{array}\end{eqnarray}$
So the tunneling radiation of this kind of black hole will be corrected more accurately by using the way beyond semi-classical theory. From 1, 2, ⋯ , it reflected the impact. It should be further explained that for a specific black hole space-time metric, we can construct a specific gamma matrix γμ. From equation (2.8), it can be seen that γμ has an inevitable connection with the contravariant metric tensor gμν. Therefore, the fermions dynamic equation (2.24) containing γμ has an inevitable connection through WKB theory with action S. Equation (2.24) is a new form of the fermions dynamic equation.

4. Discussion

${T}_{H}^{{\prime} }$ is a new and more accurate expression of the black hole. For ${T}_{H}^{{\prime} }$ and ${{\rm{\Gamma }}}^{{\prime} }$, arbitrarily accelerating black holes, Vaidya black holes and other special cases are included in the following equation. In the special case of $a\left(v\right)\,=0,b\left(v\right)=0,c\left(v\right)=0$, according to equation (3.23) and equation (3.24), we can get the tunneling rate ΓV and the relative Hawking temperature TVH of the Vaidya black hole after LIV correction, respectively
$\begin{eqnarray}{{\rm{\Gamma }}}_{V}=\exp \left(-\displaystyle \frac{\omega }{{T}_{{VH}}}\right)\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}{T}_{{VH}} & = & \displaystyle \frac{1-2\sigma {\rm{m}}}{2\pi {{r}_{{VH}}}^{2}}\left({r}_{{VH}}-{\rm{M}}\right)\\ & = & \displaystyle \frac{(1-2\sigma {\rm{m}})M}{2\pi {{r}_{{VH}}}^{2}}\left(1-\displaystyle \frac{2{r}_{{VH}}{\dot{r}}_{{VH}}}{M}\right),\end{array}\end{eqnarray}$
where TVH is the Hawking temperature of Vaidya black hole and ${\dot{{\rm{r}}}}_{\mathrm{VH}}=\tfrac{\partial {{\rm{r}}}_{{VH}}}{\partial v}$. If the items σ and ℏ are ignored, the equation (4.2) will degenerate to ${T}_{{SH}}=\tfrac{1}{8\pi M}$, which is consistent with the known results. Obviously, according to equations (3.39) and (3.38), this is the more accurate physical tunneling rate and Hawking temperature of the black hole. Black hole entropy is an important physical quantity in the process of black hole evolution. The correction of the Hawking temperature ${T}_{H}^{{\prime} }$ of the arbitrarily accelerating black hole will inevitably lead to the correction of black hole entropy. If we use ${S}_{{BH}}^{{\prime} }$ to represent the Bekenstein–Hawking entropy of the arbitrarily accelerating Kinnersly black hole and use $\bigtriangleup {S}_{{BH}}^{{\prime} }$ to represent the entropy change of the black hole, then the tunneling rate ${{\rm{\Gamma }}}^{{\prime} }$ can be expressed as
$\begin{eqnarray}{{\rm{\Gamma }}}^{{\prime} }\sim {{\rm{e}}}^{\bigtriangleup {S}_{{BH}}^{{\prime} }}.\end{eqnarray}$
If in the above process of correcting the Hawking temperature of this black hole, we ignore the in equation (2.24), the meaningful results of the above equations can be obtained in the semi-classical theory. If the in equation (2.24) is not ignored, then, we need to consider the perturbation effect of the .
1
Hawking S W 1974 Black hole explosions? Nature 248 30

DOI

2
Damour T Ruffini R 1976 Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism Phys. Rev. D 14 332

DOI

3
Sannan S 1988 Heuristic derivation of the probability distributions of particles emitted by a black hole Gen. Rel. Grav 20 239

DOI

4
Unruh W G 1976 Notes on black-hole evaporation Phys. Rev. D 14 870

DOI

5
Zhao Z Gui Y X 1994 The connection between Unruh scheme and Damour–Ruffini scheme in Rindler space-time and ηξ space-time Il Nuovo Cimento B 109 355 361

DOI

6
Zhao Z Dai X X 1991 Hawking radiation from a non-static black hole Chin. Phys. Lett. 8 548

DOI

7
Li Z H Zhao Z 1994 Hawking effect of Vaidya black hole in higher dimensional space-time Chin. Phys. Lett. 11 8

DOI

8
Zhu J Y Bao A D 1995 Rindler effect for a nonuniformly accelerating observer Inter. J. Theor. Phys. 34 2049

DOI

9
Jing J L 1998 Entropy of the quantum scalar field in static black holes Inter. J. Theor. Phys. 37 1441

DOI

10
Wenbiao L Zheng Z 2000 Entropy of the Dirac field in a Kerr–Newman black hole Phys. Rev. D 61 063003

DOI

11
Xiang L Zheng Z 2000 Entropy of a Vaidya black hole Phys. Rev. D 62 104001

DOI

12
Yang S Z Zhu J Y Zheng Z 1995 The dependence of Hawking thermal spectrum on angular variables Acta Phys. Sin. (Overseas Edn) 4 147

DOI

13
Yang S Z Zheng Z 1995 Non-thermal radiations of a type of non-stationary black hole Acta. Phys. Sin. 44 498

14
Kraus P Wilczek F 1995 Self-interaction correction to black hole radiance Nucl. Phys. B 433 403

DOI

15
Parikh M K Wilczek F 2000 Hawking radiation as tunneling Phys. Rev. Lett. 85 5042

DOI

16
Hemming S Keski-Vakkuri E 2001 Hawking radiation from AdS black holes Phys. Rev. D 64 044006

DOI

17
Iso S Umetsu H Wilczek F 2006 Anomalies, Hawking radiations, and regularity in rotating black holes Phys. Rev. D 74 044017

DOI

18
Medved A J M 2002 Radiation via tunneling from a de Sitter cosmological horizon Phys. Rev. D 66 124009

DOI

19
Parikh M K 2006 Energy conservation and Hawking radiation The Tenth Marcel Grossmann Meeting World Scientific 1585 1590

DOI

20
Akhmedov E T Akhmedova V Singleton D 2006 Hawking temperature in the tunneling picture Phys. Lett. B 642 124

DOI

21
Zhang J Y Zhao Z 2004 Charged particles tunnelling from the Kerr–Newman black hole Phys. Lett. B 638 110

DOI

22
Jiang Q Q Wu S Q Cai X 2007 Hawking radiation from dilatonic black holes via anomalies Phys. Rev. D 75 064029

DOI

23
Yang S Z Chen D Y 2007 A new method to study hawking radiation of charged particle from stationary axisymmetric Sen black hole Chinese Phys. Lett. 24 39

DOI

24
Shankaranarayanan S Padmanabhan T Srinivasan K 2002 Hawking radiation in different coordinate settings: complex paths approach Class. Quantum Grav. 19 2671

DOI

25
Srinivasan K Padmanabhan T 1999 Particle production and complex path analysis Phys. Rev. D 60 024007

DOI

26
Kerner R Mann R B 2008 Fermions tunnelling from black holes class Class. Quantum Grav. 25 095014

DOI

27
Kerner R Mann R B 2008 Charged fermions tunnelling from Kerr–Newman black holes Phys. Lett. B 665 277

DOI

28
Lin K Yang S Z 2009 Quantum tunneling from apparent horizon of rainbow-FRW universe Inter. J. Theor. Phys. 48 2061

DOI

29
Li H L Yang S Z Zhou T J 2008 Fermion tunneling from a vaidya black hole EPL 84 20003

DOI

30
Di Criscienzo R Vanzo L 2008 Fermion tunneling from dynamical horizons EPL 82 60001

DOI

31
Lin K Yang S Z 2009 Fermion tunneling from higher-dimensional black holes Phys. Rev. D 79 064035

32
Yang S Z Lin K 2010 Hamilton–Jacobi equations and tunneling radiation from the Kerr-TAUB-NUT black holes Sci. Sin. 40 507

33
Lin K Yang S Z 2009 Fermions tunneling of higher-dimensional Kerr–Anti-de Sitter black hole with one rotational parameter Phys. Lett. B 674 127

DOI

34
Tan X Liu Y Z Liu Z E Sha B Zhang J Yang S Z 2020 Modification of the dynamic equation and tunneling radiation of fermions with arbitrary spin in Kerr–Newman–Kasuya black hole space-time Phys. Lett. A 35 2050168

DOI

35
Kruglov S I 2012 Modified Dirac equation with Lorentz invariance violation and its solutions for particles in an external magnetic field Phys. Lett. B 718 228

DOI

36
Bakke K Belich H 2014 On the Lorentz symmetry breaking effects on a Dirac neutral particle inside a two-dimensional quantum ring Eur. Phys. J. Plus 129 147

DOI

37
Nascimento J R Petrov A Y Reyes C M 2015 Lorentz-breaking theory with higher derivatives in spinor sector Phys. Rev. D 92 045030

DOI

38
Yang S Z Lin K Li J Jiang Q Q 2016 Lorentz invariance violation and modified Hawking fermions tunneling radiation Adv. High. Energy. Phy. 2016 7058764

39
Feng Z W Ding Q C Yang S Z 2019 Modified fermion tunneling from higher-dimensional charged AdS black hole in massive gravity Eur. phys. J. C 79 445

40
Feng Z W Li H L Zu X T Yang S Z  2016 Quantum corrections to the thermodynamics of Schwarzschild–Tangherlini black hole and the generalized uncertainty principle Eur. phys. J. C 76 212

DOI

41
Pu J Yang S Z Lin K 2019 Lorentz-violating theory and tunneling radiation characteristics of Dirac particles in curved spacetime of Vaidya black hole Acta. Phys. Sin. 68 190401

DOI

42
Yang S Z Lin K 2019 Hawking tunneling radiation in lorentz-violating scalar field theory Acta. Phys. Sin. 68 060401

DOI

43
Li R Ding Q T Yang S Z 2022 Modified Hawking temperature and entropy of general stationary black holes by Lorentz invariance violation EPL 138 60001

DOI

44
Magueijo J Smolin L 2002 Lorentz invariance with an invariant energy scale Phys. Rev. Lett. 88 190403

DOI

45
Amelino-Camelie G Ahluwalia D V 2002 Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale Int. J. Mod. Phys. D 11 35

46
Kruglov S I 2012 Modified Dirac equation with Lorentz invariance violation and its solutions for particles in an external magnetic field Phys. Lett. B 718 228

DOI

47
Sha B Liu Z E 2022 Lorentz-breaking theory and tunneling radiation correction to Vaidya–Bonner de Sitter black hole Eur. Phys. J. C 82 648

DOI

48
Kinnersley W 1969 Field of an arbitrarily accelerating point mass Phys. Rev. 186 1335

DOI

49
Banerjee R Majhi B R Samanta S 2008 Noncommutative black hole thermodynamics Phys. Rev. D 77 124035

DOI

50
Banerjee R Majhi B R 2009 Connecting anomaly and tunneling methods for the Hawking effect through chirality Phys. Rev. D 79 064024

DOI

Outlines

/