Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Novel soliton molecule solutions for the second extend (3+1)-dimensional Jimbo-Miwa equation in fluid mechanics

  • Hongcai Ma , * ,
  • Xiaoyu Chen ,
  • Aiping Deng
Expand
  • Department of Applied Mathematics, Donghua University, Shanghai 201620, People's Republic of China

*Author to whom any correspondence should be addressed.

Received date: 2023-08-06

  Revised date: 2023-10-10

  Accepted date: 2023-11-03

  Online published: 2023-12-18

Copyright

© 2023 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The main aim of this paper is to investigate the different types of soliton molecule solutions of the second extend (3+1)-dimensional Jimbo-Miwa equation in a fluid. Four different localized waves: line solitons, breather waves, lump solutions and resonance Y-type solutions are obtained by the Hirota bilinear method directly. Furthermore, the molecule solutions consisting of only line waves, breathers or lump waves are generated by combining velocity resonance condition and long wave limit method. Also, the molecule solutions such as line-breather molecule, lump-line molecule, lump-breather molecule, etc. consisting of different waves are derived. Meanwhile, higher-order molecule solutions composed of only line waves are acquired.

Cite this article

Hongcai Ma , Xiaoyu Chen , Aiping Deng . Novel soliton molecule solutions for the second extend (3+1)-dimensional Jimbo-Miwa equation in fluid mechanics[J]. Communications in Theoretical Physics, 2023 , 75(12) : 125004 . DOI: 10.1088/1572-9494/ad0960

1. Introduction

The study of analytical solutions helps us to clarify the physical properties and behaviour of nonlinear equations, which are structural models for many physical phenomena [1]. There are a number of theoretical approaches to solving analytical solutions, such as the tanh-coth method [2-4], Riemann-Hilbert method [5-7], the inverse scattering method [8, 9], Darboux transformation method [10-13], the Painlevé analysis [14], the generalized symmetry method [15], Hirota bilinear method [16, 17, 38] and others [18-21].
In the subject area of the natural sciences, solitons demonstrate remarkable order in the presence of nonlinear effects. In general, we refer to a wave that retains its original size, shape and direction during motion or propagation, and has stability, as a soliton wave [22]. In recent years, a new topic soliton molecules has emerged in the study of solitons, which are bound states of one or more solitons [23-27, 41-43]. The three well-known local waves: lump waves, breathers and line waves are very significant components of soliton molecule solutions.
The (3+1)-dimensional Jimbo-Miwa equation
$\begin{eqnarray}\begin{array}{l}{u}_{{xxxy}}^{}+3{u}_{{xy}}^{}{u}_{x}^{}+3{u}_{y}^{}{u}_{{xx}}^{}\\ +2{u}_{{yt}}^{}-3{u}_{{xz}}^{}=0,\end{array}\end{eqnarray}$
first introduced by Jimbo and Miwa [28] is the second equation of the KP hierarchy. This equation is used to describe certain interesting (3+1)-dimensional waves in physics and then discussed by many authors on its solutions [29], integrability properties [30], symmetries [31-33] and so on. Wazwaz have proposed two extended (3+1)-dimensional Jimbo-Miwa (3D-eJM) equations [34]. The second 3D-eJM equation is deduced by replacing ${u}_{{yt}}^{}$ with ${u}_{{xt}}^{}+{u}_{{yt}}^{}+{u}_{{zt}}^{}$ as
$\begin{eqnarray}\begin{array}{l}{u}_{{xxxy}}^{}+3{u}_{{xy}}^{}{u}_{x}^{}+3{u}_{y}^{}{u}_{{xx}}^{}+2{u}_{{xt}}^{}\\ +2{u}_{{yt}}^{}+2{u}_{{zt}}^{}-3{u}_{{xz}}^{}=0,\end{array}\end{eqnarray}$
where u = u(x, y, z, t) is a function with respect to three spatial coordinates x, y, z and temporal variable t which indicates the amplitude of the wave in the physics of fluids, especially in ocean engineering and science [1]. Although equation (2) belongs to the Kadomtsev-Petviashvili hierarchy, but it does not satisfy the classical productability condition [28].
In contrast to other 3D-eJM equation, relatively little research has been done on this equation. For equation (2), Wazwaz derived multiple soliton solutions [34], Guo et al presented four different localized waves and interaction solutions between lump solutions, line solitons, breathers and rogue waves using the Hirota bilinear method, Sun et al found lump and lump-kink solution [36], Xu et al constructed the resonance behavior with the aid of special parameter restrictions [37]. But as far as we know, no molecule solution of this equation has been studied, especially for the lump molecule solution, a special structural phenomenon that does not exist in most (2+1)-dimensional physical models by using long wave limit method [38, 39]. All of findings in this paper can be used to explain some natural phenomena in the ocean waves and nonlinear optics. Further, the study can be extended to investigate several other nonlinear systems to understand the physical insights of the molecule phenomenon in their dynamics.
This paper has following structure. In section 2, we give four different types of localized waves and the expression of their velocity through the use of N-soliton solution, module and velocity resonance conditions, long wave limit method. We present three molecule solutions consisting of the same localized wave e.g: line molecule, breather molecule and lump molecule solution in section 3. In section 4, a number of molecule solutions with a mixture of different localized waves are obtained. And two forms of the higher order line molecule solutions are derived. Some conclusions and discussions are given in section 5.

2. Different localized waves to the second 3D-eJM equation

According to the Hirota bilinear method and Bell polynomial technique, with logarithmic transform
$\begin{eqnarray}u(x,y,z,t)=2\displaystyle \frac{\partial }{{\partial }_{x}}\mathrm{ln}f(x,y,z,t),\end{eqnarray}$
the equation (2) can be converted to following bilinear form:
$\begin{eqnarray}\begin{array}{l}({D}_{x}^{3}{D}_{y}+2{D}_{x}{D}_{t}+2{D}_{y}{D}_{t}+2{D}_{z}{D}_{t}-3{D}_{x}{D}_{z})\\ \times (f\cdot f)=0,\end{array}\end{eqnarray}$
where operators Dx, Dt are defined by
$\begin{eqnarray}\begin{array}{l}{D}_{x}^{p}{D}_{t}^{q}(f\cdot g)={\left(\displaystyle \frac{\partial }{\partial x}-\displaystyle \frac{\partial }{\partial {x}^{{\prime} }}\right)}^{p}{\left(\displaystyle \frac{\partial }{\partial t}-\displaystyle \frac{\partial }{\partial {t}^{{\prime} }}\right)}^{q}{\left.\,\left(f(x,t)\cdot g({x}^{{\prime} },{t}^{{\prime} })\right)\right|}_{x={x}^{{\prime} },t={t}^{{\prime} }}.\end{array}\end{eqnarray}$
To facilitate mathematical calculations, the equation (4) can be expanded as
$\begin{eqnarray*}\begin{array}{l}{f}_{{\text{xxxy}}}f-{f}_{{\text{xxx}}}{f}_{y}-3{f}_{{\text{xxy}}}{f}_{x}\\ +3{f}_{{\text{xx}}}{f}_{{\text{xy}}}+2{f}_{}{f}_{{\text{xt}}}-2{f}_{t}{f}_{x}\\ +2{f}_{}{f}_{{\text{yt}}}-2{f}_{t}{f}_{y}+2{f}_{}{f}_{{\text{zt}}}\\ -2{f}_{t}{f}_{z}-3{{ff}}_{{\text{xz}}}+3{f}_{z}{f}_{x}=0.\end{array}\end{eqnarray*}$
The N order solution of equation (4) has the following form:
$\begin{eqnarray}f={f}_{N}={\sum }_{\mu =0,1}^{}\exp \left({\sum }_{k=1}^{N}{\mu }_{k}{\xi }_{k}+{\sum }_{k\lt s}^{N}{\mu }_{k}{\mu }_{s}{A}_{{ks}}\right),\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\xi }_{k} & = & \ {p}_{k}^{}x+{q}_{k}^{}y+{r}_{k}^{}z+{\omega }_{k}^{}t+{\phi }_{k}^{},{\omega }_{k}^{}\\ & = & -\displaystyle \frac{{p}_{k}^{3}{q}_{k}^{}-3{p}_{k}^{}{r}_{k}^{}}{2({p}_{k}^{}+{q}_{k}^{}+{r}_{k}^{})},{A}_{{ks}}^{}=\mathrm{ln}\left(\displaystyle \frac{M}{N}\right),\\ M & = & \ {p}_{k}^{4}{q}_{s}\left({p}_{s}^{}+{q}_{s}^{}+{r}_{s}^{}\right)+{p}_{k}^{3}\left({p}_{s}^{}+{q}_{s}^{}+{r}_{s}^{}\right)\\ & & \times \left(2{p}_{s}^{}{q}_{k}^{}-3{p}_{s}^{}{q}_{s}^{}+{q}_{s}^{}{r}_{k}^{}-{q}_{k}^{}{r}_{s}^{}\right)\\ & & +{p}_{k}^{2}\left[{p}_{s}^{3}\left(2{q}_{s}^{}-3{q}_{k}^{}\right)+3{p}_{s}^{2}\left({q}_{k}^{}-{q}_{s}^{}\right)\left({q}_{k}^{}-{q}_{s}^{}+{r}_{k}^{}-{r}_{s}^{}\right)\right.\\ & & +\,3{p}_{s}^{}\left({q}_{k}^{}-{q}_{s}^{}\right)\left({q}_{k}^{}+{r}_{k}^{}\right)\\ & & \quad \left.\left({q}_{s}^{}+{r}_{s}^{}\right)-3{r}_{s}^{}\left({q}_{s}^{}+{r}_{s}^{}\right)\right]+{p}_{s}^{3}{p}_{k}^{}\left[{r}_{s}^{}{q}_{k}^{}+{r}_{k}^{}{q}_{s}^{}\right.\\ & & \left.+2{q}_{k}^{}{q}_{s}^{}-3{q}_{k}^{}\left({q}_{k}^{}+{r}_{k}^{}\right)\right]+{p}_{k}^{}{p}_{s}^{4}{q}_{k}^{}\\ & & -3{p}_{k}^{}{p}_{s}^{2}\left({q}_{k}^{}-{q}_{s}^{}\right)\left({q}_{k}^{}+{r}_{k}^{}\right)\left({q}_{s}^{}+{r}_{s}^{}\right)\\ & & +3{p}_{k}^{}{p}_{s}^{}\left({q}_{k}^{}{r}_{s}^{}+{q}_{s}^{}{r}_{k}^{}+2{r}_{k}^{}{r}_{s}^{}\right)-3{p}_{k}^{}\left({q}_{k}^{}{r}_{s}^{}-{q}_{s}^{}{r}_{k}^{}\right)\\ & & \quad \left({q}_{s}^{}+{r}_{s}^{}\right)+{p}_{s}^{}\left({q}_{k}^{}+{r}_{k}\right)\\ & & \times \left[{p}_{s}^{3}{q}_{k}^{}+\left({p}_{s}^{2}+3\right)\left({q}_{k}^{}{r}_{s}^{}-{q}_{s}^{}{r}_{k}^{}\right)-3{p}_{s}^{}{r}_{k}\right],\\ N & = & \ {p}_{k}^{4}{q}_{s}\left({p}_{s}^{}+{q}_{s}^{}+{r}_{s}^{}\right)+{p}_{k}^{3}\left({p}_{s}^{}+{q}_{s}^{}+{r}_{s}^{}\right)\\ & & \times \left(2{p}_{s}^{}{q}_{k}^{}+3{p}_{s}^{}{q}_{s}^{}+{q}_{s}^{}{r}_{k}^{}-{q}_{k}^{}{r}_{s}^{}\right)\\ & & +{p}_{k}^{2}\left[{p}_{s}^{3}\left(2{q}_{s}^{}+3{q}_{k}^{}\right)+3{p}_{s}^{2}\left({q}_{k}^{}+{q}_{s}^{}\right)\left({q}_{k}^{}+{q}_{s}^{}+{r}_{k}^{}+{r}_{s}^{}\right)+3{p}_{s}^{}\left({q}_{k}^{}+{q}_{s}^{}\right)\left({q}_{k}^{}+{r}_{k}^{}\right)\right.\\ & & \times \left.\left({q}_{s}^{}+{r}_{s}^{}\right)-3{r}_{s}^{}\left({q}_{s}^{}+{r}_{s}^{}\right)\right]+{p}_{s}^{3}{p}_{k}^{}\left[{r}_{s}^{}{q}_{k}^{}\right.\\ & & \left.+{r}_{k}^{}{q}_{s}^{}+2{q}_{k}^{}{q}_{s}^{}+3{q}_{k}^{}\left({q}_{k}^{}+{r}_{k}^{}\right)\right]+{p}_{k}^{}{p}_{s}^{4}{q}_{k}^{}\\ & & +3{p}_{k}^{}{p}_{s}^{2}\left({q}_{k}^{}+{q}_{s}^{}\right)\left({q}_{k}^{}+{r}_{k}^{}\right)\left({q}_{s}^{}+{r}_{s}^{}\right)+3{p}_{k}^{}{p}_{s}^{}\\ & & \times \left({q}_{k}^{}{r}_{s}^{}+{q}_{s}^{}{r}_{k}^{}+2{r}_{k}^{}{r}_{s}^{}\right)-3{p}_{k}^{}\left({q}_{k}^{}{r}_{s}^{}-{q}_{s}^{}{r}_{k}^{}\right)\\ & & \times \left({q}_{s}^{}+{r}_{s}^{}\right)+{p}_{s}^{}\left({q}_{k}^{}+{r}_{k}\right)\\ & & \times \left[{p}_{s}^{3}{q}_{k}^{}+\left({p}_{s}^{2}+3\right)\left({q}_{k}^{}{r}_{s}^{}-{q}_{s}^{}{r}_{k}^{}\right)-3{p}_{s}^{}{r}_{k}\right].\end{array}\end{eqnarray}$
Here, ${p}_{k}^{},{q}_{k}^{},{r}_{k}^{},{\phi }_{k}(k=1,2,\cdots ,N)$ are arbitrary constants, ∑μ=0,1 denotes all combinations of μk = 0 or 1. The N-soliton solution of equation (2) can be expressed through substituting equation (6) into equation (3). Based on the N-soliton solution, we construct a number of different localized waves.
Figures 1(a), (b) depicts the 3D-plot and density plot of single line soliton with parameters p1 = 1, q1 = 1, r1 = 2, φ1 = 0 at z = 0 plane. Subject to this parameter, equation (3) is reduced to
$\begin{eqnarray}u(x,y,z,t)=\displaystyle \frac{2{{\rm{e}}}^{x+y+\tfrac{5}{8}t}}{1+{{\rm{e}}}^{x+y+\tfrac{5}{8}t}}.\end{eqnarray}$
Actually the ratio of p1 to −q1 determines the slope of the line in figure 1(b), φ1 affects the initial position (t = 0) of the solution in the diagram. In other words, if φ1 is not equal to zero, then the centre of the solution at the initial position must not pass through (0, 0) at z = 0. In order to better study the motion of line wave, we decompose the velocity of the solution orthogonally in the x, y perpendicular directions and give its expression as follows
$\begin{eqnarray}\begin{array}{rcl}{V}_{\mathrm{line}} & = & \left({V}_{x},{V}_{y}\right)=\left(-\displaystyle \frac{{\omega }_{k}^{}{p}_{k}^{}}{{p}_{k}^{2}+{q}_{k}^{2}},-\displaystyle \frac{{\omega }_{k}^{}{q}_{k}^{}}{{p}_{k}^{2}+{q}_{k}^{2}}\right),\\ k & = & 1,2,\cdots ,N,\end{array}\end{eqnarray}$
where ${\omega }_{k}^{}$ satisfies equation (7). The velocity of single line wave in equation (8) is $\left(-\tfrac{5}{16},-\tfrac{5}{16}\right)$. The correctness of the above assertion can be demonstrated in figure 1(b).
Figure 1. Single soliton solution to the 3D-eJM equation with p1 = 1, q1 = 1, r1 = 2, φ1 = 0, z = 0 in equation (8).
Double soliton solution can be seen as a morphism consisting of the nonlinear superposition of two single soliton solutions. Its kinematic process can be split into two mutually independent single line wave motions and its velocity can be elaborated by two velocity expressions in equation (9). This also indicates that the collision between two soliton waves is elastic: the velocity, phase shift and amplitude do not change before or after the collision. With p1 = 1, q1 = 1, r1 = 2, p2 = 2, q2 = 4, r2 = 1, φ1 = φ2 = 0, a double soliton solution to the 3D-eJM equation is presented as
$\begin{eqnarray}\begin{array}{l}u(x,y,z,t)\\ =\,\displaystyle \frac{2\left(755{{\rm{e}}}^{x+y+\tfrac{5t}{8}}+1510{{\rm{e}}}^{2x+4y-\tfrac{13t}{7}}+249{{\rm{e}}}^{3x+5y-\tfrac{69t}{56}}\right)}{755+755{{\rm{e}}}^{x+y+\tfrac{5t}{8}}+755{{\rm{e}}}^{2x+4y-\tfrac{13t}{7}}+83{{\rm{e}}}^{3x+5y-\tfrac{69t}{56}}}.\end{array}\end{eqnarray}$
It can be seen in figure 2 and travels at a speed of $\left(-\tfrac{5}{16},-\tfrac{5}{16}\right)$, $\left(\tfrac{13}{70},\tfrac{13}{35}\right)$.
Figure 2. Double soliton solution to the 3D-eJM equation with p1 = 1, q1 = 1, r1 = 2, p2 = 2, q2 = 4, r2 = 1, φ1 = φ2 = 0, z = 0 in equation (10).
The N-order breather solution can be obtained by imposing module resonance condition on the parameters of the 2N-order soliton solution, i.e.
$\begin{eqnarray}\begin{array}{rcl}{p}_{1}^{} & = & {p}_{2}^{* },{q}_{1}^{}={q}_{2}^{* },\\ {r}_{1}^{} & = & {r}_{2}^{* },{\phi }_{1}={\phi }_{2},\cdots ,\\ {p}_{2N-1}^{} & = & {p}_{2N}^{* },{q}_{2N-1}^{}={q}_{2N}^{* },\\ {r}_{2N-1}^{} & = & {r}_{2N}^{* },{\phi }_{2N-1}={\phi }_{2N},\end{array}\end{eqnarray}$
where the symbol * indicates the complex conjugate number of the parameter. It is similar in nature since the breather solution is derived from the soliton solution. But the pace expression of breather is
$\begin{eqnarray}\begin{array}{l}{V}_{\mathrm{breather}}=\left({V}_{x},{V}_{y}\right)\\ =\,\left(-\displaystyle \frac{{\mathfrak{R}}({\omega }_{k}^{}){\mathfrak{R}}({p}_{k}^{})}{{\mathfrak{R}}{\left({p}_{k}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{k}^{}\right)}^{2}},-\displaystyle \frac{{\mathfrak{R}}({\omega }_{k}^{}){\mathfrak{R}}({q}_{k}^{})}{{\mathfrak{R}}{\left({p}_{k}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{k}^{}\right)}^{2}}\right),\\ k=1,3,\cdots ,2N-1.\end{array}\end{eqnarray}$
For N = 1, a first order line breather solution is shown in figure 3 by selecting ${p}_{1}^{}={p}_{2}^{* }=i$, ${q}_{1}^{}={q}_{2}^{* }=1$, ${r}_{1}^{}={r}_{2}^{* }=2+i,z\,=0,t=0,{\phi }_{1}={\phi }_{2}=0$. It moves with speed $\tfrac{5}{26}$ along the negative direction of the y-axis.
Figure 3. First order line breather solution to the 3D-eJM equation with ${p}_{1}^{}={p}_{2}^{* }=i$, ${q}_{1}^{}={q}_{2}^{* }=1$, ${r}_{1}^{}={r}_{2}^{* }=2+i$, φ1 = φ2 = 0, z = 0 in equation (6).
For N = 2, second order breather solution can be deduced from $u=2{(\mathrm{ln}f)}_{x}$ with
$\begin{eqnarray}\begin{array}{rcl}f & = & 1+{{\rm{e}}}^{{\xi }_{1}}+{{\rm{e}}}^{{\xi }_{2}}+{{\rm{e}}}^{{\xi }_{3}}+{{\rm{e}}}^{{\xi }_{4}}\\ & & +{b}_{12}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}}+{b}_{13}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{3}}+{b}_{14}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{4}}+{b}_{23}^{}{{\rm{e}}}^{{\xi }_{2}+{\xi }_{3}}\\ & & +{b}_{24}^{}{{\rm{e}}}^{{\xi }_{2}+{\xi }_{4}}+{b}_{34}^{}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{4}}\\ & & +{b}_{12}^{}{b}_{13}^{}{b}_{23}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}+{\xi }_{3}}+{b}_{13}^{}{b}_{14}^{}{b}_{34}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{3}+{\xi }_{4}}\\ & & +{b}_{12}^{}{b}_{14}^{}{b}_{24}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}+{\xi }_{4}}+{b}_{23}^{}{b}_{24}^{}{b}_{34}^{}{{\rm{e}}}^{{\xi }_{2}+{\xi }_{3}+{\xi }_{4}}\\ & & +{b}_{12}^{}{b}_{13}^{}{b}_{14}^{}{b}_{23}^{}{b}_{24}^{}{b}_{34}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}+{\xi }_{3}+{\xi }_{4}},\\ {b}_{{ks}}^{} & = & \exp ({A}_{{ks}}^{}),\end{array}\end{eqnarray}$
where ${\xi }_{k}^{},{A}_{{ks}}^{}\left(k,s=1,2,3,4\right)$ fulfills the equation (7). The second-order breather solution can similarly be viewed as the interaction situation between two first order ones. In order to clearly show the interaction solution described, we make the directions of motion of the two first order breather solutions orthogonal to each other and show in figure 4. One along the negative direction of the y and the other along the negative direction of the x, with velocities $\tfrac{5}{26},\tfrac{5}{3}$ respectively.
Figure 4. Second order breather solution to the 3D-eJM equation with ${p}_{1}^{}={p}_{2}^{* }=i$, ${p}_{3}^{}={p}_{4}^{* }=1+i$, ${q}_{1}^{}={q}_{2}^{* }=1$, ${q}_{3}^{}={q}_{4}^{* }=2i$, ${r}_{1}^{}={r}_{2}^{* }=2+i$, ${r}_{3}^{}={r}_{4}^{* }=2$, φ1 = φ2 = φ3 = φ4 = 0, z = 0 in equation (13).
The N-order lump solution also can be derivated from 2N-order soliton solution. As the procedure for finding the exact solution of lump using the long-wave limit method is well established, we directly provide following constraints:
$\begin{eqnarray}\begin{array}{ll} & {p}_{k}^{}={P}_{k}^{}\delta ,{q}_{k}^{}={Q}_{k}^{}\delta ,{r}_{k}^{}={R}_{k}^{}\delta ,\\ & {\omega }_{k}^{}={W}_{k}^{}\delta ,{{\rm{e}}}^{{\phi }_{k}}=-1,k=1,2,\cdots ,2N,\\ & {P}_{2s-1}^{}={P}_{2s}^{* },{Q}_{2s-1}^{}={Q}_{2s}^{* },\\ & {R}_{2s-1}^{}={R}_{2s}^{* },s=1,2,\cdots ,N.\end{array}\end{eqnarray}$
Then the N-order lump solution to the 3D-eJM equation can be acquired if we take δ → 0, specific forms are
$\begin{eqnarray}\displaystyle \begin{array}{rcl}u & = & 2{\left(\mathrm{ln}{f}_{N}^{}\right)}_{x},\\ & & \quad k\lt s,p\lt q,m\lt n,p\lt \cdots \lt m,\\ {f}_{N}^{} & = & \prod _{k=1}^{2N}{\theta }_{k}^{}+{\sum }_{k,s}^{2N}\left({B}_{{ks}}^{}\displaystyle \prod _{j\ne k,s}^{2N}{\theta }_{j}^{}\right)\\ & & +\sum _{p,q,\cdots ,m,n}^{2N}\left({B}_{{pq}}^{}\cdots {B}_{{mn}}^{}\prod _{j\ne p,q,\cdots ,m,n}^{2N}{\theta }_{j}^{}\right)\cdots ,\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}{\theta }_{k}^{} & = & {P}_{k}^{}x+{Q}_{k}^{}y+{R}_{k}^{}z+{W}_{k}^{}t+{{\rm{\Phi }}}_{k},{W}_{k}^{}=\displaystyle \frac{3{R}_{k}^{}{P}_{k}^{}}{2({P}_{k}^{}+{Q}_{k}^{}+{R}_{k}^{})},\\ {B}_{{ks}} & = & \displaystyle \frac{2{P}_{k}^{}{P}_{s}^{}({P}_{k}^{}{Q}_{s}^{}+{P}_{s}^{}{Q}_{k}^{})({P}_{s}^{}+{Q}_{s}^{}+{R}_{s}^{})({P}_{k}^{}+{Q}_{k}^{}+{R}_{k}^{})}{\left[\left({Q}_{s}^{}+{R}_{s}^{}\right){P}_{k}^{}-\left({Q}_{k}^{}+{R}_{k}^{}\right){P}_{s}^{}\right]\left[\left({P}_{k}^{}+{Q}_{k}^{}\right){R}_{s}^{}-\left({P}_{s}^{}+{Q}_{s}^{}\right){P}_{k}^{}\right]},\end{array}\end{eqnarray}$
${P}_{k}^{},{Q}_{k}^{},{R}_{k}^{},{{\rm{\Phi }}}_{k}^{}$ are arbitrary constants, Φk affects the initial position of the corresponding lump solution. We usually study the trajectory of the wave crest of the lump wave. According to the solution of the system of equations $\left\{{u}_{x}=0,{u}_{y}=0\right\}$, we accquire the velocity formula of lump wave
$\begin{eqnarray}\begin{array}{rcl}{V}_{\mathrm{lump}} & = & \left({V}_{x},{V}_{y}\right),\quad s=k+1\\ {V}_{x} & = & \displaystyle \frac{3{P}_{k}{P}_{s}({Q}_{k}{R}_{s}-{Q}_{s}{R}_{k})+3{P}_{s}{Q}_{k}{R}_{s}({Q}_{k}+{R}_{k})-3{P}_{k}{Q}_{s}{R}_{k}({Q}_{s}+{R}_{s})}{2({P}_{k}{Q}_{s}-{P}_{s}{Q}_{k})({P}_{k}+{Q}_{k}+{R}_{k})({P}_{s}+{Q}_{s}+{R}_{s})},\\ {V}_{y} & = & -\displaystyle \frac{3{P}_{k}{P}_{s}({P}_{k}{R}_{s}-{P}_{s}{R}_{k}+{Q}_{k}{R}_{s}-{Q}_{s}{R}_{k})}{2({P}_{k}{Q}_{s}-{P}_{s}{Q}_{k})({P}_{k}+{Q}_{k}+{R}_{k})({P}_{s}+{Q}_{s}+{R}_{s})},k=1,3,\cdots ,2N-1.\end{array}\end{eqnarray}$
When N = 1, with specific parameters, the expression of a first order lump wave is reduced as below:
$\begin{eqnarray}\begin{array}{rcl}u & = & \displaystyle \frac{459014400x+573768000y+451008000t}{116640000{t}^{2}+225504000{xt}+195480000{yt}+114753600{x}^{2}+286884000{xy}+E},\\ E & = & 498062500{y}^{2}+571544649.\end{array}\end{eqnarray}$
We put the three-dimensional plot, density plot and sectional plot of the above solution in figure 5.
Figure 5. First order lump solution to the 3D-eJM equation with ${P}_{1}^{}={P}_{2}^{* }=0.2,{Q}_{1}^{}={Q}_{2}^{* }=\tfrac{1}{4}+\tfrac{1}{3}i$, ${R}_{1}^{}={R}_{2}^{* }=1$, Φ1 = Φ2 = 0, z = 0 in equation (18).
When N = 2
$\begin{eqnarray}\begin{array}{rcl}f & = & {\theta }_{1}{\theta }_{2}{\theta }_{3}{\theta }_{4}+{B}_{12}{\theta }_{3}{\theta }_{4}+{B}_{13}{\theta }_{2}{\theta }_{4}\\ & & +{B}_{14}{\theta }_{2}{\theta }_{3}+{B}_{23}{\theta }_{1}{\theta }_{4}+{B}_{24}{\theta }_{1}{\theta }_{3}\\ & & +{B}_{34}{\theta }_{1}{\theta }_{2}+{B}_{12}{B}_{34}\\ & & +{B}_{13}{B}_{24}+{B}_{14}{B}_{23},\end{array}\end{eqnarray}$
where ${\theta }_{k}^{},{B}_{{ks}}^{}$ meet the equation (16). Second order lump solution can be represented by placing equation (19) in equation (3) as shown in figure 6. We make ${\phi }_{k}^{}\left(k=1,2,3,4\right)$ not all zero, allowing us to split the trajectory of the two first order lump solutions. Their speeds are $\left(-\tfrac{9180}{7969},\tfrac{1080}{7969}\right),\left(-\tfrac{31110}{37283},-\tfrac{18750}{37283}\right)$ respectively.
Figure 6. Second order lump solution to the 3D-eJM equation with ${P}_{1}^{}={P}_{2}^{* }=0.2,{P}_{3}^{}={P}_{4}^{* }=0.75+i$, ${Q}_{1}^{}={Q}_{2}^{* }=\tfrac{1}{4}+\tfrac{1}{3}i$, ${Q}_{3}^{}={Q}_{4}^{* }\,=0.2-0.5i$, ${R}_{1}^{}={R}_{2}^{* }={R}_{3}^{}={R}_{4}^{* }=1$, Φ1 = Φ2 = 0, Φ3 = Φ4 = −20, z = 0 in equation (19).
As we all know that two soliton will transform to resonance Y-type soliton if we take suitable ${p}_{i}^{},{q}_{i}^{},{r}_{i}^{}(i=1,2)$ in accordance with $\exp ({A}_{{ks}})=0$ and $\left\{{p}_{k}^{}\ne {p}_{s}^{}\ \mathrm{or}\ {q}_{k}^{}\ne {q}_{s}^{}\ \mathrm{or}\ {r}_{k}^{}\ne {r}_{s}^{}\right\}$. The speed of Y-type structure solution has rarely been investigated in the previous literature. We likewise provide an expression for its velocity by analysing the variation with time of the position of the intersection point,
$\begin{eqnarray}\begin{array}{l}{V}_{{\rm{Y}}-{\mathrm{type}}^{}}=\left({V}_{x},{V}_{y}\right)\\ =\,\left(-\displaystyle \frac{{\omega }_{k}^{}{q}_{s}^{}-{\omega }_{s}^{}{q}_{k}^{}}{{p}_{k}^{}{q}_{s}^{}-{p}_{s}^{}{q}_{k}^{}},\displaystyle \frac{{\omega }_{k}^{}{p}_{s}^{}-{\omega }_{s}^{}{p}_{k}^{}}{{p}_{k}^{}{q}_{s}^{}-{p}_{s}^{}{q}_{k}^{}}\right),\\ {\omega }_{k}^{}=-\displaystyle \frac{{p}_{k}^{3}{q}_{k}^{}-3{p}_{k}^{}{r}_{k}^{}}{2({p}_{k}^{}+{q}_{k}^{}+{r}_{k}^{})}.\end{array}\end{eqnarray}$
Let N = 2, the f is transformed to 2-resonance Y-type solution as
$\begin{eqnarray}f=1+{{\rm{e}}}^{{\xi }_{1}}+{{\rm{e}}}^{{\xi }_{2}},\end{eqnarray}$
where ξk are given by equation (7), and this phenomenon can be observed in figure 7. The velocity of above solution is $\left(\tfrac{14+7\sqrt{247}}{100-4\sqrt{247}},\tfrac{153+9\sqrt{247}}{-200+8\sqrt{247}}\right)$.
Figure 7. 2-resonance Y-type solution to the 3D-eJM equation with p1 = 1, q1 = 1, r1 = 2, p2 = 2, q2 = 3, ${r}_{2}=\tfrac{65}{7}-\tfrac{4\sqrt{247}}{7}$, φ1 = φ2 = 0, z = 0 in equation (21).
Let N = 3, with $\exp ({A}_{12})=\exp ({A}_{13})=0$, the f is reduced as
$\begin{eqnarray}f=1+{{\rm{e}}}^{{\xi }_{1}}+{{\rm{e}}}^{{\xi }_{2}}+{{\rm{e}}}^{{\xi }_{3}}+{b}_{23}{{\rm{e}}}^{{\xi }_{2}+{\xi }_{3}},\end{eqnarray}$
where ξk, bks are given by equation (7) and equation (13). Substitute equation (22) in equation (3), we achieve two different kinds of 3-resonance Y-type solutions as show in figure 8. One in xy and z = 0 plane, the other is in yz and x = 0 plane. The shape of solution in figure 8(a) is similar to that of X.
Figure 8. Two kinds of 3-resonance Y-type solutions to the 3D-eJM equation with (a): p1 = 1, q1 = 1, r1 = 2, p2 = 2 , ${q}_{2}=1-\tfrac{4\sqrt{11}}{11},{r}_{2}=1,{p}_{3}=\tfrac{1}{2}$ , ${q}_{3}=\tfrac{4}{9}-\tfrac{\sqrt{7}}{18},{r}_{3}=\tfrac{1}{3}$, φ1 = φ2 = φ3 = 0, z = 0; (b): p1 = 1, q1 = 1, r1 = 2, p2 = 2 , ${q}_{2}=3,{r}_{2}=\tfrac{65}{7}-\tfrac{4\sqrt{247}}{7},{p}_{3}=-\tfrac{1}{2}$, ${q}_{3}=\tfrac{1}{3},{r}_{3}=-\tfrac{101}{84}-\tfrac{\sqrt{9865}}{84},{\phi }_{1}=0$, φ2 = − 10, φ3 = 10, x = 0 in equation (22).

3. Molecules composed of the same waves

In the last section we focused on four types of local waves and gave expressions for their respective velocities. It is not hard to see from the images of the higher-order solutions that a higher-order solution can be seen as an interaction phenomenon between several lower-order solutions. Much literature shows that collisions between these four local waves are all elastic collisions, the same as between two line waves [44-46]. It is well known that assuming that the velocities of the two lower order solutions are identical (including the x, y axes), the two solutions are bound into a new structure during the motion called molecule solution. This section demonstrates several molecule solutions consisting of the same local wave.
To investigate the single line molecule solution, the fuction f can be choosed as same as second order soliton solution. With the parameters as the figures 9(a)-(c), the u can be unfolded as
$\begin{eqnarray}\begin{array}{rcl}{u}_{2}^{} & = & \displaystyle \frac{8\left(\exp \left({\varphi }_{1}\right)+3\ \exp \left({\varphi }_{2}\right)+\exp \left({\varphi }_{3}\right)\right)}{\left(4\ \exp \left({\varphi }_{1}\right)+4\ \exp \left({\varphi }_{2}\right)+\exp \left({\varphi }_{3}\right)+4\right)},\\ {\varphi }_{1} & = & \displaystyle \frac{(6x-y-3t-30)\sqrt{151}+66x+4y+147t-330}{66+6\sqrt{151}},\\ {\varphi }_{2} & = & \displaystyle \frac{(6x-3y-27t+10)\sqrt{151}+42x+30y+423t+70}{14+2\sqrt{151}},\\ {\varphi }_{3} & = & \displaystyle \frac{(42t+36x-y)\sqrt{151}+192t+456x-41y}{114+9\sqrt{151}}.\end{array}\end{eqnarray}$
While solutions satisfy the definition of molecule solution: bound into one and not changing relative position, the velocity of solution (23) is $\left(\tfrac{1128-132\sqrt{151}}{629},\tfrac{237\sqrt{151}-2883}{629}\right)$. In fact, the equation contains special molecule solutions which is obtained as long as $\{{p}_{1}^{2}{q}_{1}^{}-3{r}_{1}={p}_{2}^{2}{q}_{2}^{}-3{r}_{2}^{}=0\}$, while the selecting parameters $\tfrac{{p}_{1}}{{p}_{2}}=\tfrac{{q}_{1}}{{q}_{2}}=\tfrac{{\omega }_{1}}{{\omega }_{2}}$ and arbitrary ${r}_{1}^{},{r}_{2}^{}$ gives the equation (23).
Figure 9. Single line molecule solutions to the 3D-eJM equation with p1 = 1, p2 = 3, r1 = 1, r2 = 2, ${q}_{1}=-\tfrac{13}{12}+\tfrac{\sqrt{151}}{12},{q}_{2}=-\tfrac{13}{4}+\tfrac{\sqrt{151}}{4},{\phi }_{1}=-5,{\phi }_{2}=5,z=0$ in equation (23).
If we take f as same as equation (13), the interaction solution between two line molecule solutions is showed in figure 10. Their velocities are $\left(\tfrac{1128+132\sqrt{151}}{629},-\tfrac{2883+237\sqrt{151}}{629}\right)$, $\left(\tfrac{93-5\sqrt{1329}}{104},\tfrac{9\sqrt{1329}-321}{104}\right)$ respectively.
Figure 10. Interaction solution between two line molecule solutions with p1 = 1, p2 = 3, r1 = 1, r2 = 2, ${q}_{1}=-\tfrac{13}{12}-\tfrac{\sqrt{151}}{12},{q}_{2}=-\tfrac{13}{4}-\tfrac{\sqrt{151}}{4}$, ${p}_{3}=2,{p}_{4}=4,{r}_{3}=2,{r}_{4}=1,{q}_{3}=-\tfrac{39}{16}+\tfrac{\sqrt{1329}}{16}$ , ${q}_{4}=-\tfrac{39}{8}+\tfrac{\sqrt{1329}}{8},{\phi }_{1}=-15,{\phi }_{2}=-10,{\phi }_{3}=0,{\phi }_{4}=8,z=0$ in equation (13).
In particular, we find the velocity resonance among two breather waves by picking parameters in equation (13) meet module resonance condition and
$\begin{eqnarray}\begin{array}{l}\left(-\displaystyle \frac{{\mathfrak{R}}({\omega }_{1}^{}){\mathfrak{R}}({p}_{1}^{})}{{\mathfrak{R}}{\left({p}_{1}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{1}^{}\right)}^{2}},-\displaystyle \frac{{\mathfrak{R}}({\omega }_{1}^{}){\mathfrak{R}}({q}_{1}^{})}{{\mathfrak{R}}{\left({p}_{1}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{1}^{}\right)}^{2}}\right)\\ =\left(-\displaystyle \frac{{\mathfrak{R}}({\omega }_{3}^{}){\mathfrak{R}}({p}_{3}^{})}{{\mathfrak{R}}{\left({p}_{3}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{3}^{}\right)}^{2}},-\displaystyle \frac{{\mathfrak{R}}({\omega }_{3}^{}){\mathfrak{R}}({q}_{3}^{})}{{\mathfrak{R}}{\left({p}_{3}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{3}^{}\right)}^{2}}\right),\end{array}\end{eqnarray}$
i.e. $\tfrac{{\mathfrak{R}}({p}_{1}^{})}{{\mathfrak{R}}({p}_{2}^{})}=\tfrac{{\mathfrak{R}}({q}_{1}^{})}{{\mathfrak{R}}({q}_{2}^{})}=\tfrac{{\mathfrak{R}}({\omega }_{1}^{})}{{\mathfrak{R}}({\omega }_{2}^{})}$. The breather molecule solution is vividly represented in figure 11 and the expression is expanded as
$\begin{eqnarray}\begin{array}{rcl}f & = & 1+\exp \left(2y+\displaystyle \frac{5t}{13}-10\right)\\ & & -\displaystyle \frac{208472563}{20177273}\exp \left(6y+\displaystyle \frac{15t}{13}+6\right)\\ & & -\displaystyle \frac{151}{5}\exp \left(4y+\displaystyle \frac{10t}{13}+16\right)\\ & & +2\ \exp \left(y+\displaystyle \frac{5t}{26}-5\right)\cos \left(x+\displaystyle \frac{27t}{26}\right)\\ & & +2\ \exp \left(y+\displaystyle \frac{5t}{13}+8\right)\cos \left(x+\displaystyle \frac{27t}{26}\right)\\ & & +\exp \left(3y+\displaystyle \frac{15t}{26}+3\right)\left[\displaystyle \frac{90418}{276401}\cos \left(3x+4y+\displaystyle \frac{105t}{26}\right)\right.\\ & & +\displaystyle \frac{290}{73}\cos \left(x+4y+\displaystyle \frac{49t}{26}\right)\\ & & -\displaystyle \frac{38064}{276401}\sin \left(3x+4y+\displaystyle \frac{105t}{26}\right)\\ & & \left.+\displaystyle \frac{384}{73}\sin \left(x+4y+\displaystyle \frac{49t}{26}\right)\right]\\ & & +\exp \left(4y+\displaystyle \frac{10t}{13}-2\right)\left[\displaystyle \frac{5802322}{20177273}\cos \left(2x+4y+\displaystyle \frac{38t}{13}\right)\right.\\ & & \left.-\displaystyle \frac{22879536}{20177273}\sin \left(\displaystyle \frac{38t}{13}+4y+2x\right)\right]\\ & & -\exp \left(5y+\displaystyle \frac{25t}{26}+11\right)\left[\displaystyle \frac{3083253598}{100886365}\cos \left(x+\displaystyle \frac{27t}{26}\right)\right.\\ & & \left.+\displaystyle \frac{1787987376}{100886365}\sin \left(x+\displaystyle \frac{27t}{26}\right)\right].\end{array}\end{eqnarray}$
Figure 11. Single breather molecule solution to the 3D-eJM equation with ${p}_{1}^{}={p}_{2}^{* }=i,{q}_{1}^{}={q}_{2}^{* }=1$, ${r}_{1}^{}={r}_{2}^{* }=2+i,{p}_{3}^{}={p}_{4}^{* }=2i,{r}_{3}^{}={r}_{4}^{* }=2$ , ${q}_{3}^{}={q}_{4}^{* }=2+4i,{\phi }_{1}={\phi }_{2}=-5,{\phi }_{3}={\phi }_{4}=8,z=0$ in equation (25).
Based the bilinear form, like the lump molecule solution which does not exist in many (2+1)-dimensional integrable models, such as the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko model [38], Kadomtsev-Petviashvili (KP) system [39], (3+1)-dimensional nagative order KdV-CBS model [47], etc. But for KP systerm, lump molecules can be discovered by using the reduced version of the Grammian form [35, 40]. With the aid of equation (17), we find the lump molecule solution in equation (2), which needs to cater for
$\begin{eqnarray}\begin{array}{rcl} & & \displaystyle \frac{3{P}_{1}{P}_{2}({Q}_{1}{R}_{2}-{Q}_{2}{R}_{1})+3{P}_{2}{Q}_{1}{R}_{2}({Q}_{1}+{R}_{1})-3{P}_{1}{Q}_{2}{R}_{1}({Q}_{2}+{R}_{2})}{2({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})({P}_{2}+{Q}_{2}+{R}_{2})}\\ & = & \displaystyle \frac{3{P}_{3}{P}_{4}({Q}_{3}{R}_{4}-{Q}_{4}{R}_{3})+3{P}_{4}{Q}_{3}{R}_{4}({Q}_{3}+{R}_{3})-3{P}_{3}{Q}_{4}{R}_{3}({Q}_{4}+{R}_{4})}{2({P}_{3}{Q}_{4}-{P}_{4}{Q}_{3})({P}_{3}+{Q}_{3}+{R}_{3})({P}_{4}+{Q}_{4}+{R}_{4})},\\ & & \displaystyle \frac{({P}_{3}{Q}_{4}-{P}_{4}{Q}_{3})({P}_{3}+{Q}_{3}+{R}_{3})({P}_{4}+{Q}_{4}+{R}_{4})}{({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})({P}_{2}+{Q}_{2}+{R}_{2})}=\displaystyle \frac{{P}_{3}{P}_{4}({P}_{3}{R}_{4}-{P}_{4}{R}_{3}+{Q}_{3}{R}_{4}-{Q}_{4}{R}_{3})}{{P}_{1}{P}_{2}({P}_{1}{R}_{2}-{P}_{2}{R}_{1}+{Q}_{1}{R}_{2}-{Q}_{2}{R}_{1})},\\ & & {P}_{1}^{}={P}_{2}^{* },{P}_{3}^{}={P}_{4}^{* },{Q}_{1}^{}={Q}_{2}^{* },{Q}_{3}^{}={Q}_{4}^{* },{R}_{1}^{}={R}_{2}^{* },{R}_{3}^{}={R}_{4}^{* }\end{array}\end{eqnarray}$
in equation (19). figure 12 vividly depicts this type of molecule solution with speed $\left(-\tfrac{21}{25},\tfrac{3}{25}\right)$, the distance between the centres of two single lump solution is constant.
Figure 12. Single lump molecule solution to the 3D-eJM equation with ${P}_{1}={P}_{2}^{* }=1+\tfrac{1}{2}i$, ${Q}_{1}={Q}_{2}^{* }=\tfrac{1}{2}-i$, ${R}_{1}={R}_{2}^{* }=2,{P}_{3}$ = ${P}_{4}^{* }=\tfrac{11}{28}-\tfrac{\sqrt{-1806+10\sqrt{36313}}}{56}$ + $\left(-\tfrac{6}{7}+\tfrac{(903+5\sqrt{36313})\sqrt{-1806\,+\,10\sqrt{36313}}}{17024}\right)i$, ${Q}_{3}={Q}_{4}^{* }=2i$, ${R}_{3}={R}_{4}^{* }=1$, Φ1 = Φ2 = 0, Φ3 = Φ4 = 300, z = 0 in equation (19).

4. Molecules made up of the different waves

In this section, we investigate molecule solutions consisting of different localized waves. It is obvious from the previous analysis that, again, no contact occurs between waves, which remain relatively stationary. The function f can be chosen as
$\begin{eqnarray}\begin{array}{l}f=1+{{\rm{e}}}^{{\xi }_{1}}+{{\rm{e}}}^{{\xi }_{2}}+{{\rm{e}}}^{{\xi }_{3}}\\ +{b}_{12}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}}+{b}_{13}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{3}}\\ +{b}_{23}^{}{{\rm{e}}}^{{\xi }_{2}+{\xi }_{3}}+{b}_{12}^{}{b}_{13}^{}{b}_{23}^{}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}+{\xi }_{3}},\end{array}\end{eqnarray}$
if we want to look for the line-breather molecule which consisting of a single line and a single wave. ξk, bks are given by equation (7) and (13). Like the one shown in the figure 13, the line wave move parallel to the breather with the same speed $\left(-\tfrac{129}{740},\tfrac{129}{370}\right)$. Once the coefficients of x, y, z, t have been determined, φ1, φ3 determines the distance between the two solutions. By φ1 = φ3, we find a phenomenon shown in figure 14, the breather collides line wave continuously and changes its own form.
Figure 13. Line-breather molecule with ${p}_{1}=\tfrac{1}{2}+i$, ${q}_{1}=-1,{r}_{1}=\tfrac{1}{3}$, ${p}_{2}=\tfrac{1}{2}-i$, ${q}_{2}=-1,{r}_{2}=\tfrac{1}{3}$, p3 = 1, q3 = − 2, ${r}_{3}=-\tfrac{277}{93}$, φ1 = φ2 = 0, φ3 = 10, z = 0 in equation (27).
Figure 14. Always collide case with φ1 = φ2 = φ3 = 0, other parameters are consistent with figure 13.
When searching for a molecule solution consisting of lump solution and other solutions, the partial long-wave limit method is required. For example, let
$\begin{eqnarray}\begin{array}{ll} & N=3,{p}_{k}^{}={P}_{k}^{}\delta ,\\ & {q}_{k}^{}={Q}_{k}^{}\delta ,{r}_{k}^{}={R}_{k}^{}\delta ,{\phi }_{k}=i\pi ,\\ & {P}_{1}={P}_{2}^{* },{Q}_{1}={Q}_{2}^{* },\\ & {R}_{1}={R}_{2}^{* },\delta \to 0,k=1,2,\end{array}\end{eqnarray}$
then the lump-line molecule solution can be reflected by following formula
$\begin{eqnarray}\begin{array}{rcl}u & = & 2{\left(\mathrm{ln}f\right)}_{x},\\ f & = & {\theta }_{1}{\theta }_{2}+{B}_{12}+{e}^{{\xi }_{3}}({\theta }_{1}{\theta }_{2}+{B}_{12}\\ & & +{B}_{13}{B}_{23}+{B}_{23}{\theta }_{1}+{B}_{13}{\theta }_{2}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{cc} & {B}_{{ks}}=\left\{\begin{array}{c}\displaystyle \frac{\left.2{P}_{k}^{}{P}_{s}^{}({P}_{k}^{}{Q}_{s}^{}+{P}_{s}^{}{Q}_{k}^{})({P}_{s}^{}+{Q}_{s}^{}+{R}_{s}^{})({P}_{k}^{}+{Q}_{k}^{}+{R}_{k}^{}\right)}{\left[\left({Q}_{s}^{}+{R}_{s}^{}\right){P}_{k}^{}-\left({Q}_{k}^{}+{R}_{k}^{}\right){P}_{s}^{}\right]\left[\left({P}_{k}^{}+{Q}_{k}^{}\right){R}_{s}^{}-\left({P}_{s}^{}+{Q}_{s}^{}\right){P}_{k}^{}\right]}k,s\lt 3,\\ \\ -\displaystyle \frac{\left.6{P}_{k}{p}_{s}({p}_{s}+{q}_{s}+{r}_{s})({q}_{s}{P}_{k}+{Q}_{k}{p}_{s})({Q}_{k}+{P}_{k}+{R}_{k}\right)}{{p}_{s}^{s}({Q}_{k}+{P}_{k}+{R}_{k})({p}_{s}{Q}_{k}+2{q}_{s}{P}_{k}+{r}_{s}{Q}_{k}-{R}_{k}{q}_{s})+Z},\,k\lt 3,s\geqslant 3,\end{array}\right.\\ & Z=3{p}_{s}^{2}\left({P}_{k}{q}_{s}\left({q}_{s}+{r}_{s})({Q}_{k}+{P}_{k}+{R}_{k})-{R}_{k}({Q}_{k}+{R}_{k}\right)\right)\\ & \,\,+3{p}_{s}\left(\left({r}_{s}{Q}_{k}+{R}_{k}{q}_{s}+2{r}_{s}{R}_{k}){P}_{k}+({Q}_{k}+{R}_{k})({r}_{s}{Q}_{k}-{R}_{k}{q}_{s}\right)\right)\\ & \,\,-3{P}_{k}({q}_{s}+{r}_{s})({P}_{k}{r}_{s}+{r}_{s}{Q}_{k}-{R}_{k}{q}_{s}).\end{array}\end{eqnarray}$
where ξ3, θ1, θ2 suit equation (7), (16) and
$\begin{eqnarray}\begin{array}{ll} & \displaystyle \frac{((3{Q}_{1}{R}_{2}-3{Q}_{2}{R}_{1}){P}_{2}-3{Q}_{2}{R}_{1}({Q}_{2}+{R}_{2})){P}_{1}+3{P}_{2}{Q}_{1}{R}_{2}({Q}_{1}+{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})}\\ & =\displaystyle \frac{{p}_{3}^{2}({p}_{3}^{2}{q}_{3}-3{r}_{3})}{2({p}_{3}+{q}_{3}+{r}_{3})({p}_{3}^{2}+{q}_{3}^{2})},-\displaystyle \frac{3{P}_{1}{P}_{2}({P}_{1}{R}_{2}-{P}_{2}{R}_{1}+{Q}_{1}{R}_{2}-{Q}_{2}{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})}\\ & =\displaystyle \frac{{p}_{3}{q}_{3}({p}_{3}^{2}{q}_{3}-3{r}_{3})}{2({p}_{3}+2{q}_{3}+{r}_{3})({p}_{3}^{2}+{q}_{3}^{2})},\end{array}\end{eqnarray}$
When the coefficients of x, y, z, t satisfiesthe lump-line solution will be located on figure 15 with velocity $\left(-\tfrac{8298}{11237},-\tfrac{4050}{11237}\right)$.
Figure 15. Lump-line molecule solution with ${P}_{1}={P}_{2}^{* }=\tfrac{3}{4}+i$, ${Q}_{1}={Q}_{2}^{* }=\tfrac{1}{3}-\tfrac{1}{2}i$, ${R}_{1}={R}_{2}^{* }=1$, p3 = 1 , ${q}_{3}=\tfrac{225}{461}$ , ${r}_{3}=\tfrac{2554737147}{932374805}$, Φ1 = Φ2 = 0, φ3 = 35, z = 0 in equation (29).
When adjusting φ3 to 0, the line wave passes exactly through the centre of the lump solution and the two waves merge to form a lump-kink solution. And the lump solution is divided into exactly two section, with the upwardly raised part on top of the kinked area and vice versa. The method used for the idea just mentioned is different from the test function method which test function f is
$\begin{eqnarray}\begin{array}{rcl}f & = & {\left({a}_{1}x+{a}_{2}y+{a}_{3}z+{a}_{4}t+{a}_{5}\right)}^{2}\\ & & +{\left({b}_{1}x+{b}_{2}y+{b}_{3}z+{b}_{4}t+{b}_{5}\right)}^{2}\\ & & +\exp \left({c}_{1}x+{c}_{2}y+{c}_{3}z+{c}_{4}t+{c}_{5}\right)+k.\end{array}\end{eqnarray}$
The method we use has the advantage that the excitation method is more stable and does not change over time. This interesting situation is shown in figure 16 with expression
$\begin{eqnarray}\begin{array}{rcl}u & = & 2{\left(\mathrm{ln}f\right)}_{x},\\ f & = & \left(\displaystyle \frac{2025}{2644}{t}^{2}+\displaystyle \frac{5625}{2644}{xt}-\displaystyle \frac{72}{661}{yt}-\displaystyle \frac{12138571156418651344144725}{5528705278408403241790792}t+\displaystyle \frac{25}{16}{x}^{2}-\displaystyle \frac{1}{2}{xy}\right.\\ & & -\displaystyle \frac{45237306482980701003580875}{11057410556816806483581584}x+\displaystyle \frac{13}{36}{y}^{2}+\displaystyle \frac{12663817410669269953013031}{5528705278408403241790792}y\\ & & \left.+\displaystyle \frac{37325014127412831248801817275}{5440245993953868789922139328}\right)\exp \left(x+\displaystyle \frac{225y}{461}+\displaystyle \frac{4736628t}{5180257}\right)+\displaystyle \frac{2025{t}^{2}}{2644}\\ & & +\displaystyle \frac{5625}{2644}{xt}-\displaystyle \frac{72}{661}{yt}+\displaystyle \frac{25{x}^{2}}{16}-\displaystyle \frac{{xy}}{2}+\displaystyle \frac{13{y}^{2}}{36}+\displaystyle \frac{16525}{7872}.\end{array}\end{eqnarray}$
Figure 16. Lump-kink solution to the 3D-eJM equation with Φ3 = 0, other parameters are consistent with figure 15.
We promote on the basis of equation (28) that
$\begin{eqnarray}\begin{array}{ll} & N=4,{p}_{k}^{}={P}_{k}^{}\delta ,{q}_{k}^{}={Q}_{k}^{}\delta ,\\ & {r}_{k}^{}={R}_{k}^{}\delta ,{\phi }_{k}={\rm{i}}\pi ,\\ & {P}_{1}={P}_{2}^{* },{Q}_{1}={Q}_{2}^{* },\\ & {R}_{1}={R}_{2}^{* },\delta \to 0,k=1,2,\end{array}\end{eqnarray}$
then the interaction solution between lump and two line waves is derived from
$\begin{eqnarray}u=2{\left(\mathrm{ln}f\right)}_{x},\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl}f & = & {{\rm{e}}}^{{\xi }_{3}}({\theta }_{1}{\theta }_{2}+{B}_{12}+{B}_{13}{B}_{23}+{B}_{23}{\theta }_{1}+{B}_{13}{\theta }_{2})\\ & & +{{\rm{e}}}^{{\xi }_{4}}({\theta }_{1}{\theta }_{2}+{B}_{12}+{B}_{14}{B}_{24}+{B}_{24}{\theta }_{1}+{B}_{14}{\theta }_{2})\\ & & +{b}_{34}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{4}}({\theta }_{1}{\theta }_{2}+{B}_{12}+{B}_{23}{\theta }_{1}\\ & & +{B}_{24}{\theta }_{1}+{B}_{13}{\theta }_{2}+{B}_{14}{\theta }_{2}+{B}_{13}{B}_{23}\\ & & +{B}_{13}{B}_{24}+{B}_{14}{B}_{23}+{B}_{14}{B}_{24})+{\theta }_{1}{\theta }_{2}+{B}_{12},\end{array}\end{eqnarray}$
where ξk, θk, Bks, b34 suit equations (7), (13) and (30). On this basis we find two different scenarios. The first case is where the lump solution forms a bound molecule with one of the line waves and moves in the direction in which the other line wave is located. The distance between the lump solution and the two line waves remains fixed, although there is a change in relative position between the two line waves as time changes, and this can be interpreted as a lump-2 line solution in the weak sense. Another case is that the lump solution and the two line waves as a whole form a molecule solution, i.e. lump-2 line solution. These two cases are shown in figures 17 and 18. The velocity of the molecule solution in both diagrams is $\left(-\tfrac{21}{34},\tfrac{39}{340}\right)$, and other line wave is $\left(0,0\right)$.
Figure 17. Lump-line molecule solution with ${P}_{1}={P}_{2}^{* }=\tfrac{3}{4}+\tfrac{1}{2}{\rm{i}}$, ${Q}_{1}={Q}_{2}^{* }=\tfrac{1}{2}-{\rm{i}}$, ${R}_{1}={R}_{2}^{* }=1$, ${p}_{3}=2,{q}_{3}=-\tfrac{13}{35}$, ${r}_{3}=\tfrac{247999}{717255}$, ${p}_{4}=\tfrac{13}{6}$, ${q}_{4}=\tfrac{70}{6}$, ${r}_{4}=\tfrac{5915}{324}$, Φ1 = Φ2 = 0, φ3 = 5, φ4 = 50, z = 0 in equation (36).
Figure 18. The first case of equation (35) with ${P}_{1}={P}_{2}^{* }=\tfrac{3}{4}+\tfrac{1}{2}{\rm{i}}$, ${Q}_{1}={Q}_{2}^{* }=\tfrac{1}{2}-{\rm{i}}$, ${R}_{1}={R}_{2}^{* }=1$, p3 = 2, ${q}_{3}=-\tfrac{13}{35}$, ${r}_{3}=\tfrac{247999}{717255}$, ${p}_{4}=3,{q}_{4}=-\tfrac{39}{70}$ , ${r}_{4}=-\tfrac{19463}{17710}$, Φ1 = Φ2 = 0, φ3 = 5, φ4 = 15, z = 0 in equation (36).
Since the 2-resonance Y-type solution is derived from the two-soliton solution and we have given lump-2 line molecule in figure 17, it follows that molecule solution consisting of lump solution and 2-resonance Y-type solution must exist in this system. If equation (35) meet the following parameter restrictions
$\begin{eqnarray}\begin{array}{ll} & \displaystyle \frac{((3{Q}_{1}{R}_{2}-3{Q}_{2}{R}_{1}){P}_{2}-3{Q}_{2}{R}_{1}({Q}_{2}+{R}_{2})){P}_{1}+3{P}_{2}{Q}_{1}{R}_{2}({Q}_{1}+{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})}=-\displaystyle \frac{{\omega }_{3}^{}{q}_{4}^{}-{\omega }_{4}^{}{q}_{3}^{}}{{p}_{3}^{}{q}_{4}^{}-{p}_{4}^{}{q}_{3}^{}},\\ & -\displaystyle \frac{3{P}_{1}{P}_{2}({P}_{1}{R}_{2}-{P}_{2}{R}_{1}+{Q}_{1}{R}_{2}-{Q}_{2}{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})}=\displaystyle \frac{{\omega }_{3}^{}{p}_{4}^{}-{\omega }_{4}^{}{p}_{3}^{}}{{p}_{3}^{}{q}_{4}^{}-{p}_{4}^{}{q}_{3}^{}},\quad {B}_{34}=0,\\ & {\omega }_{k}^{}=-\displaystyle \frac{{p}_{k}^{3}{q}_{k}^{}-3{p}_{k}^{}{r}_{k}^{}}{2({p}_{k}^{}+{q}_{k}^{}+{r}_{k}^{})},\end{array}\end{eqnarray}$
then it can be denoted as lump-resonance Y-type molecule solution in figure 19. Lump solution is located in the middle of the two branches of the resonance Y-type solution, and the distance between the lump solution and the two branches remains the same from the beginning to the end. This molecule solution is moving at $\left(\tfrac{49}{136},-\tfrac{33}{136}\right)$.
Figure 19. Lump-resonance Y-type molecule solution to the 3D-eJM equation with ${P}_{1}={P}_{2}^{* }=1+\tfrac{1}{2}{\rm{i}}$, ${Q}_{1}={Q}_{2}^{* }$ = $\left(-\tfrac{49}{66}+\tfrac{\left(-\sqrt{194021545}+13104\right)\sqrt{13104+\sqrt{194021545}}}{311718}\right)$ + $\left(\tfrac{8}{66}-\tfrac{\sqrt{13104+\sqrt{194021545}}}{66}\right){\rm{i}}$, ${R}_{1}={R}_{2}^{* }=1$, p3 = 1, q3 = 2, r3 = 1, p4 = −2, ${q}_{4}=\tfrac{24}{11}$ , r4 = 2, Φ1 = Φ2 = 0, φ3 = φ4 = −40, z = 0 in equation (36).
If equation (36) meet the module resonance condition and
$\begin{eqnarray}\begin{array}{ll} & -\displaystyle \frac{{\mathfrak{R}}({\omega }_{3}^{}){\mathfrak{R}}({p}_{3}^{})}{{\mathfrak{R}}{\left({p}_{3}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{3}^{}\right)}^{2}}=\displaystyle \frac{((3{Q}_{1}{R}_{2}-3{Q}_{2}{R}_{1}){P}_{2}-3{Q}_{2}{R}_{1}({Q}_{2}+{R}_{2})){P}_{1}+3{P}_{2}{Q}_{1}{R}_{2}({Q}_{1}+{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})},\\ & -\displaystyle \frac{{\mathfrak{R}}({\omega }_{3}^{}){\mathfrak{R}}({q}_{3}^{})}{{\mathfrak{R}}{\left({p}_{3}^{}\right)}^{2}+{\mathfrak{R}}{\left({q}_{3}^{}\right)}^{2}}=-\displaystyle \frac{3{P}_{1}{P}_{2}({P}_{1}{R}_{2}-{P}_{2}{R}_{1}+{Q}_{1}{R}_{2}-{Q}_{2}{R}_{1})}{2({P}_{2}+{Q}_{2}+{R}_{2})({P}_{1}{Q}_{2}-{P}_{2}{Q}_{1})({P}_{1}+{Q}_{1}+{R}_{1})},\end{array}\end{eqnarray}$
where ω3 is given by equation (12), then the lump-breather solution is vividly described in figure 20 with $\left(-\tfrac{2}{5},\tfrac{4}{5}\right)$.
Figure 20. Lump-breather molecule solution to the 3D-eJM equation with ${P}_{1}={P}_{2}^{* }=1+\tfrac{1}{2}{\rm{i}}$, ${Q}_{1}={Q}_{2}^{* }=-\tfrac{3}{4}+\tfrac{\sqrt{29}-1}{8}{\rm{i}}$, ${R}_{1}={R}_{2}^{* }=1$, ${p}_{3}={p}_{4}^{* }=1+{\rm{i}}$, ${q}_{3}^{}={q}_{4}^{* }=-2+\tfrac{3}{2}{\rm{i}}$, ${r}_{3}={r}_{4}^{* }=1$, Φ1 = Φ2 = 0, φ3 = φ4 = 20, z = 0 in equation (36).
Since the three branches in the resonance Y-type solution (see figure 7) are not parallel to each other, neither the line wave nor the breather can form molecule solution that never collides with the resonance Y-type solution, but there are cases where they always collide but do not move relative to each other over time. It is sufficient to ensure that the velocities of the resonance Y-type solution and the line wave or breather solution are identical. We can also accquire lump-breather-line molecule solution by making full use of the conditions (9), (12) and (17) in $u=2{\left(\mathrm{ln}f\right)}_{x}$, where
$\begin{eqnarray}\begin{array}{rcl}f & = & {b}_{34}{b}_{35}{b}_{45}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{4}+{\xi }_{5}}\left(({\theta }_{1}+{B}_{13}+{B}_{14}+{B}_{15})({\theta }_{2}+{B}_{23}+{B}_{24}+{B}_{25})+{B}_{12}\right)\\ & & +{b}_{34}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{4}}\left(({\theta }_{1}+{B}_{13}+{B}_{14})({\theta }_{2}+{B}_{23}+{B}_{24})+{B}_{12}\right)\\ & & +{b}_{35}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{5}}\left(({\theta }_{1}+{B}_{13}+{B}_{15})({\theta }_{2}+{B}_{23}+{B}_{25})+{B}_{12}\right)\\ & & +{b}_{45}{{\rm{e}}}^{{\xi }_{4}+{\xi }_{5}}\left(({\theta }_{1}+{B}_{14}+{B}_{15})({\theta }_{2}+{B}_{24}+{B}_{25})+{B}_{12}\right)\\ & & +{{\rm{e}}}^{{\xi }_{3}}\left(({\theta }_{1}+{B}_{13})({\theta }_{2}+{B}_{23})+{B}_{12}\right)+{{\rm{e}}}^{{\xi }_{4}}\left(({\theta }_{1}+{B}_{14})({\theta }_{2}+{B}_{24})+{B}_{12}\right)\\ & & +{{\rm{e}}}^{{\xi }_{5}}\left({B}_{15}{B}_{25}+{B}_{15}{\theta }_{2}+{B}_{25}{\theta }_{1}+{\theta }_{1}{\theta }_{2}+{B}_{12}\right)+{\theta }_{1}{\theta }_{2}+{B}_{12}.\end{array}\end{eqnarray}$
Here, ξk, θk, Bks are given by equations (7), (13) and (30). It can be seen in figure 21 that lump solution lies between breather and line wave, and the speed is $\left(-\tfrac{2}{5},\tfrac{4}{5}\right)$.
Figure 21. Lump-breather-line molecule solution to the 3D-eJM equation with ${P}_{1}={P}_{2}^{* }=1+\tfrac{1}{2}{\rm{i}}$, ${Q}_{1}={Q}_{2}^{* }=-\tfrac{3}{4}+\tfrac{\sqrt{29}-1}{8}{\rm{i}}$, ${R}_{1}={R}_{2}^{* }=1$, ${p}_{3}={p}_{4}^{* }=1+{\rm{i}}$, ${q}_{3}^{}={q}_{4}^{* }=-2+\tfrac{3}{2}{\rm{i}}$, ${r}_{3}={r}_{4}^{* }=1$ , ${p}_{5}=\tfrac{3}{2}$, ${q}_{5}=-3,{r}_{5}=\tfrac{51}{4}$, Φ1 = Φ2 = 0, φ3 = φ4 = 20, φ5 = −30, z = 0 in equation (39).
In equation (3) and (6), we can obtain integral structure made from lump solution and two resonance Y-type solutions under the following condition
$\begin{eqnarray}\begin{array}{ll} & N=6,{p}_{k}^{}={P}_{k}^{}\delta ,{q}_{k}^{}={Q}_{k}^{}\delta ,\\ & {r}_{k}^{}={R}_{k}^{}\delta ,{\phi }_{k}=i\pi ,\\ & {P}_{1}={P}_{2}^{* },{Q}_{1}={Q}_{2}^{* },{R}_{1}={R}_{2}^{* },\\ & {{\rm{\Phi }}}_{1}={{\rm{\Phi }}}_{2},\delta \to 0,\left(k=1,2\right),\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\exp \left({A}_{34}\right)=0,\exp \left({A}_{56}\right)=0,\end{eqnarray}$
then f is reduced as
$\begin{eqnarray}\begin{array}{rcl}f & = & {\theta }_{1}{\theta }_{2}+{B}_{12}+{{\rm{e}}}^{{\xi }_{3}}\left(({\theta }_{1}+{B}_{13})({\theta }_{2}+{B}_{23})+{B}_{12}\right)+{{\rm{e}}}^{{\xi }_{4}}\left(({\theta }_{1}+{B}_{14})({\theta }_{2}+{B}_{24})+{B}_{12}\right)\\ & & +{{\rm{e}}}^{{\xi }_{5}}\left(({\theta }_{1}+{B}_{15})({\theta }_{2}+{B}_{25})+{B}_{12}\right)+{{\rm{e}}}^{{\xi }_{6}}\left(({\theta }_{1}+{B}_{16})({\theta }_{2}+{B}_{26})+{B}_{12}\right)\\ & & +{b}_{35}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{5}}\left(({\theta }_{1}+{B}_{13}+{B}_{15})({\theta }_{2}+{B}_{23}+{B}_{25})+{B}_{12}\right)\\ & & +{b}_{36}{{\rm{e}}}^{{\xi }_{3}+{\xi }_{6}}\left(({\theta }_{1}+{B}_{13}+{B}_{16})({\theta }_{2}+{B}_{23}+{B}_{26})+{B}_{12}\right)\\ & & +{b}_{45}{{\rm{e}}}^{{\xi }_{4}+{\xi }_{5}}\left(({\theta }_{1}+{B}_{14}+{B}_{15})({\theta }_{2}+{B}_{24}+{B}_{25})+{B}_{12}\right)\\ & & +{b}_{46}{{\rm{e}}}^{{\xi }_{4}+{\xi }_{6}}\left(({\theta }_{1}+{B}_{14}+{B}_{16})({\theta }_{2}+{B}_{24}+{B}_{26})+{B}_{12}\right).\end{array}\end{eqnarray}$
where ξk, θk, Bks, bks are given by equation (7), (13) and (30). The two white lines in figure 22 are the trajectories of the two resonance Y-type solutions and the black one is the lump solution. In terms of the positive direction of the x, two resonance Y-type solutions are all the fusion case. The fact that the three lines are parallel means that the lump solution will not collide with the other two solutions, and they have a common velocity $\left(-\tfrac{21}{25},\tfrac{3}{25}\right)$. Three trajectories respectively are
$\begin{eqnarray}\begin{array}{l}y=-\displaystyle \frac{1}{7}x,\quad y=-\displaystyle \frac{1}{7}x-\displaystyle \frac{20}{63}-\displaystyle \frac{40\sqrt{2433}}{189},\\ \quad y=-\displaystyle \frac{1}{7}x+\displaystyle \frac{10090}{567}.\end{array}\end{eqnarray}$
Figure 22. Molecule solution made from lump solution and two resonance Y-type solutions with ${P}_{1}={P}_{2}^{* }=1+\tfrac{1}{2}i$, ${Q}_{1}={Q}_{2}^{* }=\tfrac{1}{2}-i$, R1 = R2 = 2, p3 = 1, q3 = −1, ${r}_{3}=-\tfrac{25}{27},{p}_{4}=2,{q}_{4}=-\tfrac{503}{184}+\tfrac{9\sqrt{2433}}{184}$ , ${r}_{4}=-\tfrac{95255}{4968}+\tfrac{2057\sqrt{2433}}{4968}$, ${p}_{5}=3,{q}_{5}=-3,{r}_{5}=-25,{p}_{6}=4,{q}_{6}=-\tfrac{25}{13},{r}_{6}=-\tfrac{7879}{351}$, φ3 = −20, φ4 = −20, φ5 = 50, φ6 = 30, z = 0 in equation (42).
Finally we have generalised the order of the molecule solution consisting of only line waves. On the basis of the specificity expression of the N-order soliton solution (6), the N-line molecule solution has two forms One that we can let arbitrary rk and
$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{{p}_{1}^{}}{{p}_{k}^{}}=\displaystyle \frac{{q}_{1}^{}}{{q}_{k}^{}}=\displaystyle \frac{{\omega }_{1}^{}}{{\omega }_{k}^{}},\\ k=2,3,\cdots N,\\ {p}_{k}^{}\ne {p}_{s}^{},{q}_{k}^{}\ne {q}_{s}^{},\\ {\omega }_{k}^{}\ne {\omega }_{s}^{},k\ne s,\end{array}\end{eqnarray}$
other one only ${p}_{k}^{2}{q}_{k}^{}-3{r}_{k}=0,k=1,2,\cdots N$ need to be satisfied. For N = 2, the two forms of the 2-line molecule solution has shown in figure 9. For N = 3, equation (27) can be shown as 3-line molecule solution with selected parameters. In the same way, equation (13) can be used to derive 4-line molecule solution. These different order molecule solutions are illustrated in figure 23 and figure 24 respectively. The second occurrence in equation is not mentioned in previous papers.
Figure 23. Two forms of the 3-line molecule solution in equation (27) with p1 = 1, p2 = 3, r1 = 1, r2 = 2, ${q}_{1}=-\tfrac{13}{12}+\tfrac{\sqrt{151}}{12}$, ${q}_{2}=-\tfrac{13}{4}\,+\tfrac{\sqrt{151}}{4}$, p3 = 2 , ${q}_{3}=\tfrac{\sqrt{151}}{6}-\tfrac{13}{6}$, ${r}_{3}=\tfrac{7}{4},z=0$, φ1 = 0, φ2 = 5, φ3 = 10 in (a) and (b); p1 = 1, p2 = 2, r1 = 1, r2 = 2, ${q}_{1}=3,{q}_{2}=\tfrac{3}{2}$, ${p}_{3}\,=3,{q}_{3}=\tfrac{9}{2}$ , ${r}_{3}=\tfrac{27}{2}$, z = 0, φ1 = 0, φ2 = 0, φ3 = 0 in (c).
Figure 24. Two forms of the 4-line molecule solution in equation (27) with p1 = 1, p2 = 3, r1 = 1, r2 = 2, ${q}_{1}=-\tfrac{13}{12}+\tfrac{\sqrt{151}}{12}$, ${q}_{2}=-\tfrac{13}{4}+\tfrac{\sqrt{151}}{4}$, ${p}_{3}=2,{q}_{3}=\tfrac{\sqrt{151}}{6}-\tfrac{13}{6}$, ${r}_{3}=\tfrac{7}{4}$, ${p}_{4}=\tfrac{7}{2},{q}_{4}=\tfrac{7\sqrt{151}}{24}-\tfrac{91}{24}$, ${r}_{4}=\tfrac{119}{64}$, φ1 = − 20, φ2 = − 15, φ3 = 10, φ4 = 35, z = 0 in (a) and (b); p1 = 1, p2 = 2, r1 = 1, r2 = 2, ${q}_{1}=3,{q}_{2}=\tfrac{3}{2}$, p3 = 3, ${q}_{3}=\tfrac{9}{2}$, ${r}_{3}=\tfrac{27}{2}$, p4 = 4, q4 = 4, ${r}_{4}=\tfrac{64}{3}$, φ1 = 0, φ2 = 0, φ3 = 0, φ4 = 0, z = 0, t = 0 in (c).

5. Conclusions

Based on the bilinear form of the second extend (3+1)-dimensional Jimbo-Miwa equation, we concentrate on investigating molecule solution, the bound state that consisting of one or more soliton solutions of the 3D-eJM equation. Through the assistance of long wave limit method, module resonant condition and resonant condition, dynamical features of some one or two order localized waves are presented in figures 1-8. Although we have given an expression for the velocity of each individual localized wave, it should be noted that this is only true for the x-y plane. Of course these expressions can be extended to the x-z or y-z plane by simply replacing the coefficients of x, y in the equation (9), (12) and (20) with coefficients of x, z or y, z simultaneously. In order to achieve the velocity of the lump solution in the x-z or y-z plane, it is sufficient to solve for $\left\{{u}_{x}=0,{u}_{z}=0\right\}$, $\left\{{u}_{y}=0,{u}_{z}=0\right\}$ respectively.
With velocity resonance mechanism, a wide range of molecule solutions consisting of line wave, breather wave, lump wave and resonance Y-type solution are graphed in figures 9-24. Particularly the lump-lump molecule in figure 12 which is not common in other low-dimensional physical models. An intersecting rather than parallel line molecule solution with various order are demonstrated in figures 9, 23 and 24. We believe that above idea can be applied to other (3+1)-dimensional physical models. These molecule solutions may enlighten our understanding of the phenomenon of nonlinear wave propagation in fluids without collisional patterns. In future work, we are committed to finding new methods that allow us to obtain lump-lump molecule solutions in (2+1)-dimensional productable systems.

Acknowledgments

The authors are grateful to the anonymous referees of the journal for helpful comments on an earlier draft.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.
1
Kara S Ünsal Ö 2022 Implementation of two variable expansion method for extended Jimbo-Miwa equations J. Ocean Eng. Sci.

DOI

2
Al-Askar F M Mohammed W W Albalahi A M El-Morshedy M 2022 The Impact of the Wiener process on the analytical solutions of the stochastic (2.1)-dimensional breaking soliton equation by using tanh-coth method Mathematics 10 817

DOI

3
Wazwaz A M 2007 Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method Appl. Math. Comput. 190 633 640

DOI

4
Lin L Zhu S Xu Y Shi Y 2016 Exact solutions of Gardner equations through tanh-coth method Appl. Math. 7 2374 2381

DOI

5
De Monvel A B Shepelsky D 2013 A Riemann—Hilbert approach for the Degasperis-Procesi equation Nonlinearity 26 2081

DOI

6
Wang H Zhang Y 2023 Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations J. Comput. Appl. Math. 420 114812

DOI

7
Peng W Q Chen Y 2022 N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann-Hilbert method and PINN algorithm Physica D 435 133274

DOI

8
Zhang X Chen Y 2019 Inverse scattering transformation for generalized nonlinear Schrödinger equation Appl. Math. Lett. 98 306 313

DOI

9
Vitanov N K Dimitrova Z I Vitanov K N 2020 Simple equations method (SEsM): algorithm, connection with Hirota method, inverse scattering transform method, and several other methods Entropy 23 10

DOI

10
Wang M Tian B Zhou T Y 2021 Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain Chaos Solitons Fractals 152 111411

DOI

11
Shen Y Tian B Zhou T Y Gao X T 2023 N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material Nonlinear Dyn. 111 2641 2649

DOI

12
Ma W X Batwa S 2021 A binary Darboux transformation for multicomponent NLS equations and their reductions Anal. Math. Phys. 11 2021

DOI

13
Guan X Liu W Zhou Q Biswas A 2019 Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation Nonlinear Dyn. 98 1491 1500

DOI

14
Wazwaz A M 2020 Painlevé analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions Phys. Lett. A 384 126310

DOI

15
Levi D Yamilov R I 2009 The generalized symmetry method for discrete equations J. Phys. A Math. Theor. 42 454012

DOI

16
Ma H C Gao Y D Deng A P 2022 Fission and fusion solutions of the (2.1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation: case of fluid mechanics and plasma physics Nonlinear Dyn. 108 4123 4137

DOI

17
Ma H Yue S Deng A 2022 Resonance Y-shape solitons and mixed solutions for a (2.1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics Nonlinear Dyn. 108 505 519

DOI

18
Ma H C Gao Y D Deng A P 2022 Solutions of novel soliton molecules and their interactions of (2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation Chin. Phys. B 31 070201

DOI

19
Cui C J Tang X Y Cui Y J 2020 New variable separation solutions and wave interactions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation Appl. Math. Lett. 102 106109

DOI

20
Sakkaravarthi K Singh S Karjanto N 2023 Exploring the dynamics of nonlocal nonlinear waves: analytical insights into the extended Kadomtsev-Petviashvili model Front. Phys. 11 1168830

DOI

21
Singh S Sakkaravarthi K Murugesan K 2023 Lump and soliton on certain spatially-varying backgrounds for an integrable (3.1) dimensional fifth-order nonlinear oceanic wave model Chaos Solitons Fractals 167 113058

DOI

22
Sarwar S 2021 New soliton wave structures of nonlinear (4.1)-dimensional Fokas dynamical model by using different methods ALEX Eng. J. 60 795 803

DOI

23
Lou S Y 2020 Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance J. Phys. Commun. 4 041002

DOI

24
Zhao Z He L Wazwaz A M 2023 Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves Chin. Phys. B 32 040501

DOI

25
Zhao Z Yue J He L 2022 New type of multiple lump and rogue wave solutions of the (2+1)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili equation Appl. Math. Lett. 133 108294

DOI

26
He L Zhang J Zhao Z 2022 Lump and interaction dynamics of the (2+1)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili equation Chin. J. Phys. 79 225 245

DOI

27
Zhao Z He L 2022 A new type of multiple-lump and interaction solution of the Kadomtsev-Petviashvili I equation Nonlinear Dyn. 109 1033 1046

DOI

28
Jimbo M Miwa T 1983 Solitons and infinite dimensional Lie algebras Publ. Res. Inst. Math. Sci. 19 943 1001

DOI

29
Fan E G 2003 An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations J. Phys. A: Math. Gen. 36 7009 7026

DOI

30
Dorrizzi B Grammaticos B Ramani A Winternitz P 1986 Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable? J. Math. Phys. 27 2848 2852

DOI

31
Lou S Y Weng J P 1995 Generalized W symmetry algebra of the conditionally integrable nonlinear evolution equation J. Math. Phys. 36 3492 3497

DOI

32
Tang X Y Lin J 2003 Conditional similarity reductions of jimbo-miwa equation via the classical lie group approach Commun. Theor. Phys. 39 6 8

DOI

33
Ma H C 2005 A simple method to generate lie point symmetry groups of (3+1)-dimensional Jimbo-Miwa equation Chin. Phys. Lett. 22 554 558

DOI

34
Wazwaz A M 2017 Multiple-soliton solutions for extended (3+1)-dimensional Jimbo-Miwa equations Appl. Math. Lett. 64 21 26

DOI

35
Zhang Z Li B Wazwaz A M Guo Q 2022 Lump molecules in fluid systems: Kadomtsev-Petviashvili I case Phys. Lett. A 424 127848

DOI

36
Guo H D Xia T C Hu B B 2020 High-order lumps, high-order breathers and hybrid solutions for an extended (3.1)-dimensional Jimbo-Miwa equation in fluid dynamics Nonlinear Dyn. 100 601 614

DOI

37
Xu H N Ruan W Y Zhang Y X 2020 Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior Appl. Math. Lett. 99 105976

DOI

38
Ma H Chen X Deng A 2023 Resonance Y-type soliton and new hybrid solutions generated by velocity resonance for a (2.1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in a fluid Nonlinear Dyn. 111 7599 7617

DOI

39
Zhang Z Guo Q Li B Chen J 2021 A new class of nonlinear superposition between lump waves and other waves for Kadomtsev-Petviashvili I equation Commun. Nonlinear Sci. Numer. Simul. 101 105866

DOI

40
Zhao Z He L 2022 Multiple lump molecules and interaction solutions of the Kadomtsev-Petviashvili I equation Commun. Theor. Phys. 74 105004

DOI

41
Singh S Sakkaravarthi K Tamizhmani T Murugesan K 2022 Painlevé analysis and higher-order rogue waves of a generalized (3+1)-dimensional shallow water wave equation Phys. Scr. 97 055204

DOI

42
Sakkaravarthi K Mareeswaran R B Kanna T 2023 Bright matter-wave bound soliton molecules in spin-1 Bose—Einstein condensates with non-autonomous nonlinearities Physica D 448 133694

DOI

43
Ma H Huang H Deng A 2022 Soliton molecules, asymmetric solitons and hybrid solutions for KdV-CDG equation Partial Differ. Equ. Appl. Math 5 100214

DOI

44
Xu G Gelash A Chabchoub A Zakharov V Kibler B 2019 Breather wave molecules Phys. Rev. Lett. 122 084101

DOI

45
Ma W X 2019 Interaction solutions to Hirota-Satsuma-Ito equation in (2.1)-dimensions Front. Math. China 14 619 629

DOI

46
X Chen S J 2021 Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types Nonlinear Dyn. 103 947 977

DOI

47
Raza N Arshed S Wazwaz A M 2023 Structures of interaction between lump, breather, rogue and periodic wave solutions for new (3+1)-dimensional negative order KdV-CBS model Phys. Lett. 458 128589

DOI

Outlines

/