Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Integrable nonlocal PT-symmetric generalized $\mathrm{so}(3,{\mathbb{R}})$-mKdV equations

  • Shou-Ting Chen 1 ,
  • Wen-Xiu Ma , 2, 3, 4, 5, *
Expand
  • 1School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221008, Jiangsu, China
  • 2Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
  • 3Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • 4Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, United States of America
  • 5School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

*Author to whom any correspondence should be addressed.

Received date: 2023-02-27

  Revised date: 2023-09-25

  Accepted date: 2023-09-26

  Online published: 2023-11-23

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Based on a soliton hierarchy associated with $\mathrm{so}(3,{\mathbb{R}})$, we construct two integrable nonlocal PT-symmetric generalized mKdV equations. The key step is to formulate two nonlocal reverse-spacetime similarity transformations for the involved spectral matrix, and therefore, integrable nonlocal complex and real reverse-spacetime generalized $\mathrm{so}(3,{\mathbb{R}})$-mKdV equations of fifth-order are presented. The resulting reduced nonlocal integrable equations inherit infinitely many commuting symmetries and conservation laws.

Cite this article

Shou-Ting Chen , Wen-Xiu Ma . Integrable nonlocal PT-symmetric generalized $\mathrm{so}(3,{\mathbb{R}})$-mKdV equations[J]. Communications in Theoretical Physics, 2023 , 75(12) : 125003 . DOI: 10.1088/1572-9494/acfd13

1. Introduction

Matrix spectral problems associated with matrix Lie algebras are used to study integrable equations [1, 2], whose Hamiltonian structures are often furnished by the trace identity [3, 4], and whose Riemann-Hilbert problems can be formulated to establish inverse scattering transforms [5]. The well-known integrable equations associated with simple Lie algebras include the KdV equation [6], the NLS equation [7], the derivative NLS equation [8], higher-order NLS and mKdV equations [9, 10], the nonlocal NLS equation [11] and the nonlocal mKdV equation [12].
If we build matrix spectral problems by using non-semi-simple matrix Lie algebras, the so-called integrable couplings, both continuous and discrete, can be generated, and the variational identity [13] helps furnish their Hamiltonian structures, which lead to novel hereditary recursion operators in block matrix form [14]. Darboux transformations are also presented to solve integrable couplings [15].
We will apply the special orthogonal Lie algebra ${\mathfrak{g}}=\mathrm{so}(3,{\mathbb{R}})$. This Lie algebra can be realized by all 3 × 3 trace-free, skew-symmetric real matrices. Thus, a basis can be taken as
$\begin{eqnarray}\begin{array}{rcl}{h}_{1} & = & \left[\begin{array}{ccc}0 & 0 & -1\\ 0 & 0 & 0\\ 1 & 0 & 0\end{array}\right],\quad {h}_{2}=\left[\begin{array}{ccc}0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0\end{array}\right],\\ {h}_{3} & = & \left[\begin{array}{ccc}0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0\end{array}\right],\end{array}\end{eqnarray}$
with the corresponding structure equations being given by
$\begin{eqnarray}[{h}_{1},{h}_{2}]={h}_{3},[{h}_{2},{h}_{3}]={h}_{1},[{h}_{3},{h}_{1}]={h}_{2}.\end{eqnarray}$
We can take other representations of so(3, ${\mathbb{R}}$) to start to study integrable equations. The Lie algebra so(3, ${\mathbb{R}}$) is one of the only two three-dimensional real Lie algebras, whose derived algebra is equal to itself. The other such Lie algebra is the special linear algebra $\mathrm{sl}(2,{\mathbb{R}})$, which has been widely used to study integrable equations [2]. It is worth noting that the two complex Lie algebras, $\mathrm{sl}(2,{\mathbb{C}})$ and $\mathrm{so}(3,{\mathbb{C}})$, are isomorphic to each other over the complex field. The following matrix loop algebra
$\begin{eqnarray}\begin{array}{l}\tilde{{\mathfrak{g}}}=\widetilde{\mathrm{so}}(3,{\mathbb{R}})=\{A\in \mathrm{so}(3,{\mathbb{R}})| \,\mathrm{entries}\,\mathrm{of}\ A\\ \quad -\mathrm{Laurent}\,\mathrm{series}\,\mathrm{in}\ \lambda \},\end{array}\end{eqnarray}$
λ being a spectral parameter, will be used in our construction. This matrix loop algebra has already been used to construct integrable equations [16]. Based on the perturbation-type loop algebras of $\widetilde{\mathrm{so}}(3,{\mathbb{R}})$, we can also construct integrable couplings [14].
In this paper, starting from matrix spectral problems, we would first like to revisit an application of $\mathrm{so}(3,{\mathbb{R}})$ to integrable equations [16], with a slightly modified spectral matrix. We will then make two pairs of nonlocal integrable reductions for the spectral matrix to generate two fifth-order scalar nonlocal reverse-spacetime equations, which are Liouville integrable, i.e. possess infinitely many commuting symmetries and conservation laws. The presented scalar nonlocal integrable equations are a nonlocal complex reverse-spacetime generalzied so(3, ${\mathbb{R}}$)-mKdV equation:
$\begin{eqnarray*}\begin{array}{rcl}{r}_{t} & = & \displaystyle \frac{15}{8}{r}_{x}{\left({r}^{* }(-x,-t)\right)}^{4}+\displaystyle \frac{15}{4}{r}^{2}{r}_{x}{\left({r}^{* }(-x,-t)\right)}^{2}\\ & & +\displaystyle \frac{15}{8}{r}^{4}{r}_{x}-\displaystyle \frac{5}{2}{r}_{x}^{3}\\ & & -5{r}_{x}{r}^{* }(-x,-t){r}_{{xx}}^{* }(-x,-t)-10{{rr}}_{x}{r}_{{xx}}\\ & & -\displaystyle \frac{5}{2}{r}_{x}{\left({r}_{x}^{* }(-x,-t)\right)}^{2}\\ & & -\displaystyle \frac{5}{2}{r}_{{xxx}}{\left({r}^{* }(-x,-t)\right)}^{2}+5{r}_{{xx}}{r}^{* }\\ & & \times (-x,-t){r}_{x}^{* }(-x,-t)-\displaystyle \frac{5}{2}{r}^{2}{r}_{{xxx}}+{r}_{5x},\end{array}\end{eqnarray*}$
where r* denotes the complex conjugate of r, and a nonlocal real reverse-spacetime generalzied so(3, ${\mathbb{R}}$)-mKdV equation:
$\begin{eqnarray*}\begin{array}{rcl}{r}_{t} & = & \displaystyle \frac{15}{8}{r}_{x}{\left(r(-x,-t)\right)}^{4}+\displaystyle \frac{15}{4}{r}^{2}{r}_{x}{\left(r(-x,-t)\right)}^{2}\\ & & +\displaystyle \frac{15}{8}{r}^{4}{r}_{x}-\displaystyle \frac{5}{2}{r}_{x}^{3}\\ & & -5{r}_{x}r(-x,-t){r}_{{xx}}(-x,-t)-10{{rr}}_{x}{r}_{{xx}}\\ & & -\displaystyle \frac{5}{2}{r}_{x}{\left({r}_{x}(-x,-t)\right)}^{2}\\ & & -\displaystyle \frac{5}{2}{r}_{{xxx}}{\left(r(-x,-t)\right)}^{2}+5{r}_{{xx}}r(-x,-t){r}_{x}\\ & & \times (-x,-t)-\displaystyle \frac{5}{2}{r}^{2}{r}_{{xxx}}+{r}_{5x}.\end{array}\end{eqnarray*}$
It is easy to see that both nonlocal integrable equations are PT-symmetric. Namely, they are invariant under the parity-time transformation: x → − x, t → − t, i → − i.

2. A fifth-order integrable system

2.1. Matrix spectral problems

Let i denote the unit imaginary number. We consider a Lax pair of matrix spectral problems:
$\begin{eqnarray}-\ {\rm{i}}{{\boldsymbol{\phi }}}_{x}={ \mathcal M }{\boldsymbol{\phi }}={ \mathcal M }({\boldsymbol{u}},\lambda ){\boldsymbol{\phi }},-\ {\rm{i}}{{\boldsymbol{\phi }}}_{t}={ \mathcal N }{\boldsymbol{\phi }}={ \mathcal N }({\boldsymbol{u}},\lambda ){\boldsymbol{\phi }},\end{eqnarray}$
with
$\begin{eqnarray}{ \mathcal M }={ \mathcal M }({\boldsymbol{u}},\lambda )=\left[\begin{array}{ccc}0 & -s & -\lambda \\ s & 0 & -r\\ \lambda & r & 0\end{array}\right],\end{eqnarray}$
and
$\begin{eqnarray}{ \mathcal N }={ \mathcal N }({\boldsymbol{u}},\lambda )=\displaystyle \sum _{l=0}^{5}\left[\begin{array}{ccc}0 & -{g}_{l} & -{e}_{l}\\ {g}_{l} & 0 & -{f}_{l}\\ {e}_{l} & {f}_{l} & 0\end{array}\right]{\lambda }^{l}.\end{eqnarray}$
In the above spectral problems, λ is a spectral parameter, ${\boldsymbol{u}}={\left(r,s\right)}^{{\rm{T}}}$ is a potential, ${\boldsymbol{\phi }}={\left({\phi }_{1},{\phi }_{2},{\phi }_{3}\right)}^{{\rm{T}}}$ is a column eigenfunction, and el, fl, gl are determined by
$\begin{eqnarray*}\begin{array}{rcl}{f}_{0} & = & {g}_{0}=0,{e}_{0}=-1;\\ {f}_{1} & = & -r,{g}_{1}=-s,{e}_{1}=0;\\ {f}_{2} & = & \ {\rm{i}}{s}_{x},{g}_{2}=-\ {\rm{i}}{r}_{x},{e}_{2}=\displaystyle \frac{1}{2}({r}^{2}+{s}^{2});\\ {f}_{3} & = & -{r}_{{xx}}+\displaystyle \frac{1}{2}{r}^{3}+\displaystyle \frac{1}{2}{{rs}}^{2},{g}_{3}=-{s}_{{xx}}\\ & & +\displaystyle \frac{1}{2}{r}^{2}s+\displaystyle \frac{1}{2}{s}^{3},{e}_{3}=\ {\rm{i}}({r}_{x}s-{{rs}}_{x});\\ {f}_{4} & = & \ {\rm{i}}\left({s}_{{xxx}}-\displaystyle \frac{3}{2}{r}^{2}{s}_{x}-\displaystyle \frac{3}{2}{s}^{2}{s}_{x}\right),\\ & {g}_{4}\,= & \ {\rm{i}}\left(-{r}_{{xxx}}+\displaystyle \frac{3}{2}{r}^{2}{r}_{x}+\displaystyle \frac{3}{2}{r}_{x}{s}^{2}\right),\\ {e}_{4} & = & {{rr}}_{{xx}}+{{ss}}_{{xx}}-\displaystyle \frac{1}{2}{r}_{x}^{2}-\displaystyle \frac{1}{2}{s}_{x}^{2}-\displaystyle \frac{3}{8}{\left({r}^{2}+{s}^{2}\right)}^{2};\\ {f}_{5} & = & -{r}_{{xxxx}}+\displaystyle \frac{5}{2}{r}^{2}{r}_{{xx}}+\displaystyle \frac{5}{2}{{rr}}_{x}^{2}+\displaystyle \frac{3}{2}{r}_{{xx}}{s}^{2}+3{r}_{x}{{ss}}_{x}\\ & & +{{rss}}_{{xx}}-\displaystyle \frac{1}{2}{{rs}}_{x}^{2}-\displaystyle \frac{3}{8}r{\left({r}^{2}+{s}^{2}\right)}^{2},\\ {g}_{5} & = & -{s}_{{xxxx}}+\displaystyle \frac{5}{2}{s}^{2}{s}_{{xx}}+\displaystyle \frac{5}{2}{{ss}}_{x}^{2}+\displaystyle \frac{3}{2}{r}^{2}{s}_{{xx}}+3{{rr}}_{x}{s}_{x}\\ & & +{{rr}}_{{xx}}s-\displaystyle \frac{1}{2}{r}_{x}^{2}s-\displaystyle \frac{3}{8}s{\left({r}^{2}+{s}^{2}\right)}^{2},\\ {e}_{5} & = & \ {\rm{i}}\left(\Space{0ex}{2.25ex}{0ex}{r}_{{xxx}}s-{{rs}}_{{xxx}}-{r}_{{xx}}{s}_{x}+{r}_{x}{s}_{{xx}}\right.\\ & & \left.-\displaystyle \frac{3}{2}{r}^{2}{r}_{x}s+\displaystyle \frac{3}{2}{{rs}}^{2}{s}_{x}+\displaystyle \frac{3}{2}{r}^{3}{s}_{x}-\displaystyle \frac{3}{2}{r}_{x}{s}^{3}\right);\\ {f}_{6} & = & \displaystyle \frac{\ {\rm{i}}}{8}(15{s}^{4}{s}_{x}+30{r}^{2}{s}^{2}{s}_{x}\\ & & +15{s}_{x}{r}^{4}-20{s}^{2}{s}_{{xxx}}-80{{ss}}_{x}{s}_{{xx}}\\ & & -20{s}_{{xxx}}{r}^{2}-40{s}_{x}{{rr}}_{{xx}}-40{s}_{{xx}}{{rr}}_{x}-20{s}_{x}{r}_{x}^{2}\\ & & -20{s}_{x}^{3}+8{s}_{5x}),\\ {g}_{6} & = & \displaystyle \frac{\ {\rm{i}}}{8}(-15{r}_{x}{s}^{4}-30{r}^{2}{s}^{2}{r}_{x}-15{r}^{4}{r}_{x}+20{r}_{x}^{3}\\ & & +40{r}_{x}{{ss}}_{{xx}}+80{{ss}}_{x}{s}_{{xx}}\\ & & +20{r}_{x}{s}_{x}^{2}+20{r}_{{xxx}}{s}^{2}+40{r}_{{xx}}{{ss}}_{x}+20{r}^{2}{r}_{{xxx}}\\ & & -8{r}_{5x}),\\ {e}_{6} & = & {{rr}}_{4x}+{{ss}}_{4x}-{r}_{x}{r}_{{xxx}}-{s}_{x}{s}_{{xxx}}\\ & & +\displaystyle \frac{1}{2}{r}_{{xx}}^{2}+\displaystyle \frac{1}{2}{s}_{{xx}}^{2}\\ & & -\displaystyle \frac{5}{2}({r}^{2}+{s}^{2})({{rr}}_{{xx}}+{{ss}}_{{xx}})-\displaystyle \frac{5}{4}({r}^{2}-{s}^{2})({r}_{x}^{2}-{s}_{x}^{2})\\ & & -5{{rsr}}_{x}{s}_{x}+\displaystyle \frac{5}{16}{\left({r}^{2}+{s}^{2}\right)}^{3}.\end{array}\end{eqnarray*}$
The coefficients el, fl, gl are defined by
$\begin{eqnarray}\left\{\begin{array}{l}{f}_{l+1}=-{\rm{i}}{g}_{l,x}+{{re}}_{l},\\ {g}_{l+1}=\ {\rm{i}}{f}_{l,x}+{{se}}_{l},\\ {e}_{l+1,x}=\ {\rm{i}}({{rg}}_{l+1}-{{sf}}_{l+1}),\end{array}\right.l\geqslant 0.\end{eqnarray}$
under the integration conditions
$\begin{eqnarray*}{e}_{l}{| }_{u=0}=0,l\geqslant 1,\end{eqnarray*}$
i.e. take the constant of integration as zero, which implies that
$\begin{eqnarray*}{f}_{l}{| }_{u=0}={g}_{l}{| }_{u=0}=0,l\geqslant 1.\end{eqnarray*}$
Such a matrix
$\begin{eqnarray}{ \mathcal W }={{eh}}_{1}+{{fh}}_{2}+{{gh}}_{3}=\displaystyle \sum _{l=0}^{\infty }\left[\begin{array}{ccc}0 & -{g}_{l} & -{e}_{l}\\ {g}_{l} & 0 & -{f}_{l}\\ {e}_{l} & {f}_{l} & 0\end{array}\right]{\lambda }^{-l}\end{eqnarray}$
solves the stationary zero curvature equation
$\begin{eqnarray}{{ \mathcal W }}_{x}={\rm{i}}[{ \mathcal M },{ \mathcal W }].\end{eqnarray}$
More examples can be found in the literature (see, e.g. [17, 18]).
Now, the zero curvature equation
$\begin{eqnarray}{{ \mathcal M }}_{t}-{{ \mathcal N }}_{x}+{\rm{i}}[{ \mathcal M },{ \mathcal N }]=0,\end{eqnarray}$
leads to a fifth-order integrable system ut = X:
$\begin{eqnarray}\left\{\begin{array}{l}{r}_{t}={X}_{1}=\displaystyle \frac{15}{8}{r}_{x}{s}^{4}+\displaystyle \frac{15}{4}{r}^{2}{r}_{x}{s}^{2}+\displaystyle \frac{15}{8}{r}^{4}{r}_{x}-\displaystyle \frac{5}{2}{r}_{x}^{3}-5{r}_{x}{{ss}}_{{xx}}\\ -10{{rr}}_{x}{r}_{{xx}}-\displaystyle \frac{5}{2}{r}_{x}{s}_{x}^{2}-\displaystyle \frac{5}{2}{r}_{{xxx}}{s}^{2}-5{r}_{{xx}}{{ss}}_{x}-\displaystyle \frac{5}{2}{r}^{2}{r}_{{xxx}}+{r}_{5x},\\ {s}_{t}={X}_{2}=\displaystyle \frac{15}{8}{s}^{4}{s}_{x}+\displaystyle \frac{15}{4}{r}^{2}{s}^{2}{s}_{x}+\displaystyle \frac{15}{8}{r}^{4}{s}_{x}-\displaystyle \frac{5}{2}{s}^{2}{s}_{{xxx}}-10{{ss}}_{x}{s}_{{xx}}\\ -\displaystyle \frac{5}{2}{r}^{2}{s}_{{xxx}}-5{{rr}}_{{xx}}{s}_{x}-5{{rr}}_{x}{s}_{{xx}}-\displaystyle \frac{5}{2}{r}_{x}^{2}{s}_{x}-\displaystyle \frac{5}{2}{s}_{x}^{3}+{s}_{5x},\end{array}\right.\end{eqnarray}$
where ${\boldsymbol{X}}={\left({X}_{1},{X}_{2}\right)}^{{\rm{T}}}$.

2.2. An application of the trace identity

We apply the trace identity [3] with our spectral matrix ${\rm{i}}{ \mathcal M }$:
$\begin{eqnarray}\frac{\delta }{\delta {\boldsymbol{u}}}\int \mathrm{tr}\left({ \mathcal W }\frac{\partial { \mathcal M }}{\partial \lambda }\right)\,{\rm{d}}x={\lambda }^{-\gamma }\frac{\lambda }{\partial \lambda }{\lambda }^{\gamma }\,\mathrm{tr}\left({ \mathcal W }\frac{\partial { \mathcal M }}{\partial {\boldsymbol{u}}}\right),\end{eqnarray}$
where the constant γ is given by
$\begin{eqnarray}\gamma =-\frac{\lambda }{2}\frac{{\rm{d}}}{{\rm{d}}\lambda }\mathrm{ln}| \langle { \mathcal W },{ \mathcal W }\rangle | .\end{eqnarray}$
Then, we obtain the following bi-Hamiltonian structure [19] for the integrable system (11):
$\begin{eqnarray}{{\boldsymbol{u}}}_{t}={J}_{1}\displaystyle \frac{\delta {{ \mathcal H }}_{2}}{\delta {\boldsymbol{u}}}={J}_{2}\displaystyle \frac{\delta {{ \mathcal H }}_{1}}{\delta {\boldsymbol{u}}},\end{eqnarray}$
where the Hamiltonian pair, J1 and J2, is given by
$\begin{eqnarray}{J}_{1}=\left[\begin{array}{cc}0 & -1\\ 1 & 0\end{array}\right],{J}_{2}={\rm{i}}\ \left[\begin{array}{cc}-\partial +s{\partial }^{-1}s & -s{\partial }^{-1}r\\ -r{\partial }^{-1}s & -\partial +r{\partial }^{-1}r\end{array}\right],\end{eqnarray}$
and the Hamiltonian functionals, ${{ \mathcal H }}_{1}$ and ${{ \mathcal H }}_{2}$, are determined by
$\begin{eqnarray}\begin{array}{c}{{ \mathcal H }}_{1}=-\frac{{\rm{i}}}{5}\int [{{rr}}_{{xxxx}}+{{ss}}_{{xxxx}}-{r}_{x}{r}_{{xxx}}-{s}_{x}{s}_{{xxx}}\\ \quad +\frac{1}{2}{r}_{{xx}}^{2}+\frac{1}{2}{s}_{{xx}}^{2}\\ \quad -\frac{5}{2}r({r}^{2}+{s}^{2}){r}_{{xx}}-\frac{5}{2}s({r}^{2}+{s}^{2}){s}_{{xx}}\\ \quad -5{{rsr}}_{x}{s}_{x}\\ \quad -\frac{5}{4}({r}^{2}-{s}^{2}){r}_{x}^{2}+\frac{5}{4}({r}^{2}-{s}^{2}){s}_{x}^{2}\\ \quad +\frac{5}{16}{\left({r}^{2}+{s}^{2}\right)}^{3}]\,{\rm{d}}x,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{c}{{ \mathcal H }}_{2}=\int \left\{\frac{1}{6}{{sr}}_{5x}-\frac{1}{6}{{rs}}_{5x}-\frac{1}{6}{s}_{x}{r}_{{xxxx}}+\frac{1}{6}{r}_{x}{s}_{{xxxx}}\right.\\ \quad +\frac{1}{12}(2{s}_{{xx}}-5{{sr}}^{2}-5{s}^{3}){r}_{{xxx}}-\frac{1}{12}(2{r}_{{xx}}-5{r}^{3}-5{{rs}}^{2}){s}_{{xxx}}\\ \quad +\frac{1}{12}[5(3{r}^{2}-{s}^{2}){s}_{x}-20{{rsr}}_{x}]{r}_{{xx}}\\ \quad -\frac{1}{12}[5(3{s}^{2}-{r}^{2}){r}_{x}-20{{rss}}_{x}]{s}_{{xx}}\\ \quad \left.+\frac{5}{16}({{rs}}_{x}-{{sr}}_{x})[\frac{4}{3}({r}_{x}^{2}+{s}_{x}^{2})-({r}^{2}+{s}^{2})]\right\}\,{\rm{d}}x.\end{array}\end{eqnarray}$
The Hamiltonian formulation leads to infinitely many symmetries and conservation laws for the integrable system (11), which can often be generated through symbolic computation by computer algebra systems (see, e.g. [20, 21]). The operator
$\begin{eqnarray}{\rm{\Phi }}={J}_{2}{J}_{1}^{-1}={\rm{i}}\left[\begin{array}{cc}s{\partial }^{-1}r & -\partial +s{\partial }^{-1}s\\ \partial -r{\partial }^{-1}r & -r{\partial }^{-1}s\end{array}\right],\partial =\displaystyle \frac{\partial }{\partial x},\end{eqnarray}$
is a hereditary recursion operator [22, 23] for the integrable system (11).

3. Nonlocal generalized so(3, ${\mathbb{R}}$)-mKdV equations

3.1. Integrable complex reverse-spacetime reductions

Firstly, we consider a pair of specific complex reverse-spacetime similarity transformations for the spectral matrix:
$\begin{eqnarray}\begin{array}{l}{{ \mathcal M }}^{\dagger }(-x,-t,-{\lambda }^{* })=-{\rm{\Theta }}{ \mathcal M }(x,t,\lambda ){{\rm{\Theta }}}^{-1},\\ {\rm{\Theta }}=\left[\begin{array}{ccc}0 & 0 & \sigma \\ 0 & 1 & 0\\ \sigma & 0 & 0\end{array}\right],\sigma =\pm 1,\end{array}\end{eqnarray}$
where † and * stand for the Hermitian transpose and the complex conjugate, respectively. They lead to the potential reductions
$\begin{eqnarray}{r}^{* }(-x,-t)=-\sigma s(x,t),\sigma =\pm 1.\end{eqnarray}$
Under these potential reduction, one has
$\begin{eqnarray}\begin{array}{l}{e}_{l}^{* }(-x,-t)={\left(-1\right)}^{l}{e}_{l}(x,t),{f}_{l}^{* }(-x,-t)\\ \quad ={\left(-1\right)}^{l}\sigma {g}_{l}(x,t),l\geqslant 1.\end{array}\end{eqnarray}$
We can prove these results by the mathematical induction. Actually, under the induction assumption for l = n and using the recursion relation (7), we can compute
$\begin{eqnarray*}\begin{array}{l}{f}_{n+1}^{* }(-x,-t)=-{\rm{i}}{g}_{n,x}^{* }(-x,-t)+{r}^{* }(-x,-t){e}_{n}^{* }(-x,-t)\\ \quad =\,{\left(-1\right)}^{n+1}\sigma [\ {\rm{i}}{f}_{n,x}(x,t)+s(x,t){e}_{n}(x,t)]\\ \quad =\,{\left(-1\right)}^{n+1}\sigma {g}_{n+1}(x,t),\\ {e}_{n+1,x}^{* }(-x,-t)=-{\rm{i}}[{r}^{* }(-x,-t){g}_{n+1}^{* }(-x,-t)\\ \quad -{s}^{* }(-x,-t){f}_{n+1}^{* }(-x,-t)]\\ \quad =\,{\rm{i}}{\left(-1\right)}^{n+1}[r(x,t){g}_{n+1}(x,t)-s(x,t){f}_{n+1}(x,t)]\\ \quad =\,{\left(-1\right)}^{n+1}{e}_{n+1,x}(x,t).\end{array}\end{eqnarray*}$
Therefore, one obtains
$\begin{eqnarray}{{ \mathcal N }}^{\dagger }(-x,-t,-{\lambda }^{* })=-{\rm{\Theta }}{ \mathcal N }(x,t,\lambda ){{\rm{\Theta }}}^{-1},\end{eqnarray}$
and then
$\begin{eqnarray}\begin{array}{l}{\left(({{ \mathcal M }}_{t}-{{ \mathcal N }}_{x}+{\rm{i}}[{ \mathcal M },{ \mathcal N }])(-x,-t,-{\lambda }^{* })\right)}^{\dagger }\\ \quad =\,{\rm{\Theta }}({{ \mathcal M }}_{t}-{{ \mathcal N }}_{x}+{\rm{i}}[{ \mathcal M },{ \mathcal N }])(x,t,\lambda ){{\rm{\Theta }}}^{-1}.\end{array}\end{eqnarray}$
This tells that the potential reductions defined by (20) are compatible with the zero curvature equation of the integrable system (11). Then, one obtains two reduced scalar nonlocal integrable equations associated with so(3, ${\mathbb{R}}$):
$\begin{eqnarray}{r}_{t}={X}_{1}{| }_{s(x,t)=-\sigma {r}^{* }(-x,-t)},\end{eqnarray}$
where ${\boldsymbol{X}}={\left({X}_{1},{X}_{2}\right)}^{{\rm{T}}}$ is defined as in (11). The infinitely many symmetries and conservation laws for the integrable system (11) will be reduced to infinitely many ones for the above nonlocal integrable equations in (24), under (20).
With σ = 1, the third-order nonlinear reduced scalar integrable equation presents a nonlocal complex reverse-spacetime PT-symmetric generalized so(3, ${\mathbb{R}}$)-mKdV equation of fifth-order:
$\begin{eqnarray}\begin{array}{l}{r}_{t}=\displaystyle \frac{15}{8}{r}_{x}{\left({r}^{* }(-x,-t)\right)}^{4}+\displaystyle \frac{15}{4}{r}^{2}{r}_{x}{\left({r}^{* }(-x,-t)\right)}^{2}\\ \quad +\displaystyle \frac{15}{8}{r}^{4}{r}_{x}-\displaystyle \frac{5}{2}{r}_{x}^{3}\\ \quad -5{r}_{x}{r}^{* }(-x,-t){r}_{{xx}}^{* }(-x,-t)-10{{rr}}_{x}{r}_{{xx}}\\ \quad -\displaystyle \frac{5}{2}{r}_{x}{\left({r}_{x}^{* }(-x,-t)\right)}^{2}\\ \quad -\displaystyle \frac{5}{2}{r}_{{xxx}}{\left({r}^{* }(-x,-t)\right)}^{2}+5{r}_{{xx}}{r}^{* }\\ \quad \times (-x,-t){r}_{x}^{* }(-x,-t)-\displaystyle \frac{5}{2}{r}^{2}{r}_{{xxx}}+{r}_{5x},\end{array}\end{eqnarray}$
where r* denotes the complex conjugate of r. Note that the first component of X is even with respect to s and odd with respect to r. Therefore, the fifth-order reduced scalar nonlocal integrable equation with σ = −1 in (24) is exactly the same as the complex nonlocal reverse-space generalized so(3, ${\mathbb{R}}$)-mKdV equation (25).
Let us define
$\begin{eqnarray*}\begin{array}{l}{{\boldsymbol{Y}}}^{[n]}={\left({Y}_{1}^{[n]},{Y}_{2}^{[n]}\right)}^{{\rm{T}}}\\ \quad =\,({{\rm{\Phi }}}^{n-1}{\boldsymbol{X}}){| }_{s(x,t)=-\sigma {r}^{* }(-x,-t)},n\geqslant 1,\end{array}\end{eqnarray*}$
where ${\boldsymbol{X}}={\left({X}_{1},{X}_{2}\right)}^{{\rm{T}}}$ and Φ are defined by (11) and (18), respectively. Then, through applying the hierarchy of symmetries ${Y}_{1}^{[n]},n\geqslant 1$, a kind of specific solutions to the nonlocal integrable equation (25) can be determined by
$\begin{eqnarray*}\begin{array}{l}r=\exp ({\varepsilon }_{1}{Y}_{1}^{[1]})\exp ({\varepsilon }_{2}{Y}_{1}^{[2]})\cdots \\ \quad \exp ({\varepsilon }_{m}{Y}_{1}^{[m]}){r}_{0},m\geqslant 1,\end{array}\end{eqnarray*}$
where $\exp $ is the exponential map, ϵj, 1 ≤ jm, are small parameters, and r0 is an arbitrarily given solution. In particular, we can take r0 = aeiθx, where a is an arbitrary constant and θ is a constant angle determined by e4iθ + 1 = 0.

3.2. Integrable real reverse-spacetime reductions

Secondly, we consider another pair of specific real reverse-spacetime similarity transformations for the spectral matrix:
$\begin{eqnarray}\begin{array}{l}{{ \mathcal M }}^{{\rm{T}}}(-x,-t,\lambda )={\rm{\Theta }}{ \mathcal M }(x,t,\lambda ){{\rm{\Theta }}}^{-1},\\ {\rm{\Theta }}=\left[\begin{array}{ccc}0 & 0 & \sigma \\ 0 & 1 & 0\\ \sigma & 0 & 0\end{array}\right],\sigma =\pm 1,\end{array}\end{eqnarray}$
where T means taking the matrix transpose as before. They generate the potential reductions
$\begin{eqnarray}r(-x,-t)=\sigma s(x,t),\sigma =\pm 1.\end{eqnarray}$
Under these potential reductions, one can have
$\begin{eqnarray}{e}_{l}(-x,-t)={e}_{l}(x,t),{f}_{l}(-x,-t)=\sigma {g}_{l}(x,t),l\geqslant 1.\end{eqnarray}$
These results can be verified by the mathematical induction. A direct computation can be made as follows. Under the induction assumption for l = n and applying the recursion relation (7), we can have
$\begin{eqnarray*}\begin{array}{l}{f}_{n+1}(-x,-t)=\ {\rm{i}}{g}_{n,x}(-x,-t)+r(-x,-t){e}_{n}(-x,-t)\\ \quad =\,\sigma [\ {\rm{i}}{f}_{n,x}(x,t)+s(x,t){e}_{n}(x,t)]\\ \quad =\,\sigma {g}_{n+1}(x,t),\\ {e}_{n+1,x}(-x,-t)=-\ {\rm{i}}[r(-x,-t){g}_{n+1}(-x,-t)\\ \quad -s(-x,-t){f}_{n+1}(-x,-t)]\\ \quad =\ {\rm{i}}[r(x,t){g}_{n+1}(x,t)-s(x,t){f}_{n+1}(x,t)]\\ \quad =\,{e}_{n+1,x}(x,t).\end{array}\end{eqnarray*}$
Then, we arrive at
$\begin{eqnarray}{{ \mathcal N }}^{{\rm{T}}}(-x,-t,\lambda )={\rm{\Theta }}{ \mathcal N }(x,t,\lambda ){{\rm{\Theta }}}^{-1},\end{eqnarray}$
and therefore, we obtain
$\begin{eqnarray}\begin{array}{c}{\left(({{ \mathcal M }}_{t}-{{ \mathcal N }}_{x}+{\rm{i}}[{ \mathcal M },{ \mathcal N }])(-x,-t,\lambda )\right)}^{{\rm{T}}}\\ \quad =-{\rm{\Theta }}({{ \mathcal M }}_{t}-{{ \mathcal N }}_{x}+i[{ \mathcal M },{ \mathcal N }])(x,t,\lambda ){{\rm{\Theta }}}^{-1}.\end{array}\end{eqnarray}$
This guarantees that the potential reductions in (27) are compatible with the zero curvature equation of the integrable system (11).
In this way, one obtains two reduced scalar nonlocal integrable equations associated with so(3, ${\mathbb{R}}$):
$\begin{eqnarray}{r}_{t}={X}_{1}{| }_{s(x,t)=\sigma r(-x,-t)},\end{eqnarray}$
where ${\boldsymbol{X}}={\left({X}_{1},{X}_{2}\right)}^{{\rm{T}}}$ is given as in (11). Moreover, the infinitely many symmetries and conservation laws for the integrable system (11) are reduced to infinitely many ones for the above nonlocal integrable equations in (31), under (27).
With σ = 1, the fifth-order nonlinear reduced scalar integrable equation presents a nonlocal real reverse-spacetime PT-symmetric generalized so(3, ${\mathbb{R}}$)-mKdV equation:
$\begin{eqnarray}\begin{array}{l}{r}_{t}=\displaystyle \frac{15}{8}{r}_{x}{\left(r(-x,-t)\right)}^{4}+\displaystyle \frac{15}{4}{r}^{2}{r}_{x}{\left(r(-x,-t)\right)}^{2}\\ \quad +\displaystyle \frac{15}{8}{r}^{4}{r}_{x}-\displaystyle \frac{5}{2}{r}_{x}^{3}\\ \quad -5{r}_{x}r(-x,-t){r}_{{xx}}(-x,-t)-10{{rr}}_{x}{r}_{{xx}}\\ \quad -\displaystyle \frac{5}{2}{r}_{x}{\left({r}_{x}(-x,-t)\right)}^{2}\\ \quad -\displaystyle \frac{5}{2}{r}_{{xxx}}{\left(r(-x,-t)\right)}^{2}+5{r}_{{xx}}r\\ \quad \times (-x,-t){r}_{x}(-x,-t)-\displaystyle \frac{5}{2}{r}^{2}{r}_{{xxx}}+{r}_{5x}.\end{array}\end{eqnarray}$
It is easy to see that even and odd properties with respect to r and s in the two components of X implies that the fifth-order nonlinear reduced scalar integrable equation with σ = −1 in (31) is exactly the same as the nonlocal real reverse-spacetime generalized so(3, ${\mathbb{R}}$)-mKdV equation (32).
Similarly, define
$\begin{eqnarray*}{{\boldsymbol{Z}}}^{[n]}={\left({Z}_{1}^{[n]},{Z}_{2}^{[n]}\right)}^{{\rm{T}}}=({{\rm{\Phi }}}^{n-1}{\boldsymbol{X}}){| }_{s(x,t)=\sigma r(-x,-t)},n\geqslant 1,\end{eqnarray*}$
where again, ${\boldsymbol{X}}={\left({X}_{1},{X}_{2}\right)}^{{\rm{T}}}$ and Φ are defined by (11) and (18), respectively. Then, by using the hierarchy of symmetries ${Z}_{1}^{[n]},n\geqslant 1$, a kind of specific solutions to the nonlocal integrable equation (32) can be presented as follows:
$\begin{eqnarray*}r=\exp ({\varepsilon }_{1}{Z}_{1}^{[1]})\exp ({\varepsilon }_{2}{Z}_{1}^{[2]})\cdots \exp ({\varepsilon }_{m}{Z}_{1}^{[m]}){r}_{0},m\geqslant 1,\end{eqnarray*}$
where again, $\exp $ is the exponential map, ϵj, 1 ≤ jm, are small parameters, and r0 is an arbitrarily given solution. Particularly, we can take ${r}_{0}=a\sin ({cx}+{\rm{d}}t)+b\cos ({cx}+{\rm{d}}t)$, where a, b, c, d are constants satisfying a2 = b2 and $d=\tfrac{15}{2}{b}^{4}c+10{b}^{2}{c}^{3}+{c}^{5}$.

4. Conclusion and remarks

We have presented two fifth-order nonlocal integrable equations from a pair of matrix spectral problems associated with the special orthogonal Lie algebra $\mathrm{so}(3,{\mathbb{R}})$. The presented nonlocal integrable equations inherit the common integrable characteristic: the existence of infinitely many symmetries and conservation laws.
Each pair of nonlocal integrable reductions generates the two same reduced nonlocal integrable equations. This phenomenon for integrable equations associated with $\mathrm{so}(3,{\mathbb{R}})$ is different from the one for integrable equations associated with $\mathrm{sl}(2,{\mathbb{R}})$. In the case of sl(2, ${\mathbb{R}}$), there are two inequivalent focusing and defocusing integrable reductions, both local and nonlocal.
For integrable equations associated with the special orthogonal Lie algebra $\mathrm{so}(3,{\mathbb{R}})$, there are still many interesting questions. Particularly, we would like to know how to formulate Riemann-Hilbert problems so that the associated inverse scattering transforms [11] could be presented and N-soliton solutions [24, 25] could be worked out, which might lead to lump wave solutions [26-28] or rogue wave solutions [29, 30] to their higher-dimensional counterparts.
We remark that in general, establishing the global existence of solutions for nonlocal differential equations can be very challenging compared to local existence results. It is important to note that the global existence of solutions is not guaranteed for general Cauchy problems of nonlocal differential equations. Soliton solutions are explicitly presented only for particular integrable equations in the nonlocal case (see, e.g. [11, 12, 31, 32]). Analyzing mathematical properties of nonlocal differential equations, even nonlocal linear ordinary differential equations, and establishing their global existence results often requires careful analysis and applications of specialized techniques. Very little is known so far about integrable equations generated from matrix spectral problems associated with so(3, ${\mathbb{R}}$), in both local and nonlocal cases.
To summarize, nonlocal integrable equations are a challenging and actively researched field. While progress has been made in understanding specific classes of nonlocal integrable equations, there is still much to learn about their dynamical behavior, mathematical properties, and solution techniques. Continued research and exploration are necessary to advance our knowledge in this area.

This work was supported in part by the ‘Qing Lan Project' of Jiangsu Province (2020), the ‘333 Project' of Jiangsu Province (No. BRA2020246), the National Natural Science Foundation of China (12271488, 11975145, and 11972291), and the Ministry of Science and Technology of China (G2021016032L).

1
Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 21 467

DOI

2
Ablowitz M A Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering Cambridge University Press

3
Tu G Z 1989 On Liouville integrability of zero-curvature equations and the Yang hierarchy J. Phys. A: Math. Gen. 22 2375

DOI

4
Ma W X 1992 A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction Chin Ann. Math. A 13 115

5
Ablowitz M J Fokas A S 2003 Complex Variables: Introduction and Applications Cambridge University Press 2nd edn

6
Calogero F Degasperis A 1982 Solitons and Spectral Transform I North-Holland

7
Hasegawa A 1989 Optical Solitons in Fibers 2nd edn Springer

8
Kaup D J Newell A C 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 798

DOI

9
Ma W X 2022 Matrix integrable fourth-order nonlinear Schrödinger equations and their exact soliton solutions Chin. Phys. Lett. 39 100201

DOI

10
Ma W X 2023 Matrix integrable fifth-order mKdV equations and their soliton solutions Chin. Phys. B 32 020201

DOI

11
Ablowitz M J Musslimani A H 2016 Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation Nonlinearity 29 915

DOI

12
Ji J L Zhu Z N 2017 On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions Commun. Nonlinear Sci. Numer. Simul. 42 699

DOI

13
Ma W X Chen M 2006 Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras J. Phys. A: Math. Gen. 39 10787

DOI

14
Ma W X 2013 Integrable couplings and matrix loop algebras Nonlinear and Modern Mathematical Physics Ma W X Kaup D American Institute of Physics vol 1562 105 122 AIP Conference Proceedings

DOI

15
Ma W X Zhang Y J 2018 Darboux transformations of integrable couplings and applications Rev. Math. Phys. 30 1850003

DOI

16
Ma W X 2013 A soliton hierarchy associated with so(3, ${\mathbb{R}}$) Appl. Math. Comput. 220 117

DOI

17
Ma W X 2023 AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials Appl. Math. Lett. 145 108775

DOI

18
Ma W X 2023 Four-component integrable hierarchies of Hamiltonian equations with (m + n + 2)th-order Lax pairs Theor. Math. Phys. 216 1180

DOI

19
Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156

DOI

20
Hereman W Adams P J Eklund H L Hickman M S Herbst B M 2008 Direct methods and symbolic software for conservation laws of nonlinear equations Advances in Nonlinear Waves and Symbolic Computation New York Nova Science Publishers 19 78

DOI

21
Baldwin D E Hereman W 2010 A symbolic algorithm for computing recursion operators of nonlinear partial differential equations Int. J. Comput. Math. 87 1094

DOI

22
Fuchssteiner B 1979 Application of hereditary symmetries to nonlinear evolution equations Nonlinear Anal. 3 849

DOI

23
Olver P J 1986 Applications of Lie Groups to Differential Equations Springer-Verlag

24
Ma W X 2021 Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems Partial Differ. Equ. Appl. Math. 4 100190

DOI

25
Ma W X 2022 Soliton solutions by means of Hirota bilinear forms Partial Differ. Equ. Appl. Math. 5 100220

DOI

26
Sulaiman T A Yusuf A Abdeljabbar A Alquran M 2021 Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation J. Geom. Phys. 169 104347

DOI

27
Zhou Y Zhang X J Zhang C Jia J J Ma W X 2023 New lump solutions to a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation Appl. Math. Lett. 141 108598

DOI

28
Arshed S Raza N Butt A R Javid A Gómez-Aguilar J F 2023 Multiple rational rogue waves for higher dimensional nonlinear evolution equations via symbolic computation approach J. Ocean Eng. Sci. 8 33

DOI

29
Zhou Y Manukure S McAnally M 2021 Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation J. Geom. Phys. 167 104275

DOI

30
Manukure S Zhou Y 2021 A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation J. Geom. Phys. 167 104274

DOI

31
Ma W X 2023 Integrable nonlocal nonlinear Schrödinger hierarchies of type (-λ*, λ) and soliton solutions Rep. Math. Phys. 92 19

DOI

32
Ma W X 2023 Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ, −λ) Int. J. Geom. Methods Mod. Phys. 20 2350098

DOI

Outlines

/