Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Fractal dynamics and computational analysis of local fractional Poisson equations arising in electrostatics

  • Jagdev Singh , 1, 2, 3, * ,
  • Hassan Kamil Jassim , 4 ,
  • Devendra Kumar , 5 ,
  • Ved Prakash Dubey , 6
Expand
  • 1Department of Mathematics, JECRC University, Jaipur, Rajasthan, India
  • 2Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
  • 3Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
  • 4Department of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiriyah, Iraq
  • 5Department of Mathematics, University of Rajasthan, Jaipur-302004, Rajasthan, India
  • 6Faculty of Mathematical and Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki-225003, Uttar Pradesh, India

*Author to whom any correspondence should be addressed.

Received date: 2023-03-28

  Revised date: 2023-10-10

  Accepted date: 2023-10-10

  Online published: 2023-11-23

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, the local fractional natural decomposition method (LFNDM) is used for solving a local fractional Poisson equation. The local fractional Poisson equation plays a significant role in the study of a potential field due to a fixed electric charge or mass density distribution. Numerical examples with computer simulations are presented in this paper. The obtained results show that LFNDM is effective and convenient for application.

Cite this article

Jagdev Singh , Hassan Kamil Jassim , Devendra Kumar , Ved Prakash Dubey . Fractal dynamics and computational analysis of local fractional Poisson equations arising in electrostatics[J]. Communications in Theoretical Physics, 2023 , 75(12) : 125002 . DOI: 10.1088/1572-9494/ad01ad

1. Introduction

The Poisson equation (PE) plays a key role in the field of electrostatics, where it is solved to determine electric potential from a provided charge distribution. The Poisson equation is linear in potential and is the source term used to stipulate the object's static electricity. Columb's law and Gauss's theorem derive the PE. The solution of the Poisson equation is actually a potential field subjected to a provided mass density distribution or electric charge and further, the determined potential field computes gravitational or electrostatic field. The Poisson equation models the phenomena of intersecting interfaces and electrodynamics [1, 2].
The field of local fractional calculus (LFC) investigates the characteristics of physical models appearing in a fractal space. Fractals appear as random geometrical structures that do not show any change during amplification of their shapes. The use of fractal theory can be found in various areas of physical sciences along with important applications in electrostatics, quantum mechanics and high energy physics. As compared to classical derivatives, a local fractional derivative (LFD) provides more precise estimates of performance measures. Fractals elucidate those images that cannot be undertaken by Euclidean geometry and handle those objects that deal with dimensions of real order. The nature of fractional-order modeling is nonlocal and therefore is irrelevant to deal with characteristics of local scaling phenomena or LF derivability. The LFD operator (LFDO) with fractal order is an efficient instrument for modeling physical phenomena and provides physical insights along with geometric observations. The motivational purpose of LFC is to explore the differential properties of extremely irregular & nondifferentiable functions. These LFDOs appeared as a generalized form of classical derivatives to fractal-order conserving local features of derivatives to explore local scaling properties of nowhere differentiable and extremely irregular functions [3]. These reasons and features prompted motivation for the modeling of the Poisson equation with LFDO. The above-discussed features of LFDs show the significance of the chosen local fractional Poisson equations (LFPEs) and that obviously, the local fractional modeling of the Poisson equation is far better and superior compared to integer- and fractional-order modeling of the Poisson equation.
When physical variables in Poisson's model are nondifferentiable functions defined on Cantor sets, the classical conservation law doesn't fit and so the integer-order Poisson's model becomes irrelevant in this sense. Therefore to deal with this difficulty, Chen et al [4] suggested the Poisson equation model with LFDO arising in electrostatistics within the LF conservation laws in the domain of LFC [5-7]. The Poisson equation with LFDO was presented in [4] as follows:
$\begin{eqnarray}\frac{{\partial }^{2\varepsilon }\varphi \left(\mu ,\tau \right)}{\partial {\mu }^{2\varepsilon }}+\frac{{\partial }^{2\varepsilon }\varphi \left(\mu ,\tau \right)}{\partial {\tau }^{2\varepsilon }}=h\left(\mu ,\tau \right),0\lt \varepsilon \leqslant 1\end{eqnarray}$
subject to the initial and boundary conditions:
$\begin{eqnarray}\varphi \left(\mu ,0\right)=0,{\varphi }^{\left(\varepsilon \right)}\left(\mu ,0\right)=g\left(\mu \right)\end{eqnarray}$
where $\varphi \left(\mu ,\tau \right)$ is an unknown local fractional continuous nondifferentiable function, $g\left(\mu \right)$ is the given function, and the LFDO of $\varphi \left(\mu \right)$ of order $\varepsilon $ at $\mu ={\mu }_{0}$ is defined as
$\begin{eqnarray}{\varphi }^{\left(\varepsilon \right)}\left({\mu }_{0}\right)=\mathop{\mathrm{lim}}\limits_{\mu \to {\mu }_{0}}\frac{{\unicode{x02206}}^{\varepsilon }\left(\varphi \left(\mu \right)-\varphi \left({\mu }_{0}\right)\right)}{{\left(\mu -{\mu }_{0}\right)}^{\varepsilon }},\end{eqnarray}$
where
$\begin{eqnarray*}{\unicode{x02206}}^{\varepsilon }\left(\varphi \left(\mu \right)-\varphi \left({\mu }_{0}\right)\right)\cong {\rm{\Gamma }}\left(\varepsilon +1\right)\left(\varphi \left(\mu \right)-\varphi \left({\mu }_{0}\right)\right).\end{eqnarray*}$
Many analytical and numerical techniques have been employed to obtain approximate solutions of local fractional partial differential equations (LFPDEs) for example, the local fractional function decomposition method [8, 9], the local fractional Adomian decomposition technique (LFADT) [9-11], the local fractional series expansion technique [12, 13], the local fractional Laplace transform approach [14], the local fractional variational iteration approach (LFVIA) [15-19], the local fractional reduced differential transform scheme (LFRDTS) [19], the local fractional homotopy analysis Sumudu transform method [20], the local fractional differential transform scheme [21, 22], the local fractional Laplace VIA [23-28], the local fractional Laplace decomposition technique [29], the local fractional homotopy analysis scheme [30], the local fractional Laplace homotopy perturbation technique (LFLHPT) [31, 32] and the local fractional natural homotopy perturbation technique [33]. Recently, Dubey et al [34] and Kumar et al [35] presented fractal dynamics of LFPDEs occurring in physical sciences. Moreover, Dubey et al [36, 37] also investigated the local fractional Tricomi equation and local fractional Klein-Gordon models in a fractal media using hybrid local fractional schemes. Recently, Alqhtani et al [38] discussed spatiotemporal chaos in spatially extended fractional dynamical systems. Moreover, Alqhtani et al [39] studied the chaotic Lorenz system. Srivastava et al [40] analyzed fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations.
Recently, the LFPEs were studied by several authors using LFVIA [4], LFLHPT and LFRDTS [41]. Moreover, Singh et al [42] and Li et al [43] also studied and investigated the LFPEs in fractal media. The purpose of this paper is to introduce a new method to obtain the analytical approximate solutions to the Poisson equation with LFDO. In this paper, we apply the local fractional natural decomposition method (LFNDM) for the solution of LFPE. The LFNDM actually appears as a coupling of the LFADT [9, 44] and local fractional natural transform (LFNT) [33]. The LFNDM was introduced earlier in [45]. The main focus of the paper is to illustrate the implementation of LFNDM for different forms of LFPE and numerical simulations with the help of 3D graphic visuals on the cantor set. The LFPE explores the nature of the potential field in a fractal domain in view of nondifferentiable functions where a free charge occurs. The graphical analysis of the solution of LFPE provides significant physical characteristics of the LFPE in a fractal medium.
The application of the implemented method is shown by using two different examples and obtained solutions have also been compared with solutions computed by other methods in previous works. The 3D figures have been constructed for solutions of LFPE using MATLAB. The 3D plots depict the fractal nature of the function $\varphi \left(\mu ,\tau \right).$ The mathematical analysis shows that the implemented hybrid approach is beneficial to obtain the solutions for LFPEs. To make the convergence of LFNDM faster, the LFNT is selected. Two examples of LFPE are solved to demonstrate the application of LFNDM. The resulting solutions obtained from the applied scheme actually enter the picture as a special case of the classical Poisson equation model when the fractal order $\varepsilon =1,$ which shows the convergence of fractal geometry to Euclidean geometry. The coupling of LFADT with LFNT provides faster computations compared to the LFADT. Furthermore, this merger reduces the computational procedure as compared to other conventional methods while still giving reliable results. This work examines two significant aspects of the LFNDM. One feature is linked to the easy decomposition of non-linear quantities in a simple form by adopting Adomian polynomials and the other feature is related to the delivery of closed-form solutions in a series form with faster convergence. The original contributions of the paper are concerned with solution and numerical simulations for given LFPEs on the Cantor set via the applied hybrid method. It is also observed that the achieved solutions exactly match with previously reported solutions computed in the recent past.
The novelty and original contributions of the paper are applications of LFNDM to LFPEs which were constructed in [45]. Thus the new application along with computer simulations on the Cantorian set surely articulates the novelty of this work. The LFNDM provides fast convergence series solutions. The implemented method is time-saving, more trustable and proficient in comparison to other approaches. Moreover, computer-based simulations are also provided for the computed solutions of different forms of LFPE for the integer order $\varepsilon =1.0$ and the fractal order $\varepsilon =\frac{\mathrm{log}2}{\mathrm{log}3}$ of an LFD by using MATLAB. The remaining sections of the present work are developed as follows: In section 2, some essential fundamentals of LFC are displayed. In section 3, the basic procedure of LFNDM is provided. Applications of the LFNDM are demonstrated in section 4. Section 5 deals with numerical simulations for LFPEs. The conclusion of the present paper is reported in section 6.

2. Fundamentals of the LFC and LFNT

[46, 47]. The LF derivative of $\varphi (\mu )$ of order $\varepsilon $ at the point ${\mu }_{0}$ is defined as

$\begin{eqnarray}{\,\varphi }^{\left(\varepsilon \right)}\left({\tau }_{0}\right)=\mathop{\mathrm{lim}}\limits_{\mu \to {\mu }_{0}}\frac{{\rm{\Gamma }}\left(1+\varepsilon \right)\left[\varphi \left(\tau \right)-\varphi ({\tau }_{0})\right]}{{\left({\tau -\tau }_{0}\right)}^{\varepsilon }},0\lt \varepsilon \leqslant 1.\end{eqnarray}$

[47]. The Mittag-Leffler function in a fractal space is defined by

$\begin{eqnarray}{\,E}_{\varepsilon }\left({\tau }^{\varepsilon }\right)=\displaystyle \sum _{k=0}^{{\rm{\infty }}}\frac{{\tau }^{k\varepsilon }}{{\rm{\Gamma }}\left(1+k\varepsilon \right)},0\lt \varepsilon \leqslant 1.\end{eqnarray}$

[33]. The LFNT of a function $\varphi (\tau )$ of order $0\lt \varepsilon \leqslant 1$ is stated as

$\begin{eqnarray*}{\,{NT}}_{\varepsilon }\left\{\varphi \left(\tau \right)\right\}={{\rm{\unicode{x00424}}}}_{\varepsilon }\left(s,v\right)\end{eqnarray*}$$\begin{eqnarray}=\frac{1}{{\rm{\Gamma }}\left(1+\varepsilon \right)}{\int }_{0}^{{\rm{\infty }}}{E}_{\varepsilon }\left(\frac{-{s}^{\varepsilon }{\tau }^{\varepsilon }}{{v}^{\varepsilon }}\right)\frac{\varphi \left(\tau \right)}{{v}^{\varepsilon }}{(d\tau )}^{\varepsilon }.\end{eqnarray}$
Following (2.3), its inverse formula is expressed as
$\begin{eqnarray}{{NT}}_{\varepsilon }^{-1}\left[{{\rm{\unicode{x00424}}}}_{\varepsilon }\left(s,v\right)\right]=\frac{1}{{\left(2\pi i\right)}^{\varepsilon }}{\int }_{\gamma -i{\rm{\infty }}}^{\gamma +i{\rm{\infty }}}{E}_{\varepsilon }\left(\frac{{s}^{\varepsilon }{\tau }^{\varepsilon }}{{v}^{\varepsilon }}\right){{\rm{\unicode{x00424}}}}_{\varepsilon }\left(s,v\right){\left({\rm{d}}{s}\right)}^{\varepsilon },\end{eqnarray}$
where ${s}^{\varepsilon }$ and ${v}^{\varepsilon }$ are the local natural transform variables, and $\gamma $ is a real constant.
The LFNT of some special functions reported in [33] are given as follows:
$\begin{eqnarray*}{\,{NT}}_{\varepsilon }\left\{\frac{{\tau }^{\varepsilon }}{{\rm{\Gamma }}\left(1+\epsilon \right)}\right\}=\frac{{v}^{\varepsilon }}{{s}^{2\varepsilon }},{\,{NT}}_{\varepsilon }\left\{{\sin }_{\varepsilon }\left({\tau }^{\varepsilon }\right)\right\}\end{eqnarray*}$
$\begin{eqnarray*}=\frac{{v}^{\varepsilon }}{{s}^{2\varepsilon }+{v}^{2\varepsilon }}{,{NT}}_{\varepsilon }\left\{{\cos }_{\varepsilon }{\rm{}}({\tau }^{\varepsilon })\right\}=\frac{{s}^{\varepsilon }}{{s}^{2\varepsilon }+{v}^{2\varepsilon }},\end{eqnarray*}$

$\begin{eqnarray*}{\,{NT}}_{\varepsilon }\left\{\frac{{\partial }^{m\varepsilon }\varphi \left(\mu ,\tau \right)}{{\partial \tau }^{m\varepsilon }}\right\}=\frac{{s}^{m\varepsilon }}{{v}^{m\varepsilon }}{{\rm{\unicode{x00424}}}}_{\varepsilon }\left(s,v\right)\end{eqnarray*}$
$\begin{eqnarray*}-\displaystyle \sum _{k=0}^{m-1}\frac{{s}^{\left(m-k-1\right)\varepsilon }}{{v}^{\left(m-k\right)\varepsilon }}\frac{{\partial }^{k\varepsilon }\varphi \left(\mu ,0\right)}{{\partial \tau }^{k\varepsilon }}.\end{eqnarray*}$

3. Analysis of LFNDM

To describe outlines of the procedure, the following partial differential equation (PDE) with LFDOs is considered
$\begin{eqnarray*}{L}_{\varepsilon }\varphi \left(\mu ,\tau \right)+{R}_{\varepsilon }\varphi \left(\mu ,\tau \right)\end{eqnarray*}$$\begin{eqnarray}+{F}_{\varepsilon }\varphi \left(\mu ,\tau \right)=g\left(\mu ,\tau \right),0\lt \varepsilon \leqslant 1,\end{eqnarray}$
where ${L}_{\varepsilon }=\frac{{\partial }^{m\varepsilon }}{\partial {\tau }^{m\varepsilon }},$ ${R}_{\varepsilon }$ denotes linear LFDO, ${F}_{\varepsilon }$ denotes nonlinear LFDO and $g\left(\mu ,\tau \right)$ is the nondifferentiable source ${\rm{i}}$ term.
Operating the LFNT on equation (3.1) and using the property of the LFNT, we get
$\begin{eqnarray*}{\,{NT}}_{{\varepsilon }}\left\{{\varphi }\left({\mu },{\tau }\right)\right\}\end{eqnarray*}$$\begin{eqnarray*}=\displaystyle \sum _{{k}=0}^{{m}-1}\frac{{{v}}^{\left({m}-{k}-1\right){\varepsilon }}}{{{s}}^{\left({m}-{k}\right){\varepsilon }}}{{\varphi }}^{\left({k}{\varepsilon }\right)}\left({\mu },0\right)\end{eqnarray*}$$\begin{eqnarray*}+\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{g}\left({\mu },{\tau }\right)\right\}\end{eqnarray*}$$\begin{eqnarray}-\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)+{{F}}_{{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)\right\}.\end{eqnarray}$
Applying the inverse formula of LFNT on equation (3.2), we acquire
$\begin{eqnarray*}{\varphi }\left({\mu },{\tau }\right)=\displaystyle \sum _{{k}=0}^{{m}-1}{{\varphi }}^{\left({k}{\varepsilon }\right)}\left({\mu },0\right)\frac{{{\tau }}^{{k}{\varepsilon }}}{{\rm{\Gamma }}\left(1+{k}{\varepsilon }\right)}\end{eqnarray*}$$\begin{eqnarray*}+{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{g}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$$\begin{eqnarray}-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)+{{F}}_{{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)\right\}\right].\end{eqnarray}$
Now, we represent the solution in an infinite series in this way:
$\begin{eqnarray}{\varphi }\left({\mu },{\tau }\right)=\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right),\end{eqnarray}$
and the nonlinear term ${{F}}_{{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)$ is written as
$\begin{eqnarray}{{F}}_{{\varepsilon }}=\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{A}}_{{n}}\left({\mu },{\tau }\right),\end{eqnarray}$
where ${{A}}_{{n}}$ is the local fractional Adomian polynomial and can be calculated using the following formula:
$\begin{eqnarray*}{{A}}_{{n}}=\frac{1}{\Gamma \left(1+{n}{\varepsilon }\right)}\frac{{{\partial }}^{{n}{\varepsilon }}}{{\partial }{{\theta }}^{{n}{\varepsilon }}}\end{eqnarray*}$
$\begin{eqnarray*}\times {\left[{{F}}_{{\varepsilon }}\left(\displaystyle \sum _{{i}=0}^{{n}}{{{\theta }}^{{i}}\,{\varphi }}_{{i}}\left({\mu },{\tau }\right)\right)\right]}_{{\theta }=0},{n}=0,1,2.\end{eqnarray*}$
Using of equations (3.4) and (3.5) in equation (3.3) yields the following result:
$\begin{eqnarray*}\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right)\end{eqnarray*}$$\begin{eqnarray*}=\displaystyle \sum _{{k}=0}^{{m}-1}{{\varphi }}^{\left({k}{\varepsilon }\right)}\left({\mu },0\right)\frac{{{\tau }}^{{k}{\varepsilon }}}{{\rm{\Gamma }}\left(1+{k}{\varepsilon }\right)}\end{eqnarray*}$$\begin{eqnarray*}+{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{g}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$$\begin{eqnarray}-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}\left[\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right)\right]+\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{A}}_{{n}}\left({\mu },{\tau }\right)\right\}\right].\end{eqnarray}$
On comparing both the sides of equation (3.6), we obtain
$\begin{eqnarray*}{{\varphi }}_{0}\left({\mu },{\tau }\right)=\displaystyle \sum _{{k}=0}^{{m}-1}{{\varphi }}^{\left({k}{\varepsilon }\right)}\left({\mu },0\right)\frac{{{\tau }}^{{k}{\varepsilon }}}{{\rm{\Gamma }}\left(1+{k}{\varepsilon }\right)}\end{eqnarray*}$$\begin{eqnarray*}+{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{g}\left({\mu },{\tau }\right)\right\}\right],\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}\left[{{\varphi }}_{0}\left({\mu },{\tau }\right)\right]+{{A}}_{0}\right\}\right],\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{2}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}\left[{{\varphi }}_{1}\left({\mu },{\tau }\right)\right]+{{A}}_{1}\right\}\right],\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{3}\left({\mu },{\tau }\right)\end{eqnarray*}$$\begin{eqnarray}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}\left[{{\varphi }}_{2}\left({\mu },{\tau }\right)\right]+{{A}}_{2}\right\}\right].\end{eqnarray}$
The local fractional recursive relation in its general form is obtained as
$\begin{eqnarray*}{{\varphi }}_{0}\left({\mu },{\tau }\right)=\displaystyle \sum _{{k}=0}^{{m}-1}{{\varphi }}^{\left({k}{\varepsilon }\right)}\left({\mu },0\right)\frac{{{\tau }}^{{k}{\varepsilon }}}{{\rm{\Gamma }}\left(1+{k}{\varepsilon }\right)}\end{eqnarray*}$$\begin{eqnarray*}+{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{g}\left({\mu },{\tau }\right)\right\}\right],\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{{n}+1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{{m}{\varepsilon }}}{{{s}}^{{m}{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{R}}_{{\varepsilon }}\left[{{\varphi }}_{{n}}\left({\mu },{\tau }\right)\right]+{{A}}_{{n}}\right\}\right],\end{eqnarray*}$$\begin{eqnarray}{n}=0,1,2,3.\end{eqnarray}$
Hence, the approximation solution of equation (3.1) is given by
$\begin{eqnarray}{\varphi }\left({\mu },{\tau }\right)=\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right).\end{eqnarray}$

4. Applications of the LFNDM

Consider the following LFPE described in [41]

$\begin{eqnarray}\frac{{{\partial }}^{2{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)}{{\partial }{{\mu }}^{2{\varepsilon }}}+\frac{{{\partial }}^{2{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)}{{\partial }{{\tau }}^{2{\varepsilon }}}=\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)},0\lt {\varepsilon }\leqslant 1\,\end{eqnarray}$
with initial conditions:
$\begin{eqnarray}{\varphi }\left({\mu },0\right)=\frac{{{\mu }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)},{{\varphi }}^{\left({\varepsilon }\right)}\left({\mu },0\right)={sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right).\end{eqnarray}$
Using equations (3.8) and (4.1), the LF iteration algorithm is reported in the following form:
$\begin{eqnarray*}{{\varphi }}_{0}\left({\mu },{\tau }\right)=\frac{{{\mu }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}+\frac{{{\tau }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\end{eqnarray*}$$\begin{eqnarray*}+\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)},\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{{n}+1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right)\right\}\right],\end{eqnarray*}$$\begin{eqnarray}{n}=0,1,2.\end{eqnarray}$
From equation (4.3), we can find the following components
$\begin{eqnarray*}{{\varphi }}_{1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{0}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$

$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}\left(\frac{{{\mu }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}\right.\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.\left.+\frac{{\tau }^{\varepsilon }}{\Gamma \left(1+\varepsilon \right)}{\sin }_{\varepsilon }\left({\mu }^{\varepsilon }\right)+\frac{{\mu }^{\varepsilon }}{\Gamma \left(1+\varepsilon \right)}\frac{{\tau }^{2\varepsilon }}{\Gamma \left(1+2\varepsilon \right)}\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}{-\frac{{{\tau }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}={-{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{3{\varepsilon }}}\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}-\frac{{{v}}^{3{\varepsilon }}}{{{s}}^{4{\varepsilon }}}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right]\end{eqnarray*}$
$\begin{eqnarray*}=-\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}+\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),\end{eqnarray*}$
$\begin{eqnarray*}{{\varphi }}_{2}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{1}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}\left(-\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}\frac{{{\mu }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}\right.\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.\left.+\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{-\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}={{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{5{\varepsilon }}}{{{s}}^{6{\varepsilon }}}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right]\end{eqnarray*}$
$\begin{eqnarray*}=\frac{{{\tau }}^{5{\varepsilon }}}{\Gamma \left(1+5{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),\end{eqnarray*}$
$\begin{eqnarray*}{{\varphi }}_{3}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{2}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}\left(\frac{{{\tau }}^{5{\varepsilon }}}{\Gamma \left(1+5{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}={-{NT}}_{{\varepsilon }}^{-1}\left[-\frac{{{v}}^{7{\varepsilon }}}{{{s}}^{8{\varepsilon }}}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right]\end{eqnarray*}$
$\begin{eqnarray*}=\frac{{{\tau }}^{7{\varepsilon }}}{\Gamma \left(1+7{\varepsilon }\right)}{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\end{eqnarray*}$
and so on.
Therefore, the approximate solution ${\varphi }\left({\mu },{\tau }\right)$ of equation (4.1) is given by
$\begin{eqnarray*}{\varphi }\left({\mu },{\tau }\right)=\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right)\end{eqnarray*}$$\begin{eqnarray*}=\frac{{{\mu }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}\,\end{eqnarray*}$$\begin{eqnarray*}{+\,sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\left(\frac{{\tau }^{\varepsilon }}{\Gamma \left(1+\varepsilon \right)}+\frac{{\tau }^{3\varepsilon }}{\Gamma \left(1+3\varepsilon \right)}+\frac{{\tau }^{5\varepsilon }}{\Gamma \left(1+5\varepsilon \right)}+\ldots \right)\end{eqnarray*}$$\begin{eqnarray}=\frac{{{\mu }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}+{sin}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right){sinh}_{{\varepsilon }}\left({{\tau }}^{{\varepsilon }}\right).\end{eqnarray}$
The solution (4.4) is in good agreement with the solutions computed by LFLHPT and LFRDTS [41].

We report the following LFPE described in [41]

$\begin{eqnarray}\frac{{{\partial }}^{2{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)}{{\partial }{{\mu }}^{2{\varepsilon }}}+\frac{{{\partial }}^{2{\varepsilon }}{\varphi }\left({\mu },{\tau }\right)}{{\partial }{{\tau }}^{2{\varepsilon }}}={{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),0\lt {\varepsilon }\leqslant 1\end{eqnarray}$
with initial conditions:
$\begin{eqnarray}{\varphi }\left({\mu },0\right)={{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),{{\varphi }}^{\left({\varepsilon }\right)}\left({\mu },0\right)={cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right).\end{eqnarray}$
Making use of equations (3.8) and (4.5), the local fractional iteration algorithm is generated in this way:
$\begin{eqnarray*}{{\varphi }}_{0}\left({\mu },{\tau }\right)={{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\,+\,\frac{{{\tau }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\end{eqnarray*}$$\begin{eqnarray*}+\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),\end{eqnarray*}$$\begin{eqnarray*}{{\varphi }}_{{n}+1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\end{eqnarray*}$$\begin{eqnarray}\left[\frac{{v}^{2\varepsilon }}{{s}^{2\varepsilon }}{{NT}}_{\varepsilon }\left\{\frac{{{\rm{\partial }}}^{2\varepsilon }}{{\rm{\partial }}{\mu }^{2\varepsilon }}{\varphi }_{n}\left(\mu ,\tau \right)\right\}\right],n=0,1,2.\end{eqnarray}$
From equation (4.7), we can generate the components as follows.
$\begin{eqnarray*}{{\varphi }}_{1}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{0}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$

$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}\left({{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right){+\frac{{{\tau }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right.\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.\left.+\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{\tau }}^{{\varepsilon }}}{\Gamma \left(1+{\varepsilon }\right)}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.+\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}={-{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{3{\varepsilon }}}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{v}}^{3{\varepsilon }}}{{{s}}^{4{\varepsilon }}}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)+\frac{{{v}}^{4{\varepsilon }}}{{{s}}^{5{\varepsilon }}}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right]\end{eqnarray*}$
$\begin{eqnarray*}=-\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)+\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{\tau }}^{4{\varepsilon }}}{\Gamma \left(1+4{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right),\end{eqnarray*}$
$\begin{eqnarray*}{{\varphi }}_{2}\left({\mu },{\tau }\right)=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}{{\varphi }}_{1}\left({\mu },{\tau }\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{\frac{{{\partial }}^{2{\varepsilon }}}{{\partial }{{\mu }}^{2{\varepsilon }}}\left(-\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right.\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.\left.+\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{\tau }}^{4{\varepsilon }}}{\Gamma \left(1+4{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}=-{{NT}}_{{\varepsilon }}^{-1}\left[\frac{{{v}}^{2{\varepsilon }}}{{{s}}^{2{\varepsilon }}}{{NT}}_{{\varepsilon }}\left\{-\frac{{{\tau }}^{2{\varepsilon }}}{\Gamma \left(1+2{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right.\right.\end{eqnarray*}$
$\begin{eqnarray*}\left.\left.-\frac{{{\tau }}^{3{\varepsilon }}}{\Gamma \left(1+3{\varepsilon }\right)}{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{\tau }}^{4{\varepsilon }}}{\Gamma \left(1+4{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right\}\right]\end{eqnarray*}$
$\begin{eqnarray*}={-{NT}}_{{\varepsilon }}^{-1}\left[-\frac{{{v}}^{4{\varepsilon }}}{{{s}}^{5{\varepsilon }}}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{v}}^{5{\varepsilon }}}{{{s}}^{6{\varepsilon }}}\right.\end{eqnarray*}$
$\begin{eqnarray*}\times \left.{cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)+\frac{{{v}}^{6{\varepsilon }}}{{{s}}^{7{\varepsilon }}}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\right]\end{eqnarray*}$
$\begin{eqnarray*}=\frac{{{\tau }}^{4{\varepsilon }}}{\Gamma \left(1+4{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)+\frac{{{\tau }}^{5{\varepsilon }}}{\Gamma \left(1+5{\varepsilon }\right)}\end{eqnarray*}$
$\begin{eqnarray*}\times {cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)-\frac{{{\tau }}^{6{\varepsilon }}}{\Gamma \left(1+6{\varepsilon }\right)}{{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right).\end{eqnarray*}$
and so on.
Therefore, the solution ${\varphi }\left({\mu },{\tau }\right)$ of equation (4.5) is given by
$\begin{eqnarray*}{\varphi }\left({\mu },{\tau }\right)=\displaystyle \sum _{{n}=0}^{{\rm{\infty }}}{{\varphi }}_{{n}}\left({\mu },{\tau }\right)={{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right){\,+\,cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right)\end{eqnarray*}$$\begin{eqnarray*}\times \left(\frac{{\tau }^{\varepsilon }}{\Gamma \left(1+\varepsilon \right)}+\frac{{\tau }^{3\varepsilon }}{\Gamma \left(1+3\varepsilon \right)}+\frac{{\tau }^{5\varepsilon }}{\Gamma \left(1+5\varepsilon \right)}+\cdots \right)\end{eqnarray*}$$\begin{eqnarray}={{E}}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right){\,+\,cos}_{{\varepsilon }}\left({{\mu }}^{{\varepsilon }}\right){sinh}_{{\varepsilon }}\left({{\tau }}^{{\varepsilon }}\right).\end{eqnarray}$
The acquired solution (4.8) is exactly the same as the solutions obtained by LFLHPT and LFRDTS [41].

5. Numerical results and analysis

In this section, the computer-based simulations for solutions of LFPEs obtained by LFNDM are presented. The numerical investigation of LFPEs considers distinct values of $\varepsilon =1,\,\displaystyle \frac{\mathrm{log}\,2}{\mathrm{log}\,3}.$ Figures 1 and 2 elucidate the 3D variation of solution $\phi \left(\mu ,\,\tau \right)$ for Example 1 for $\varepsilon =1.0$ and $\varepsilon =\,\displaystyle \frac{\mathrm{log}\,2}{\mathrm{log}\,3},$ respectively. Similarly, figures 3 and 4, respectively, demonstrate the nature of $\phi \left(\mu ,\,\tau \right)$ for Example 2 for $\varepsilon =1.0$ and $\varepsilon =\,\displaystyle \frac{\mathrm{log}\,2}{\mathrm{log}\,3}.$ Figures 2 and 4, respectively, depict the variation of $\phi \left(\mu ,\,\tau \right)$ in a fractal domain for Examples 1 and 2. The graphic visuals for the solution $\phi \left(\mu ,\,\tau \right)$ demonstrate a fractal nature and obviously depict the nondifferentiability of the function in certain phases.
Figure 1. 3D plot of $\phi \left(\mu ,\,\tau \right)$ for Example 1 with respect to $\mu $ and $\tau $ for $\varepsilon =1.0.$
Figure 2. 3D variation of $\phi \left(\mu ,\,\tau \right)$ for Example 1 with respect to $\mu $ and $\tau $ for $\varepsilon =\displaystyle \frac{\mathrm{log}\,2}{\mathrm{log}\,3}.$
Figure 3. 3D plot of $\phi \left(\mu ,\,\tau \right)$ for Example 2 with respect to $\mu $ and $\tau $ for $\varepsilon =1.0.$
Figure 4. 3D plot of $\phi \left(\mu ,\,\tau \right)$ for Example 2 with respect to $\mu $ and $\tau $ for $\varepsilon =\,\mathrm{log}\,2/\,\mathrm{log}\,3.$

6. Conclusion

In this work, we have considered the LFPE with LFDOs. The method which is called the LFNDM has been applied successfully to attain the approximate solutions for LFPEs. The results are obtained in the closed form of an infinite power series. The examples show that the outcomes of LFNDM are in good agreement with the results obtained by LFLHPT and LFRDTS. This work also depicts that the applied method is systematic and can be helpful for solving nonlinear and linear LFPDEs with fractal order. In future studies, other fractal order physical models can also be solved by the applied technique to attain new results and conclusions.
1
Griffiths D J College R 1999 Introduction to Electrodynamics Prentice Hall

2
Kellogg R B 1974 On the Poisson equation with intersecting interfaces Appl. Anal. 4 101 129

3
Kolwankar K M Gangal A D 1996 Fractional differentiability of nowhere differentiable functions and dimensions Chaos 6 505 513

DOI

4
Chen L 2014 Local fractional variational iteration method for local fractional poisson equations in two independent variables Abstr. Appl. Anal. 2014 1 7

DOI

5
Yang X-J Baleanu D Machado J A T 2013 Systems of Navier-Stokes equations on cantor sets Math. Probl. Eng. 2013 1 8

DOI

6
Hao Y-J Srivastava H M Jafari H Yang X-J 2013 Helmholtz and diffusion equations associated with local fractional derivative operators involving the cantorian and cantor-type cylindrical coordinates Adv. Math. Phys. 2013 1 5

DOI

7
Zhao Y 2013 Maxwell's equations on cantor sets: a local fractional approach Adv. High Energy Phys. 2013 686371

8
Wang S-Q Yang Y Jassim H K 2014 Local fractional function decomposition method for solving inhomogeneous wave equations with LFDOs Abstr. Appl. Anal. 2014 1 7

9
Yan S-P Jafari H Jassim H K 2014 Local fractional Adomian decomposition and function decomposition methods for solving Laplace equation within LFDOs Adv. Math. Phys. 2014 1 7

DOI

10
Baleanu D Jassim H K Al Qurashi M 2016 Approximate analytical solutions of Goursat problem within local fractional operators J. Nonlinear Sci. Appl. 9 4829 4837

11
Fan Z-P 2015 Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving LFDOs Thermal Sci. 19 137 141

DOI

12
Jassim H K Baleanu D 2019 A novel approach for Korteweg-de Vries equation of fractional order J. Appl. Comput. Mech. 5 192 198

13
Singh J Jassim H K Kumar D 2020 An efficient computational technique for local fractional Fokker-Planck equation Physica A 555 124525

DOI

14
Zhao C-G 2014 The Yang-Laplace transform for solving the IVPs with local fractional derivative Abstr. Appl. Anal. 2014 1 5

DOI

15
Yang X-J Baleanu D 2013 Local fractional variational iteration method for fokker-planck equation on a cantor set Acta Universitaria 23 3 8

16
Xu S 2015 A novel schedule for solving the two-dimensional diffusion in fractal heat transfer Thermal Sci. 19 S99 S103

17
Jassim H K Shahab W A 2018 Fractional variational iteration method to solve one dimensional second order hyperbolic telegraph equations J. Phys. Conf. Ser. 1032 1 9

18
Jafari H Jassim H K Vahidi J 2018 Reduced differential transform and variational iteration methods for 3D diffusion model in fractal heat transfer within local fractional operators Thermal Sci. 22 S301 S307

19
Jafari H 2016 Reduced differential transform method for partial differential equations within local fractional derivative operators Adv. Mech. Eng. 8 1 6

20
Dubey V P 2022 An efficient analytical scheme with convergence analysis for computational study of local fractional schrödinger equations Math. Comput. Simul. 196 296 318

DOI

21
Yang X-J Machado J A T Srivastava H M 2016 A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach Appl. Math. Comput. 274 143

DOI

22
Jafari H 2016 On the approximate solutions of local fractional differential equations with local fractional operator Entropy 18 1 12

23
Baleanu D Jassim H K Khan H 2018 A modification fractional variational iteration method for solving nonlinear gas dynamic and coupled KdV equations involving local fractional operators Thermal Sci. 22 S165 S175

24
Jassim H K 2015 Local fractional Laplace variational iteration method for solving diffusion and wave equations on cantor sets within local fractional operators Math. Probl. Eng. 2015 1 9

DOI

25
Baleanu D Jassim H K 2019 Approximate solutions of the damped wave equation and dissipative wave equation in fractal strings Fractal Fract. 3 1 12

26
Jassim H K 2016 The approximate solutions of three-dimensional diffusion and wave equations within local fractional derivative operator Abstr. Appl. Anal. 2016 1 5

DOI

27
Jassim H K 2015 New approaches for solving Fokker-Planck equation on cantor sets within local fractional operators J. Math. 2015 1 8

DOI

28
Baleanu D Jassim H K Al Qurashi M 2019 Solving Helmholtz equation with local fractional derivative operators Fractal Fract. 3 1 13

29
Jassim H K 2020 Analytical approximate solutions for local fractional wave equations Math. Meth. Appl. Sci. 43 939 947

DOI

30
Maitama S Zhao W 2019 Local fractional homotopy analysis method for solving non-differentiable problems on cantor sets Adv. Differ. Equ. 22 1 22

31
Baleanu D Jassim H K 2019 A modification fractional homotopy perturbation method for solving Helmholtz and coupled helmholtz equations on cantor sets Fractal Fract. 3 1 8

32
Singh J 2019 On the local fractional wave equation in fractal strings Math. Method Appl. Sci. 42 1588

DOI

33
Maitama S 2018 Local fractional natural homotopy perturbation method for solving partial differential equations with local fractional derivative Prog. Fract. Differ. Appl. 4 219 228

DOI

34
Dubey V P 2022 Analysis and fractal dynamics of some local fractional partial differential equations occurring in physical sciences J. Comput. Nonlinear Dynam. 18 1 23

35
Kumar D 2023 Computational analysis of local fractional partial differential equations in realm of fractal calculus Chaos Solitons Fract. 167 113009

DOI

36
Dubey S 2022 Computational study of a local fractional tricomi equation occurring in fractal transonic flow J. Comput. Nonlinear Dynam. 17 1081006

37
Dubey V P Kumar D Singh J Alshehri A M Dubey S 2022 Analysis of local fractional klein-gordon equations arising in relativistic fractal quantum mechanics Waves Random Complex Media 1 21

38
Alqhtani M 2023 Spatiotemporal chaos in spatially extended fractional dynamical systems Commun. Nonlinear Sci. Numer. Simul. 119 107118

DOI

39
Alqhtani M Khader M M Saad K M 2023 Numerical simulation for a high-dimensional chaotic Lorenz system based on Gegenbauer wavelet polynomials Mathematics 11 1 12

40
Srivastava H M Saad K M Hamanah W M 2022 Certain new models of the multi-space fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations Mathematics 10 10071089

41
Jassim H K Poisson S 2017 Equation within local fractional derivative operators Research in Applied Mathematics 1 1 12

42
Singh J 2021 An Efficient Computational Approach for Local Fractional Poisson Equation in Fractal Media 37 1439 1448

43
Li Y-Y 2014 Local fractional poisson and laplace equations with applications to electrostatics in fractal domain Adv. Math. Phys. 2014 1 5

DOI

44
Jafari H Jassim H K 2014 Local fractional adomain decomposition method for solving two dimensional heat conduction equations within local fractional operators J. Adv. Math. 9 2574 2582

45
Dubey V P 2022 Computational analysis of local fractional LWR model occurring in a fractal vehicular traffic flow Fractal Fract. 6 1 19

46
Yang X-J 2012 Advanced Local Fractional Calculus and Its Applications World Science Publisher

47
Yang X-J 2011 Local Fractional Functional Analysis and Its Applications Asian Academic Publisher Limited

Outlines

/