Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Soliton resolution and asymptotic stability of N-solutions for the defocusing Kundu–Eckhaus equation with nonzero boundary conditions

  • Engui Fan 1, * ,
  • Yanxi Zhang 2
Expand
  • 1 School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai, 200433, China
  • 2 Tianjin Xinhua High School, No.99 machang Road, Tianjin, 300204, China

Author to whom any correspondence should be addressed.

Received date: 2023-10-09

  Revised date: 2023-12-07

  Accepted date: 2023-12-07

  Online published: 2024-01-12

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, we address interesting soliton resolution, asymptotic stability of N-soliton solutions and the Painlevé asymptotics for the Kundu-Eckhaus (KE) equation with nonzero boundary conditions

$\begin{eqnarray*}\begin{array}{l}{\rm{i}}{q}_{t}+{q}_{{xx}}-2(| q{| }^{2}-1)q+4{\beta }^{2}(| q{| }^{4}-1)q\\ +\ 4{\rm{i}}\beta {\left(| q{| }^{2}\right)}_{x}q=0,\\ q(x,0)={q}_{0}(x)\sim \pm 1,\ x\to \pm \infty .\end{array}\end{eqnarray*}$
The key to proving these results is to establish the formulation of a Riemann-Hilbert (RH) problem associated with the above Cauchy problem and find its connection with the RH problem of the defocusing NLS equation. With the $\bar{\partial }$-steepest descent method and the results of the defocusing NLS equation, we find complete leading order approximation formulas for the defocusing KE equation on the whole (x,t) half-plane including soliton resolution and asymptotic stability of N-soliton solutions in a solitonic region, Zakharov-Shabat asymptotics in a solitonless region and the Painlevé asymptotics in two transition regions.

Cite this article

Engui Fan , Yanxi Zhang . Soliton resolution and asymptotic stability of N-solutions for the defocusing Kundu–Eckhaus equation with nonzero boundary conditions[J]. Communications in Theoretical Physics, 2024 , 76(1) : 015001 . DOI: 10.1088/1572-9494/ad1327

1. Introduction

We consider the Cauchy problem for the defocusing Kundu–Eckhaus (KE) equation with nonzero boundary conditions
$\begin{eqnarray}\begin{array}{l}{\rm{i}}{q}_{t}+{q}_{{xx}}-2(| q{| }^{2}-1)q+4{\beta }^{2}(| q{| }^{4}-1)q\\ \,\,\,\,+\ 4{\rm{i}}\beta {\left(| q{| }^{2}\right)}_{x}q=0,\end{array}\end{eqnarray}$
$\begin{eqnarray}q(x,0)={q}_{0}(x)\sim \pm 1,\ x\to \pm \infty ,\end{eqnarray}$
where ${q}_{0}\in \tanh x+{H}^{\mathrm{4,4}}({\mathbb{R}})$ and β is a constant. The usual form of the defocusing KE equation is
$\begin{eqnarray}{\rm{i}}{q}_{t}+{q}_{{xx}}-2| q{| }^{2}q+4{\beta }^{2}| q{| }^{4}q+4{\rm{i}}\beta {\left(| q{| }^{2}\right)}_{x}q=0,\end{eqnarray}$
which reduces to (1.1) under the change of variables $q\to q{{\rm{e}}}^{-2{\rm{i}}(1-2{\beta }^{2})t}$. However, the advantage of (1.1) is that its solution satisfying (1.2) is asymptotically time-independent as x → ± ∞. The focusing KE equation takes the
$\begin{eqnarray}{\rm{i}}{q}_{t}+{q}_{{xx}}+2| q{| }^{2}q+4{\beta }^{2}| q{| }^{4}q-4{\rm{i}}\beta {\left(| q{| }^{2}\right)}_{x}q=0,\end{eqnarray}$
which was first introduced by Kundu [1] and later by Calogero and Eckhaus [2] from different perspectives. For the special case β = 0, the KE equations (1.3) and (1.4) reduce to defocusing and focusing NLS equation respectively. In recent years, exact solutions for both KE equations (1.3) and (1.4) have been investigated via different methods. for example, the N-soliton solutions are constructed by using Darboux transformation and Riemann–Hilbert (RH) method [3, 4]. Guo et al constructed rogue wave and multi-pole solutions for the KE equation (1.4) with nonzero boundary conditions via the RH method [5]. The rogue waves and higher-order rogue wave solutions in a chaotic wave were obtained [6, 7].
In this paper, we are especially concerned with long-time asymptotics for the KE equation. For the focusing case, Wang et al studied the long-time asymptotic for the KE equation (1.4) with nonzero boundary conditions [8]. Ma and Fan obtained the long-time asymptotics for the KE equation (1.4) where weighted Sobolev initial data was investigated by using $\bar{\partial }$-steepest descent method [9]. Guo and Liu obtained the long-time asymptotics for the focusing KE equation on the half-line [10]. For the defocusing case, Zhu et. al presented the long-time asymptotic for the KE equation (1.3) with Schwartz initial data [11]. As a special case of the KE equation (1.1) as β = 0, the soliton resolution and long-time asymptotics for the defocusing have been obtained [1214]. In this paper, we hope to generalize these results to the KE equation so as to give complete approximation formulas in three space-time regions of (x,t) half-plane for the KE equation (1.3) with nonzero boundary conditions by $\bar{\partial }$-steepest descent method. For this purpose, we make an appropriate transformation such that the associated RH problem for the KE equation into the RH problem for NLS equation.
The organization of this paper is as follows. In section 2, we consider inverse scattering transform for weighted Sobolev initial data ${q}_{0}\in \tanh x+{H}^{\mathrm{4,4}}({\mathbb{R}})$. Based on the analyticity, symmetries and asymptotics for the Jost functions and scattering data, we construct a basic RH problem associated with the Cauchy problem (1.1)–(1.2). In section 3, with the $\bar{\partial }$-steepest descent method and the results of the defocusing NLS equation, we give a complete leading order approximation formula for the defocusing KE equation on the whole (x,t) half-plane including the soliton resolution in the solitonic region, Zakharov-shabat asymptotics in the solitonless region and the Painlevé asymptotics in the transition region.

2. Inverse scattering transform

2.1. Spectral analysis

The KE equation (1.1) admits the following Lax pair
$\begin{eqnarray}{\psi }_{x}+{\rm{i}}k{\sigma }_{3}\psi =U\psi ,\end{eqnarray}$
$\begin{eqnarray}{\psi }_{t}+2{\rm{i}}{k}^{2}{\sigma }_{3}\psi =V\psi ,\end{eqnarray}$
where $U=\mathrm{diag}(q,\bar{q}){\sigma }_{1}$, and
$\begin{eqnarray}\begin{array}{rcl}V & = & [4{\rm{i}}{\beta }^{2}({U}^{4}-I)-{\rm{i}}({U}^{2}-I)\\ & & -{\rm{i}}{U}_{x}]{\sigma }_{3}+2{kU}-2\beta ({U}^{3}-U)+\beta [{U}_{x},U].\end{array}\end{eqnarray}$
Under the boundary condition (1.2), we define the Jost solutions of Lax pair (2.1)–(2.2) with asymptotics
$\begin{eqnarray*}{\psi }^{\pm }(z)\sim {Y}_{\pm }{{\rm{e}}}^{-{\rm{i}}t\theta (z){\sigma }_{3}},\quad x\to \pm \infty ,\end{eqnarray*}$
where we denote ψ±(z) = ψ±(z; x, t) and
$\begin{eqnarray}{Y}_{\pm }=I\pm {\sigma }_{1}{z}^{-1},\quad \det {Y}_{\pm }=1-{z}^{-2},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\theta (z)=\zeta (z)\left({{xt}}^{-1}-2\lambda (z)\right),\\ \,\quad k(z)=\displaystyle \frac{1}{2}(z+{z}^{-1}),\quad \zeta (z)=\displaystyle \frac{1}{2}(z-{z}^{-1}).\end{array}\end{eqnarray}$
Making a transformation
$\begin{eqnarray}{\phi }^{\pm }(z)={\psi }^{\pm }(z){{\rm{e}}}^{{\rm{i}}t\theta (z){\sigma }_{3}},\end{eqnarray}$
then
$\begin{eqnarray}{\phi }^{\pm }(z;x,t)\sim {Y}_{\pm },\ x\to \pm \infty ,\end{eqnarray}$
and φ±(z) satisfy the Volterra integral equations
$\begin{eqnarray*}\begin{array}{l}{\phi }^{\pm }(z)={Y}_{\pm }\\ \,+{\displaystyle \int }_{\pm \infty }^{x}{Y}_{\pm }{{\rm{e}}}^{-{\rm{i}}\zeta (z)(x-y){\widehat{\sigma }}_{3}}{Y}_{\pm }^{-1}{\rm{\Delta }}{U}_{\pm }(z;y){\phi }^{\pm }(z;y){\rm{d}}y,z\ne \pm 1,\\ {\phi }^{\pm }(z)={Y}_{\pm }\\ \,+{\displaystyle \int }_{\pm \infty }^{x}\left(I+(x-y){L}_{\pm }\right){\rm{\Delta }}{U}_{\pm }(\pm 1;y){\phi }^{\pm }(\pm 1;y){\rm{d}}y,z=\pm 1,\end{array}\end{eqnarray*}$
where ΔU± = UU± = iΣ3(UΣ1), and ${\widehat{\sigma }}_{3}$ acts on a matrix A by ${{\rm{e}}}^{{\widehat{\sigma }}_{3}}A={{\rm{e}}}^{{\sigma }_{3}}A{{\rm{e}}}^{-{\sigma }_{3}}$.
By denoting ${\phi }^{\pm }(z)=\left({\phi }_{1}^{\pm }(z),{\phi }_{2}^{\pm }(z)\right)$, then the existence, analyticity and differentiability of φ±(z) can be proven directly. Here we list their properties without proof.

Let ${q}_{0}\in \tanh (x)+{L}^{1}({\mathbb{R}})$ and $q{{\prime} }_{0}\in {W}^{\mathrm{1,1}}({\mathbb{R}})$, then we have

i

(i) ${\phi }_{1}^{+}(z)$ and ${\phi }_{2}^{-}(z)$ can be analytically extended to $z\in {{\mathbb{C}}}^{-}$, while ${\phi }_{1}^{-}(z)$ and ${\phi }_{2}^{+}(z)$ can be analytically extended to $z\in {{\mathbb{C}}}^{+}$.

ii

(ii) ${\phi }^{\pm }(z)$ satisfy the symmetries

$\begin{eqnarray}{\phi }^{\pm }(z)={\sigma }_{1}\overline{{\phi }^{\pm }(\bar{z})}{\sigma }_{1}=\pm {z}^{-1}{\phi }^{\pm }({z}^{-1}){\sigma }_{1}.\end{eqnarray}$

iii

(iii) ${\phi }^{\pm }(z)$ admit the asymptotic properties

$\begin{eqnarray*}\begin{array}{rcl}{\phi }^{\pm }(z) & = & {{\rm{e}}}^{{\rm{i}}\beta {\displaystyle \int }_{\pm \infty }^{x}(| q{| }^{2}-1){\rm{d}}y{\sigma }_{3}}+{ \mathcal O }\left({z}^{-1}\right),\ z\to \infty ,\\ {\phi }^{\pm }(z) & = & -{\rm{i}}{z}^{-1}{\sigma }_{1}{{\rm{e}}}^{{\rm{i}}\beta {\displaystyle \int }_{\pm \infty }^{x}(| q{| }^{2}-1){\rm{d}}y}+{ \mathcal O }(1),\ z\to 0.\end{array}\end{eqnarray*}$

To formulate a regular RH problem, we further define
$\begin{eqnarray}{c}^{\pm }(z)={{\rm{e}}}^{-{\rm{i}}\beta {\int }_{\infty }^{x}(| q{| }^{2}-1){\rm{d}}y{\sigma }_{3}}{\phi }^{\pm }(z),\end{eqnarray}$
which admits the asymptotics
$\begin{eqnarray*}\begin{array}{rcl}{\mu }^{\pm }(z) & = & I+{ \mathcal O }\left({z}^{-1}\right),\ z\to \infty ,\\ {\mu }^{\pm }(z) & = & -{\rm{i}}{z}^{-1}{\sigma }_{1}+{ \mathcal O }(1),\ z\to 0.\end{array}\end{eqnarray*}$
The Jost functions μ±(z) admit a scattering relation
$\begin{eqnarray}\begin{array}{l}{\mu }^{-}(z)={\mu }^{+}(z)\left(\begin{array}{cc}a(z) & \overline{b(z)}{{\rm{e}}}^{-2{\rm{i}}t\theta (z)}\\ b(z){{\rm{e}}}^{2{\rm{i}}t\theta (z)} & \overline{a(z)}\end{array}\right),\\ \,\ z\in {\mathbb{R}}\setminus \{-1,0,1\},\end{array}\end{eqnarray}$
where a(z) and b(z) are the scattering coefficients, which can be described by the Jost functions
$\begin{eqnarray}a(z)=\displaystyle \frac{\det \left[{\psi }_{1}^{-}(z),{\psi }_{2}^{+}(z)\right]}{1-{z}^{-2}},\quad b(z)=\displaystyle \frac{\det \left[{\psi }_{1}^{+}(z),{\psi }_{1}^{-}(z)\right]}{1-{z}^{-2}}.\end{eqnarray}$
We define a reflection coefficient
$\begin{eqnarray}r(z)=\displaystyle \frac{b(z)}{a(z)},\end{eqnarray}$
which satisfies the relation
$\begin{eqnarray}| r(z){| }^{2}=1-| a(z){| }^{-2}\lt 1,\ z\in {\mathbb{R}}\setminus \{0,\pm 1\}.\end{eqnarray}$
It is shown that the scattering coefficients and the reflection coefficient have the following properties.

Let ${q}_{0}\in \tanh x+{H}^{\mathrm{2,2}}({\mathbb{R}})$, then

i

(i)The scattering data a(z) can be analytically extended to $z\in {{\mathbb{C}}}^{+}$, while b(z) is defined for $z\in {\mathbb{R}}\setminus \{0,\pm 1\}$. Zeros of a(z) in ${{\mathbb{C}}}^{+}$ are simple, finite and distribute on the unit circle.

ii

(ii) $a(z)=a({z}^{-1})$ , $b(z)=-b({z}^{-1}),$ $r(z)=-r({z}^{-1}).$

iii

(iii)The scattering data admit asymptotics

$\begin{eqnarray*}| b(z)| ={ \mathcal O }(| z{| }^{-2}),\ | z| \to \infty ,\ | b(z)| ={ \mathcal O }(| z{| }^{2}),\ | z| \to 0.\end{eqnarray*}$

iv

(iv)In the non-generic case, a(z) and $b(z)$ are continuous at $z=\pm 1$ and $| r(\pm 1)| \lt 1;$ In the generic case, a(z) and b(z) have the first order singularities at $z=\pm 1$,

$\begin{eqnarray}a(z)=\displaystyle \frac{{c}_{\pm }}{z\mp 1}+{ \mathcal O }(1),\ b(z)=\mp \displaystyle \frac{{c}_{\pm }}{z\mp 1}+{ \mathcal O }(1),\end{eqnarray}$
which leads to ${\mathrm{lim}}_{z\to \pm 1}r(z)=\mp 1$, where ${c}_{\pm }\,=\det \left[{\psi }_{1}^{-}(\pm 1),{\psi }_{2}^{+}(\pm 1)\right].$

2.2. Set-up of the RH problem

Let ${\{{z}_{j}\}}_{j=0}^{N}$ and ${\{{\bar{z}}_{j}\}}_{j=0}^{N}$ be the zeros of a(z) in ${{\mathbb{C}}}^{+}$ and $\overline{a(z)}$ in ${{\mathbb{C}}}^{-}$, respectively. Denote
$\begin{eqnarray*}\begin{array}{rcl}{{ \mathcal Z }}^{+} & = & \{{z}_{j}| a({z}_{j})=0,{z}_{j}\in {{\mathbb{C}}}^{+},| {z}_{j}| =1,j=1,\cdots ,N\},\\ {{ \mathcal Z }}^{-} & = & \{{\bar{z}}_{j}| \overline{a({\bar{z}}_{j})}=0,{\bar{z}}_{j}\in {{\mathbb{C}}}^{-},| {\bar{z}}_{j}| =1,j=1,\cdots ,N\}.\end{array}\end{eqnarray*}$
For $z\in {\mathbb{C}}\setminus {\mathbb{R}}$, and the normalized Jost functions ${\mu }_{j}^{\pm }(z),j=1,2,$ we construct the function
$\begin{eqnarray*}\begin{array}{l}M(z)=M(z;x,t):= \left\{\begin{array}{l}({\mu }_{1}^{-}(z)/a(z),{\mu }_{2}^{+}(z)),\ z\in {{\mathbb{C}}}^{+},\\ ({\mu }_{1}^{+}(z),{\mu }_{2}^{-}(z)/\overline{a(\bar{z})}),\ z\in {{\mathbb{C}}}^{-}.\end{array}\right.\end{array}\end{eqnarray*}$
By lemma 1 and 2, it can be verified that M(z) satisfies the following RH problem.

Find a matrix-valued function M(z) which satisfies

1.Analyticity: M(z) is meromorphic in ${\mathbb{C}}\setminus {\mathbb{R}}$.

2.Jump condition: M(z) satisfies the jump condition

$\begin{eqnarray*}\begin{array}{l}{M}_{+}(z)={M}_{-}(z)V(z),\ z\in {\mathbb{R}},\end{array}\end{eqnarray*}$
where
$\begin{eqnarray}V(z)=\left(\begin{array}{cc}1-| r(z){| }^{2} & -\overline{r(z)}{{\rm{e}}}^{-2{\rm{i}}t\theta (z)}\\ r(z){{\rm{e}}}^{2{\rm{i}}t\theta (z)} & 1\end{array}\right),\end{eqnarray}$
with $\theta (z)=\zeta (z)\tfrac{x}{t}-2\zeta (z)\lambda (z).$

3.Asymptotic behaviors:

$\begin{eqnarray*}\begin{array}{rcl}M(z) & = & I+{ \mathcal O }({z}^{-1}),\quad z\to \infty ,\\ {zM}(z) & = & {\sigma }_{1}+{ \mathcal O }(z),\quad z\to 0.\end{array}\end{eqnarray*}$

4.Residue conditions: M(z) has simple poles at each points zj in ${{ \mathcal Z }}^{+}\cup {{ \mathcal Z }}^{-}$ with the following residue conditions:

$\begin{eqnarray}\mathop{\mathrm{Res}}\limits_{z={z}_{j}}M(z)=\mathop{\mathrm{lim}}\limits_{z\to {z}_{j}}M(z)\left(\begin{array}{cc}0 & 0\\ {c}_{j}{{\rm{e}}}^{2{\rm{i}}t\theta ({z}_{j})} & 0\end{array}\right),\end{eqnarray}$
$\begin{eqnarray}\mathop{\mathrm{Res}}\limits_{z={\bar{z}}_{j}}M(z)=\mathop{\mathrm{lim}}\limits_{z\to {\bar{z}}_{j}}M(z)\left(\begin{array}{cc}0 & {\bar{c}}_{j}{{\rm{e}}}^{-2{\rm{i}}t\theta ({\bar{z}}_{j})}\\ 0 & 0\end{array}\right),\end{eqnarray}$
where ${c}_{j}=\tfrac{4{\rm{i}}{z}_{j}}{{\int }_{{\mathbb{R}}}| {\psi }_{2}^{+}({z}_{j};x,0){| }^{2}{\rm{d}}x}={\rm{i}}{z}_{j}| {c}_{j}| .$

This is an RH problem with jumps on ${\mathbb{R}}$ and poles distributed on $| z| =1$. See figure 1. The solution to the Cauchy problem (1.1)–(1.2) can be given by the reconstruction formula
$\begin{eqnarray}q(x,t)=2{\rm{i}}m(x,t){{\rm{e}}}^{2{\rm{i}}\beta {\int }_{\infty }^{x}(| q{| }^{2}-1){\rm{d}}y},\end{eqnarray}$
where
$\begin{eqnarray}m(x,t)=\mathop{\mathrm{lim}}\limits_{z\to \infty }{\left({zM}(z)\right)}_{21}.\end{eqnarray}$

Figure 1. The poles and jump lines of M(z).
From 2.18, we obtain ∣q(x, t)∣ = 2∣m(x, t)∣ and the reconstruction formula (2.18) can be written as
$\begin{eqnarray}q(x,t)=2{\rm{i}}m(x,t){{\rm{e}}}^{2{\rm{i}}\beta {\int }_{\infty }^{x}(4| m(y,t){| }^{2}-1){\rm{d}}y},\end{eqnarray}$
were m(x, t) is given by the limit (2.19) of the solution M(z) of the RH problem 2.1.

2.3. Classification of asymptotic regions

The long-time asymptotics of the RH problem 2.1 is affected by the growth and decay of the oscillatory terms e±2itθ(z) in the jump matrix V(z). Direct calculations show that
$\begin{eqnarray}\mathrm{Re}(2{\rm{i}}\theta (z))=2\mathrm{Re}z\mathrm{Im}z\left(1+| z{| }^{-4}\right)-2\xi \mathrm{Im}z\left(1+| z{| }^{-2}\right),\end{eqnarray}$
where $\xi =\tfrac{x}{2t}$. The signature table of $\mathrm{Re}(2{\rm{i}}\theta (z))$ is shown in figures 24
Figure 2. Solitonic regions: ∣ξ∣ < 1, there is no phase point on ${\mathbb{R}}$.
Figure 3. Solitonless region: ∣ξ∣ > 1, there are two phase points on ${\mathbb{R}}$.
Figure 4. Transition region: ∣ξ∣ = 1, there is one phase point on ${\mathbb{R}}$.
According to the distribution of the phase points on the real axis, we divide the half-plane (x,t) into the following three kinds of asymptotic regions.

1.Solitonic region: ∣ξ∣ < 1, there is no phase point on ${\mathbb{R}}$, see figure 2.

2.Solitonless region: ∣ξ∣ > 1, there are two phase points on ${\mathbb{R}}$, see figure 3.

3.Transition region: ∣ξ∣ = 1, there is one phase point on ${\mathbb{R}}$, see figure 4.

3. Long-time asymptotic behavior

In this section, we give the asymptotic behavior of the solution of the Cauchy problem (1.1)–(1.2). Noting that we find the RH problem 2.1 corresponding to defocusing KE equation is the same with the defocusing NLS equation [1214], then solving the RH problem 2.1 with $\bar{\partial }$-descent method as done in [1214] and using the reconstruction formula (2.20), we obtain the following results for the KE equation (1.1). The proof is omitted.

3.1. Solitonic region

For the solitonic region ∣x/(2t)∣ < 1, we obtain the result on soliton resolution and stability of N-soliton solutions for the KE equation.

The initial data ${q}_{0}\in \tanh (x)+{H}^{\mathrm{4,4}}({\mathbb{R}})$, and $\{r(z),{\{{z}_{j},{c}_{j}\}}_{j\,=\,0}^{N-1}\}$ are associated with the scattering data. Then in the solitonic region $| x/(2t)| \lt 1$, the N-soliton solution of the Cauchy problem (1.1)–(1.2) for the KE equation is asymptotic stability in the sense

$\begin{eqnarray}| q(x,t)-{{\rm{e}}}^{{\rm{i}}\gamma (\xi )}{q}_{\mathrm{sol}}(x,t)| \leqslant {{ct}}^{-1},\ t\gt {T}_{0},| \xi | \leqslant {\xi }_{0}.\end{eqnarray}$
where $\xi =x/(2t)$, and
$\begin{eqnarray}\begin{array}{rcl}\gamma (\xi ) & = & {\int }_{0}^{\infty }\nu (s)/s{\rm{d}}s+2\displaystyle \sum _{k:\mathrm{Re}{z}_{k}\gt \xi }\arg {z}_{k},\ \nu (z)\\ & = & -\,\displaystyle \frac{1}{2}\mathrm{log}(1-| r(z){| }^{2}),\end{array}\end{eqnarray}$
while ${q}_{\mathrm{sol}}(x,t)$ is the N-soliton with associated scattering data $\{\widetilde{r}=0,{\{{z}_{j},{\widetilde{c}}_{j}\}}_{j=0}^{N-1}\}$, with
$\begin{eqnarray*}{\widetilde{c}}_{j}={c}_{j}\exp \left(2{\rm{i}}{\int }_{0}^{\infty }\nu (s)\left(\displaystyle \frac{1}{s-{z}_{j}}-\displaystyle \frac{1}{2s}\right){\rm{d}}s\right).\end{eqnarray*}$
Moreover, the N-soliton can be separated in the form
$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & 2{\rm{i}}m(x,t){{\rm{e}}}^{4{\rm{i}}\beta {\displaystyle \int }_{\infty }^{x}(| m(y,t){| }^{2}-1){\rm{d}}y},\\ m(x,t) & = & {{\rm{e}}}^{{\rm{i}}\gamma (1)}\left[1+\displaystyle \sum _{k=0}^{N-1}(\displaystyle \prod _{j\lt k}{z}_{j}^{2})[\mathrm{sol}({z}_{k},x,t)-1]\right]\\ & & +{ \mathcal O }({t}^{-1}).\end{array}\end{eqnarray}$
where $\mathrm{sol}({z}_{k},x,t)$ is a single-soliton corresponding discrete spectral ${z}_{k}={\xi }_{k}+{\rm{i}}{\eta }_{k}$.

3.2. Solitonless region

For the solitonless region ∣x/(2t)∣ > 1, we obtain the long-time asymptotic behavior for the solution of the KE equation.

Under the condition of the theorem 1, then in the solitonless region $| x/(2t)| \gt 1$, the solution of the Cauchy problem (1.1)–(1.2) for the KE equation admits the following asymptotic formula

$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & 2{\rm{i}}m(x,t){{\rm{e}}}^{4{\rm{i}}\beta {\displaystyle \int }_{\infty }^{x}(| m(y,t){| }^{2}-1){\rm{d}}y},\\ m(x,t) & = & {{\rm{e}}}^{-{\rm{i}}\delta }\left(1+{t}^{-1/2}h(x,t)\right)+{ \mathcal O }\left({t}^{-3/4}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\delta ={\int }_{I(\xi )}\nu (s)/s\,{\rm{d}}s,\ \nu (z)=-\displaystyle \frac{1}{2}\mathrm{log}(1-| r(z){| }^{2}),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}h(x,t)=\displaystyle \frac{\nu {\left({\xi }_{1}\right)}^{1/2}}{2{\rm{i}}\sqrt{t\pi }\left(1-{\xi }_{1}^{2}\right)}\left[\displaystyle \frac{{\xi }_{1}^{2}{{\rm{e}}}^{-{\rm{i}}{\alpha }_{1}}+{{\rm{e}}}^{{\rm{i}}{\alpha }_{1}}}{\sqrt{| \theta ^{\prime\prime} ({\xi }_{1})| }}\right.\\ \,+\,\left.\displaystyle \frac{{{\rm{e}}}^{-{\rm{i}}{\alpha }_{2}}+{\xi }_{1}^{2}{{\rm{e}}}^{{\rm{i}}{\alpha }_{2}}}{\sqrt{| \theta ^{\prime\prime} ({\xi }_{1}^{-1})| }}\right],\end{array}\end{eqnarray}$
with other parameters given by
$\begin{eqnarray*}\begin{array}{rcl}{\alpha }_{1} & = & \displaystyle \frac{\pi }{4}+\arg {\rm{\Gamma }}({\rm{i}}v({\xi }_{1}))-\arg \left({r}_{{\xi }_{1}}\right),{\alpha }_{2}={\alpha }_{1}+\alpha -{\rm{i}}v({\xi }_{1}),\\ \alpha & = & \displaystyle \frac{\pi }{2}+4t\theta ({\xi }_{1})+v({\xi }_{1})\mathrm{log}\left(4{t}^{2}| \theta ^{\prime\prime} ({\xi }_{1})\theta ^{\prime\prime} ({\xi }_{1}^{-1})| \right)\\ & & \,+2\arg {\rm{\Gamma }}({\rm{i}}v({\xi }_{1})).\end{array}\end{eqnarray*}$

3.3. Two transition regions

Define two transition regions
$\begin{eqnarray*}{{ \mathcal A }}_{\pm }1:= \left\{(x,t):0\lt \left|\displaystyle \frac{x}{2t}-(\pm 1)\right|{t}^{2/3}\leqslant C\right\},\end{eqnarray*}$
then we obtain the Painlevé asymptotics for the KE equation.

The initial data given in theorem 1, and $\{r(z),\tilde{r}(z)\}$ and ${\{{z}_{j}\}}_{j=0}^{N-1}$ are associated with the reflection coefficients and the discrete spectrum. Then

1.In the transition region ${{ \mathcal A }}_{-1}$, the solution to the Cauchy problem (1.1)–(1.2) is given by

$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & 2{\rm{i}}m(x,t){{\rm{e}}}^{4{\rm{i}}\beta {\displaystyle \int }_{\infty }^{x}(| m(y,t){| }^{2}-1){\rm{d}}y},\\ m(x,t) & = & {{\rm{e}}}^{{\rm{i}}\varepsilon }\left(1+{\left(\displaystyle \frac{3}{4}t\right)}^{-1/3}\alpha (-1)\right)+{ \mathcal O }\left({t}^{-1/2}\right),\end{array}\end{eqnarray}$
where $\varepsilon $ and $\alpha (-1)$ are the associated parameters
$\begin{eqnarray}\begin{array}{l}\varepsilon =\displaystyle \frac{1}{2\pi }{\displaystyle \int }_{0}^{\infty }\displaystyle \frac{\mathrm{log}(1-| r(z){| }^{2})}{z}\,{\rm{d}}z+2\displaystyle \sum _{j=0}^{N-1}\arg {z}_{j},\\ \alpha (-1)=\displaystyle \frac{{\rm{i}}}{2}\left({\displaystyle \int }_{s}^{\infty }{u}^{2}(y){\rm{d}}y-u(s){{\rm{e}}}^{\mathrm{iarg}(r(-1)}\right),\\ \,s=\displaystyle \frac{8}{3}\left(\displaystyle \frac{x}{2t}+1\right){\left(\displaystyle \frac{3}{4}t\right)}^{\tfrac{2}{3}},\end{array}\end{eqnarray}$
and $u(s)$ is the solution of the Painlevé equation
$\begin{eqnarray}u^{\prime\prime} (s)=2{u}^{3}(s)+{su}(s).\end{eqnarray}$

2.In the transition region ${{ \mathcal A }}_{+1}$, the solution to the Cauchy problem (1.1)–(1.2) is given by

$\begin{eqnarray}\begin{array}{rcl}q(x,t) & = & 2{\rm{i}}m(x,t){{\rm{e}}}^{4{\rm{i}}\beta {\displaystyle \int }_{\infty }^{x}(| m(y,t){| }^{2}-1){\rm{d}}y},\\ m(x,t) & = & {{\rm{e}}}^{{\rm{i}}\varepsilon }\left(1+{\left(\displaystyle \frac{3}{4}t\right)}^{-1/3}\alpha (1)\right)+{ \mathcal O }\left({t}^{-1/2}\right),\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl}\varepsilon & = & \displaystyle \frac{1}{2\pi }{\displaystyle \int }_{0}^{\infty }\displaystyle \frac{\mathrm{log}(1-| r(z){| }^{2})}{z}\,{\rm{d}}z,\\ \alpha (1) & = & -\displaystyle \frac{{\rm{i}}}{2}\left({\displaystyle \int }_{s}^{\infty }{u}^{2}(y){\rm{d}}y-u(s){{\rm{e}}}^{\mathrm{iarg}(\overline{\tilde{r}(1)})}\right),\\ s & = & -\displaystyle \frac{8}{3}(\displaystyle \frac{x}{2t}-1){\left(\displaystyle \frac{3}{4}t\right)}^{\tfrac{2}{3}},\end{array}\end{eqnarray}$
and $u(s)$ is a real-value solution of the Painevé equation (3.9).

Conflict of Interest

The authors have no conflicts to disclose.

The work is supported by the National Science Foundation of China (Grant No. 12271104, 51879045).

1
Kundu A 1984 Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrodinger-type equations J. Math. Phys. 25 3433 3438

DOI

2
Calogero F Eckhaus W 1987 Nonlinear evolution equations, rescalings, model PDEs and their integrability Inverse Prob. 3 229 262

DOI

3
Qiu D He J S Zhang Y S Porsezian K 2015 The Darboux transformation of the Kundu-Eckhaus equation Proc. R Soc. Lond Ser. A 471 20150236

DOI

4
Wang D S Wang X L 2018 Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach Nonl. Anal.: Real World Appl. 41 334 361

DOI

5
Gao N Xu J Wen L L Fan E G 2021 Rogue wave and multi-pole solutions for the focusing Kundu-Echhaus equation nonzero background via Riemann-Hilbert method Nonl. Dyn. 103 1851 1868

DOI

6
Bayindir C 2016 Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field Phys. Rev. E 93 032201

DOI

7
Wang X Yang B Chen Y Yang Y Q 2014 Higher-order rogue wave solutions of the Kundu-Eckhaus equation Phys. Scr. 89 095210

DOI

8
Wang D S Guo B L Wang X L 2019 Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions J. Differ. Equ. 266 5209 5253

DOI

9
Ma R H Fan E G 2023 Long time asymptotics behavior of the focusing nonlinear Kundu-Eckhaus equation Chin. Ann. Math. Ser. B 44 235 264

DOI

10
Guo B L Liu N 2018 Long-time asymptotics for the Kundu-Eckhaus equation on the half-line J. Math. Phys. 59 061505

DOI

11
Zhu Q Z Xu J Fan E G 2018 The Riemann-Hilbert problem and long-time asymptotics for the Kundu-Eckhaus equation with decaying initial value Appl. Math. Lett. 76 81 89

DOI

12
Cuccagna S Jenkins R 2016 On the asymptotic stability of N-soliton solutions of the defocusing nonlinear Schrödinger equation Commun. Math. Phys. 343 921 969

DOI

13
Wang Z Y Fan E G 2022 The defocusing NLS equation with nonzero background: Large-time asymptotics in the solitonless region J. Differ. Equ. 336 334 373

DOI

14
Wang Z Y Fan E G 2023 The defocusing nonlinear Schrödinger equation with a nonzero background: Painlevé asymptotics in two transition regions Commun. Math. Phys. 402 2879 2930

DOI

Outlines

/