Welcome to visit Communications in Theoretical Physics,
Gravitation Theory, Astrophysics and Cosmology

Constraints on the primordial curvature power spectrum by pulsar timing array data: a polynomial parameterization approach

  • Qin Fei
Expand
  • School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China

Received date: 2023-10-30

  Revised date: 2023-12-18

  Accepted date: 2023-12-29

  Online published: 2024-01-23

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

The recent stochastic signal observed jointly by NANOGrav, parkes pulsar timing array, European pulsar timing array, and Chinese pulsar timing array can be accounted for by scalar-induced gravitational waves (SIGWs). The source of the SIGWs is from the primordial curvature perturbations, and the main contribution to the SIGWs is from the peak of the primordial curvature power spectrum. To effectively model this peak, we apply the Taylor expansion to parameterize it. With the Taylor expansion parameterization, we apply Bayesian methods to constrain the primordial curvature power spectrum based on the NANOGrav 15 year data set. The constraint on the primordial curvature power spectrum possesses a degree of generality, as the Taylor expansion can effectively approximate a wide range of function profiles.

Cite this article

Qin Fei . Constraints on the primordial curvature power spectrum by pulsar timing array data: a polynomial parameterization approach[J]. Communications in Theoretical Physics, 2024 , 76(1) : 015404 . DOI: 10.1088/1572-9494/ad1988

1. Introduction

The detection of gravitational waves (GWs) from compact binary mergers [13] by LIGO-Virgo-KAGRA has provided valuable insights into the properties of the population of GW sources [416]. The next crucial milestone in GW detection is the observation of stochastic GW backgrounds that would provide valuable information about astrophysical and cosmological processes, such as the early universe, dark matter [1719], and modified gravity [2024]. Recently, the north American nanohertz observatory for gravitational Waves (NANOGrav) [25, 26], parkes pulsar timing array (PPTA) [27, 28], European pulsar timing array (EPTA) together with Indian pulsar timing array (InPTA) [29, 30], and Chinese pulsar timing array (CPTA) [31], have jointly detected a common-spectrum process exhibiting the Hellings-Downs angular correlation feature inherent in gravitational waves (GWs). Characterized by a fiducial f−2/3 characteristic-strain spectrum, this signal is attributed to an ensemble of binary supermassive black hole inspirals, with a strain amplitude of approximately ∼10−15 at a reference frequency of 1 yr−1 [25, 28, 30, 31]. Besides the supermassive black hole binary (SMBHB) scenario, other hypotheses are also proposed [3255]. Among these hypotheses, scalar-induced gravitational waves (SIGWs) are a strong candidate, offering a more robust explanation than the supermassive black hole binary (SMBHB) model by Bayesian analysis [32, 34]. This paper focuses on exploring the observed PTA signal explained by SIGWs. For further physical processes contributing to the pulsar timing array (PTA) band, please refer to [5671].
The scalar-induced gravitational waves are induced by the large scalar perturbations seeded from primordial curvature perturbations generated during the inflationary epoch [7274]. Accompanying the formation of SIGWs, the large scalar perturbations can produce primordial black holes (PBHs) [5, 6, 8, 10, 11, 15, 75110]. To produce detectable SIGWs, the power spectrum amplitude of primordial curvature perturbations, denoted as ${{ \mathcal A }}_{\zeta }$, must be on the order of ${{ \mathcal A }}_{\zeta }\sim { \mathcal O }(0.01)$, while the constraints from cosmic microwave background (CMB) anisotropy observations at large scales are ${{ \mathcal A }}_{\zeta }=2.1\times {10}^{-9}$ [111]. Therefore, the significant SIGWs require the power spectrum amplitude of primordial curvature perturbations seven orders of magnitude larger than the constraints at large scales. Generating such a large enhancement in the primordial curvature power spectrum is hard to achieve in traditional slow-roll inflation models;instead, ultra-slow-roll inflationary scenarios may be able to achieve this purpose [112154].
The energy density of SIGWs is mainly determined by the peak structure of the primordial curvature power spectrum. In this study, we adopt a polynomial representation to characterize the peak profile of the primordial curvature power spectrum. This polynomial form can be understood as a Taylor expansion capable of effectively describing various peak shapes. By employing this polynomial parameterization, we can derive the most data-favored peak profile of the primordial curvature power spectrum by the Bayes analysis. The organization of this paper is as follows. Section 2 gives the energy density of the SIGWs. Section 3 overviews the parameterization of the primordial curvature power spectrum and presents the constraints on it. Finally, the conclusions are drawn in section 4.

2. The scalar-induced gravitational waves

If the scalar perturbation resulting from the primordial curvature perturbations created during inflation reaches a notable level, the secondary order of linear scalar perturbations may act as a source to induce GWs. In this section, we explore a detailed analysis of the energy density of the SIGWs during the radiation dominated. The perturbed metric within the Newtonian gauge can be expressed as follows:
$\begin{eqnarray}\begin{array}{l}{\rm{d}}{s}^{2}={a}^{2}(\eta )\left[-(1+2{\rm{\Phi }}){\rm{d}}{\eta }^{2}\right.\\ \quad \left.+\left\{(1-2{\rm{\Phi }}){\delta }_{{ij}}+\displaystyle \frac{1}{2}{h}_{{ij}}\right\}{\rm{d}}{x}^{i}{\rm{d}}{x}^{j}\right].\end{array}\end{eqnarray}$
Here, Φ is the Bardeen potential, and hij represents the tensor perturbation, satisfying the transverse-traceless gauge condition ${\partial }^{i}{h}_{{ij}}={h}_{i}^{i}=0$. In the Fourier space, the tensor perturbation is denoted by:
$\begin{eqnarray}\begin{array}{l}{h}_{{ij}}\left({\boldsymbol{x}},\eta \right)=\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{3}{\boldsymbol{k}}}{{\left(2\pi \right)}^{3/2}}{{\rm{e}}}^{{\rm{i}}{\boldsymbol{k}}\cdot {\boldsymbol{x}}}\\ \,\times \,\left[{h}_{{\boldsymbol{k}}}^{+}\left(\eta \right){e}_{{ij}}^{+}\left({\boldsymbol{k}}\right)+{h}_{{\boldsymbol{k}}}^{\times }\left(\eta \right){e}_{{ij}}^{\times }\left({\boldsymbol{k}}\right)\right],\end{array}\end{eqnarray}$
where ${e}_{{ij}}^{+}\left({\boldsymbol{k}}\right)$ and ${e}_{{ij}}^{\times }\left({\boldsymbol{k}}\right)$ are the plus and cross-polarization tensors,
$\begin{eqnarray}\begin{array}{rcl}{e}_{{ij}}^{+}\left({\boldsymbol{k}}\right) & = & \displaystyle \frac{1}{\sqrt{2}}\left[{e}_{i}\left({\boldsymbol{k}}\right){e}_{j}\left({\boldsymbol{k}}\right)-{\overline{e}}_{i}\left({\boldsymbol{k}}\right){\overline{e}}_{j}\left({\boldsymbol{k}}\right)\right],\\ {e}_{{ij}}^{\times }\left({\boldsymbol{k}}\right) & = & \displaystyle \frac{1}{\sqrt{2}}\left[{e}_{i}\left({\boldsymbol{k}}\right){\overline{e}}_{j}\left({\boldsymbol{k}}\right)+{\overline{e}}_{i}\left({\boldsymbol{k}}\right){e}_{j}\left({\boldsymbol{k}}\right)\right].\end{array}\end{eqnarray}$
Here ${e}_{i}\left({\boldsymbol{k}}\right)$ and ${\overline{e}}_{i}\left({\boldsymbol{k}}\right)$ are the normalized basis vectors orthogonal to the wave vector k, with ${\boldsymbol{e}}\cdot \overline{{\boldsymbol{e}}}={\boldsymbol{e}}\cdot {\boldsymbol{k}}=\overline{{\boldsymbol{e}}}\cdot {\boldsymbol{k}}=0$.
In Fourier space and neglecting anisotropic stress, the equation of motion for tensor perturbations with either polarization can be expressed as:
$\begin{eqnarray}{h}_{{\boldsymbol{k}}}^{{\prime\prime} }\left(\eta \right)+2{ \mathcal H }{h}_{{\boldsymbol{k}}}^{{\prime} }\left(\eta \right)+{k}^{2}{h}_{{\boldsymbol{k}}}^{}\left(\eta \right)=4{S}_{{\boldsymbol{k}}}\left(\eta \right),\end{eqnarray}$
where η represents the conformal time, dη = dt/a, ${ \mathcal H }=a^{\prime} /a$ is the conformal Hubble parameter. The source term from the linear scalar perturbations is denoted by:
$\begin{eqnarray}\begin{array}{l}{S}_{{\boldsymbol{k}}}=\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{3}\tilde{{\boldsymbol{k}}}}{{\left(2\pi \right)}^{3/2}}{e}_{{ij}}({\boldsymbol{k}}){\tilde{k}}^{i}{\tilde{k}}^{j}\left[2{{\rm{\Phi }}}_{\tilde{{\boldsymbol{k}}}}{{\rm{\Phi }}}_{{\boldsymbol{k}}-\tilde{{\boldsymbol{k}}}}\right.\\ \,\left.+\,\displaystyle \frac{1}{{{ \mathcal H }}^{2}}\left({\rm{\Phi }}{{\prime} }_{\tilde{{\boldsymbol{k}}}}+{ \mathcal H }{{\rm{\Phi }}}_{\tilde{{\boldsymbol{k}}}}\right)\left({\rm{\Phi }}{{\prime} }_{{\boldsymbol{k}}-\tilde{{\boldsymbol{k}}}}+{ \mathcal H }{{\rm{\Phi }}}_{{\boldsymbol{k}}-\tilde{{\boldsymbol{k}}}}\right)\right],\end{array}\end{eqnarray}$
where Φk denotes the Bardeen potential in the Fourier space, which can be related to the primordial curvature perturbations by
$\begin{eqnarray}{{\rm{\Phi }}}_{{\boldsymbol{k}}}=\displaystyle \frac{3+3w}{5+3w}T(k\eta ){\zeta }_{{\boldsymbol{k}}},\end{eqnarray}$
and the transfer function T(x) can be expressed as
$\begin{eqnarray}T(x)=3\left[\displaystyle \frac{\sin (x/\sqrt{3})-(x/\sqrt{3})\cos (x/\sqrt{3})}{{\left(x/\sqrt{3}\right)}^{3}}\right].\end{eqnarray}$
By using the Green's function method, we can obtain the solution for ${h}_{{\boldsymbol{k}}}\left(\eta \right)$,
$\begin{eqnarray}{h}_{{\boldsymbol{k}}}\left(\eta \right)=\displaystyle \frac{4}{a\left(\eta \right)}{\int }^{\eta }{\rm{d}}\overline{\eta }{G}_{{\boldsymbol{k}}}\left(\eta ,\overline{\eta }\right)a\left(\overline{\eta }\right){S}_{{\boldsymbol{k}}}\left(\overline{\eta }\right),\end{eqnarray}$
with the Green function
$\begin{eqnarray}{G}_{{\boldsymbol{k}}}\left(\eta ,\overline{\eta }\right)=\displaystyle \frac{\sin \left[k\left(\eta -\overline{\eta }\right)\right]}{k}.\end{eqnarray}$
The definition of the power spectrum of SIGWs, ${{ \mathcal P }}_{h}$, is
$\begin{eqnarray}\langle {h}_{{\boldsymbol{k}}}\left(\eta \right){h}_{{\boldsymbol{p}}}\left(\eta \right)\rangle ={\delta }^{3}\left({\boldsymbol{k}}+{\boldsymbol{p}}\right)\displaystyle \frac{2{\pi }^{2}}{{k}^{3}}{{ \mathcal P }}_{h}\left(k,\eta \right).\end{eqnarray}$
Combining the above relations, we can obtain [7274, 155157]
$\begin{eqnarray}\begin{array}{c}{{ \mathcal P }}_{h}(k,\eta )=4{\int }_{0}^{\infty }{\rm{d}}v{\int }_{| 1-v| }^{1+v}{\rm{d}}u\\ \quad \times {\left[\frac{4{v}^{2}-{\left(1-{u}^{2}+{v}^{2}\right)}^{2}}{4{uv}}\right]}^{2}\\ \quad \times \,{I}_{\mathrm{RD}}^{2}(u,v,x){{ \mathcal P }}_{\zeta }({kv}){{ \mathcal P }}_{\zeta }({ku}).\end{array}\end{eqnarray}$
Here, the new variables are $u=| {\boldsymbol{k}}-\tilde{{\boldsymbol{k}}}| /k,v=\tilde{| {\boldsymbol{k}}| }/k$, x = kη, and ${{ \mathcal P }}_{\zeta }$ is the power spectrum of the primordial curvature. Furthermore, we have
$\begin{eqnarray}\begin{array}{l}{I}_{\mathrm{RD}}(u,v,x)={\displaystyle \int }_{0}^{x}{\rm{d}}y\,y\sin (x-y)\{3T({uy})T({vy})\\ \,+\,y[T({vy}){uT}^{\prime} ({uy})+{vT}^{\prime} ({vy})T({uy})]\\ \,+\,{y}^{2}{uvT}^{\prime} ({uy})T^{\prime} ({vy})\}.\end{array}\end{eqnarray}$
By using the definition of the energy density parameter of GWs
$\begin{eqnarray}{{\rm{\Omega }}}_{\mathrm{GW}}(k,\eta )=\displaystyle \frac{1}{24}{\left(\displaystyle \frac{k}{{aH}}\right)}^{2}\overline{{{ \mathcal P }}_{h}(k,\eta )}.\end{eqnarray}$
and equations (11), we can obtain [155, 157]
$\begin{eqnarray}\begin{array}{c}{{\rm{\Omega }}}_{\mathrm{GW}}(k,\eta )=\frac{1}{6}{\left(\frac{k}{{aH}}\right)}^{2}{\int }_{0}^{\infty }{\rm{d}}v{\int }_{| 1-v| }^{1+v}{\rm{d}}u\\ \,\times \,{\left[\frac{4{v}^{2}-{\left(1-{u}^{2}+{v}^{2}\right)}^{2}}{4{uv}}\right]}^{2}\\ \,\times \,\bar{{I}_{\mathrm{RD}}^{2}(u,v,x)}{{ \mathcal P }}_{\zeta }({kv}){{ \mathcal P }}_{\zeta }({ku}),\end{array}\end{eqnarray}$
where $\overline{{I}_{\mathrm{RD}}^{2}}$ is the oscillation time average of ${I}_{\mathrm{RD}}^{2}$. After the horizon reentry and at late time x → ∞, $\overline{{I}_{\mathrm{RD}}^{2}}$ becomes [74]
$\begin{eqnarray}\begin{array}{l}\overline{{I}_{\mathrm{RD}}^{2}(v,u,x\to \infty )}=\displaystyle \frac{1}{2{x}^{2}}{\left(\displaystyle \frac{3({u}^{2}+{v}^{2}-3)}{4{u}^{3}{v}^{3}}\right)}^{2}\\ \quad \times \left\{{\pi }^{2}{\left({u}^{2}+{v}^{2}-3\right)}^{2}{\rm{\Theta }}\left(v+u-\sqrt{3}\right)\right.\\ \quad \left.-{\left(4{uv}-({u}^{2}+{v}^{2}-3)\mathrm{ln}\left|\displaystyle \frac{3-{\left(u+v\right)}^{2}}{3-{\left(u-v\right)}^{2}}\right|\right)}^{2}\right\}.\end{array}\end{eqnarray}$
The evolution of GW energy density is the same as that of radiation. By using this characteristic, we can get the present energy density of GWs:
$\begin{eqnarray}{{\rm{\Omega }}}_{\mathrm{GW}}(k,{\eta }_{0})={{\rm{\Omega }}}_{r,0}{{\rm{\Omega }}}_{\mathrm{GW}}(k,\eta ),\end{eqnarray}$
where ωr,0 is the energy density parameter of radiation at present.

3. Methodology and results

The contribution to the energy density of SIGWs is mainly from the peak region of the primordial curvature power spectrum. In this paper, we focus on the peak region of the primordial curvature power spectrum and parameterize it as
$\begin{eqnarray}{\mathrm{log}}_{10}{{ \mathcal P }}_{\zeta }(k)=\displaystyle \sum _{i=0}^{n}({\mathrm{log}}_{10}{A}_{i})\cdot {x}^{i},\quad -1\lt x\lt 1,\end{eqnarray}$
where $x={\mathrm{log}}_{10}(k/{k}_{p})$, and kp is the peak scale of primordial curvature power spectrum. The peak can be well described by the polynomial as long as the polynomial term is large enough. The Taylor expansion converges at the condition ∣x∣ < 1. Because larger polynomial terms will cost larger computing resources, for the sake of simplification, in this paper, we only consider n = 3. To ensure that the peak of the power spectrum is located at the scale kp, the derivatives of power spectrum must satisfy ${\rm{d}}{{ \mathcal P }}_{\zeta }/{\rm{d}}x=0$ and ${{\rm{d}}}^{2}{{ \mathcal P }}_{\zeta }/{\rm{d}}{x}^{2}\lt 0$ at x = 0. Furthermore, to ensure that the peak at scale kp is the only peak, the first derivative should satisfy ${\rm{d}}{{ \mathcal P }}_{\zeta }/{\rm{d}}x\gt 0$ for x < 0 and ${\rm{d}}{{ \mathcal P }}_{\zeta }/{\rm{d}}x\lt 0$ for x > 0. For the parameterization considered in this paper, these conditions are equivalent to
$\begin{eqnarray}{\mathrm{log}}_{10}{A}_{1}=0,\quad {\mathrm{log}}_{10}{A}_{2}\lt -1.5\,| {\mathrm{log}}_{10}{A}_{3}| .\end{eqnarray}$
For other scales, we use the near-scale-invariance power-law form to parameterize the primordial curvature power spectrum,
$\begin{eqnarray}{{ \mathcal P }}_{\zeta }(k)={A}_{* }{\left(\displaystyle \frac{k}{{k}_{* }}\right)}^{{n}_{s}-1},\quad x\leqslant -1\,\,\mathrm{or}\,\,x\geqslant 1,\end{eqnarray}$
where k* = 0.05 Mpc−1, A* = 2.1 × 10−9, and ns = 0.965 [111]. Therefore, the parameterization is
$\begin{eqnarray}{\mathrm{log}}_{10}{{ \mathcal P }}_{\zeta }(k)=\left\{\begin{array}{ll}\displaystyle \sum _{i=0}^{n}({\mathrm{log}}_{10}{A}_{i})\cdot {x}^{i}, & -1\lt x\lt 1,\\ {\mathrm{log}}_{10}\left[{A}_{* }{\left(\displaystyle \frac{k}{{k}_{* }}\right)}^{{n}_{s}-1}\right], & x\leqslant -1\,\,\mathrm{or}\,\,x\geqslant 1.\end{array}\right.\end{eqnarray}$
There are steps present at x = –1 and x = 1 in this parameterization. These steps in the power spectrum of the primordial curvature power spectrum can be found in various inflationary mechanisms, such as parametric amplification [86] and sound speed resonance [158]. Hence, the inclusion of steps in the parameterization (20) is considered acceptable. For the parameterization given by (20), when ∣x∣ < 1, if the spectrum obtained from parameterization (17) is smaller than the spectrum obtained from parameterization (19), we use the latter. In the following, we use the parameterization described by equation (20) and apply Bayesian methods to the NANOGrav 15 years data to obtain the constraint on the amplitude of the primordial curvature power spectrum. Our analysis utilizes data from 14 frequency bins in the NANOGrav 15 year data set [25, 32] to infer the posterior distributions of the parameters in parameterization (20). The computations were performed using the Bilby code [159], implementing the dynesty algorithm for nested sampling [160]. We formed the log-likelihood function by evaluating the energy density of SIGWs at the 14 specific frequency intervals. Afterward, we computed the sum of the logarithms of probability density functions obtained from 14 independent kernel density estimates [36, 40, 43, 44, 161, 162]. Consequently, we can represent the likelihood function as
$\begin{eqnarray}\mathrm{ln}{ \mathcal L }({\rm{\Lambda }})=\displaystyle \sum _{i=1}^{14}\mathrm{ln}{{ \mathcal L }}_{i}\left({{\rm{\Omega }}}_{\mathrm{GW}}\left({f}_{i},{\rm{\Lambda }}\right)\right),\end{eqnarray}$
where Λ denotes all the parameters in the parameterization given by equation (20), and the prior for the parameters are listed in table 1. The function ${ \mathcal U }$ denotes the uniform distribution. In this study, we incorporate constraints stemming from baryon acoustic oscillation and cosmic microwave background (CMB) data [163]. Specifically, we impose a restriction on the integrated energy-density fraction, given by ${\int }_{{k}_{\min }}^{\infty }{h}^{2}{{\rm{\Omega }}}_{\mathrm{GW},0}(k),d\mathrm{ln}k\lesssim 2.9\times {10}^{-7}$ [164], where h = H0/(100 km, s−1, Mpc−1) = 0.674 [163] is the dimensionless Hubble constant.
Table 1. The priors, maximum posterior values, 1 credible interval bounds of posteriors for the parameters in the primordial curvature power spectrum parameterization (20) by using NANOGrav 15 years data set and Bayesian methods.
Parameters ${\mathrm{log}}_{10}({k}_{p}/{\mathrm{Mpc}}^{-1})$ ${\mathrm{log}}_{10}{A}_{0}$ ${\mathrm{log}}_{10}{A}_{2}$ ${\mathrm{log}}_{10}{A}_{3}$
prior ${ \mathcal U }(7,10)$ ${ \mathcal U }(-4,1)$ ${ \mathcal U }(-10,2)$ ${ \mathcal U }(-5,5)$
posterior ${7.75}_{-0.34}^{+0.68}$ $-{1.63}_{-0.34}^{+0.75}$ $-{6.74}_{-2.17}^{+2.98}$ $-{0.07}_{-2.62}^{+2.63}$
The posterior distributions of the parameters in the parameterization (20) are displayed in figure 1, and the maximum posterior values, 1-Σ credible interval bounds of posteriors are listed in table 1. The maximum posterior of the peak scale is kp = 5.6 × 107Mpc−1, which is consistent with the Gauss model given in the NANOGrav paper [32]. By choosing the values in the 1-Σ credible interval bounds of the parameters listed in table 1, we calculate the primordial curvature power spectrum shown in figure 2 and denoted by the red line; the corresponding SIGW are displayed in the figure 3 and denoted by the blue line. Figure 3 shows that the energy density of the SIGWs is consistent with the NANOGrav 15 years data set.
Figure 1. The posterior of the parameters in parameterization (20) using the NANOGrav 15 years data set with Bayesian methods.
Figure 2. The primordial power spectrum of the parameterization (20) by choosing the 1-Σ value listed in table. 1. The green, orange, and blue regions are the constraints from the Planck data [111], μ-distortion of CMB [165], and the effect on the ratio between neutron and proton during the Big Bang nucleosynthesis (BBN) [166], respectively.
Figure 3. The corresponding energy density of the SIGWs denoted by the blue line. The red violins are the NANOGrav 15 years data set.

4. Conclusion

The stochastic signal detected by the NANOGrav, PPTA, EPTA, and CPTA collaborations can be explained by SIGWs, where the source of the GWs is from the primordial curvature perturbations. The main contribution to the energy density of the SIGWs is from the peak of the primordial curvature power spectrum. In this paper, we focus on the peak region and parameterize the primordial curvature power spectrum near the peak by the Taylor expansion with four terms to characterize the peak behavior. The posterior of the parameters are: ${\mathrm{log}}_{10}({k}_{p}/{\mathrm{Mpc}}^{-1})\,=\,{7.75}_{-0.34}^{+0.68}$, ${\mathrm{log}}_{10}{A}_{0}\,=\,-{1.63}_{-0.34}^{+0.75}$, ${\mathrm{log}}_{10}{A}_{2}\,=-{6.74}_{-2.17}^{+2.98}$, ${\mathrm{log}}_{10}{A}_{3}=-{0.07}_{-2.62}^{+2.63}$. Because the Taylor expansion can describe most function profiles, our constraint on the primordial curvature power spectrum possesses a degree of generality.

This research was supported in part by the National Natural Science Foundation of China under Grant No. 12305060, and the Talent-Introduction Program of Hubei Polytechnic University under Grant No. 19xjk25R.

1
Abbott B P (LIGO Scientific, Virgo) 2019 GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs Phys. Rev. X 9 031040

DOI

2
Abbott R (LIGO Scientific, Virgo) 2021 GWTC-2: compact binary coalescences observed by ligo and virgo during the first half of the third observing run Phys. Rev. X 11 021053

DOI

3
Abbott R (KAGRA, VIRGO, LIGO Scientific) 2023 GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run Phys. Rev. X 13 041039

DOI

4
Abbott B P (LIGO Scientific, Virgo) 2019 Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced virgo Astrophys. J. Lett. 882 L24

DOI

5
Chen Z C Huang F Huang Q G 2019 Stochastic gravitational-wave background from binary black holes and binary neutron stars and implications for LISA Astrophys. J. 871 97

DOI

6
Chen Z C Huang Q G 2020 Distinguishing primordial black holes from astrophysical black holes by einstein telescope and cosmic explorer J. Cosmol. Astropart. Phys. JCAP08(2020)039

DOI

7
Abbott R (LIGO Scientific, Virgo) 2021 Population properties of compact objects from the second ligo-virgo gravitational-wave transient catalog Astrophys. J. Lett. 913 L7

DOI

8
Chen Z C Yuan C Huang Q G 2022 Confronting the primordial black hole scenario with the gravitational-wave events detected by LIGO-Virgo Phys. Lett. B 829 137040

DOI

9
Abbott R (KAGRA, VIRGO, LIGO Scientific) 2023 Population of merging compact binaries inferred using gravitational waves through GWTC-3 Phys. Rev. X 13 011048

DOI

10
Chen Z C Du S S Huang Q G You Z Q 2023 Constraints on primordial-black-hole population and cosmic expansion history from GWTC-3 J. Cosmol. Astropart. Phys. JCAP03(2023)024

DOI

11
Liu L You Z Q Wu Y Chen Z C 2023 Constraining the merger history of primordial-black-hole binaries from GWTC-3 Phys. Rev. D 107 063035

DOI

12
Sasaki M Takhistov V Vardanyan V Zhang Y l 2022 Establishing the nonprimordial origin of black hole–neutron star mergers Astrophys. J. 931 2

DOI

13
Kimura R Suyama T Yamaguchi M Zhang Y L 2021 Reconstruction of primordial power spectrum of curvature perturbation from the merger rate of primordial black hole binaries J. Cosmol. Astropart. Phys. JCAP04(2021)031

DOI

14
Wang X Zhang Y l Kimura R Yamaguchi M 2023 Reconstruction of power spectrum of primordial curvature perturbations on small scales from primordial black hole binaries scenario of LIGO/VIRGO detection Sci. China Phys. Mech. Astron. 66 260462

DOI

15
Zheng L M Li Z Chen Z C Zhou H Zhu Z H 2023 Towards a reliable reconstruction of the power spectrum of primordial curvature perturbation on small scales from GWTC-3 Phys. Lett. B 838 137720

DOI

16
You Z Q Chen Z C Liu L Yi Z Liu X J Wu Y Gong Y 2023 Constraints on peculiar velocity distribution of binary black holes using gravitational waves with GWTC-3 arXiv:2306.12950

17
Wei H Chen Z C Liu J 2013 Cosmological constraints on variable warm dark matter Phys. Lett. B 720 271 276

DOI

18
Wei H Liu J Chen Z C Yan X P 2013 Indistinguishability of warm dark matter, modified gravity, and coupled cold dark matter Phys. Rev. D 88 043510

DOI

19
Du S S Wei J J You Z Q Chen Z C Zhu Z H Liang E W 2023 Model-independent determination of H0 and ω K, 0 using time-delay galaxy lenses and gamma-ray bursts Mon. Not. Roy. Astron. Soc. 521 4963 4975

DOI

20
Chen Z C Wu Y Wei H 2015 Post-newtonian approximation of teleparallel gravity coupled with a scalar field Nucl. Phys. B 894 422 438

DOI

21
Wu Y Chen Z C Wang J Wei H 2015 f(T) nonlinear massive gravity and the cosmic acceleration Commun. Theor. Phys. 63 701 708

DOI

22
Huang Y Gong Y Liang D Yi Z 2015 Thermodynamics of scalar–tensor theory with non-minimally derivative coupling Eur. Phys. J. C 75 351

DOI

23
Zhu Y Gong Y 2016 PPN parameters in gravitational theory with nonminimally derivative coupling Int. J. Mod. Phys. D 26 1750005

24
Gong Y Papantonopoulos E Yi Z 2018 Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves Eur. Phys. J. C 78 738

DOI

25
Agazie G (NANOGrav) 2023 The NANOGrav 15 year data set: evidence for a gravitational-wave background Astrophys. J. Lett. 951 L8 The NANOGrav 15 yr year data set: evidence for a gravitational-wave background

DOI

26
Agazie G (NANOGrav) 2023 The NANOGrav 15 year data set: observations and timing of 68 millisecond pulsars Astrophys. J. Lett. 951 L9 The NANOGrav 15 yr year data set: observations and timing of 68 millisecond pulsars

DOI

27
Zic A 2023 The parkes pulsar timing array third data release arXiv:2306.16230

28
Reardon D J 2023 Search for an isotropic gravitational-wave background with the parkes pulsar timing array Astrophys. J. Lett. 951 L6

DOI

29
Antoniadis J (EPTA) 2023 The second data release from the European Pulsar Timing Array—I. The dataset and timing analysis Astron. Astrophys. 678 A48

DOI

30
Antoniadis J (EPTA, InPTA) 2023 The second data release from the European pulsar timing array: III. Search for gravitational wave signals Astron. Astrophys. 678 A50

DOI

31
Xu H 2023 Searching for the nano-hertz stochastic gravitational wave background with the Chinese pulsar timing array data release I Astron. Astrophys. 23 075024

DOI

32
Afzal A (NANOGrav) 2023 The NANOGrav 15 year data set: search for signals from new physics Astrophys. J. Lett. 951 L11 The NANOGrav 15 yr year data set: search for signals from new physics

DOI

33
Antoniadis J (EPTA) 2023 The second data release from the European pulsar timing array: V. Implications for massive black holes, dark matter and the early Universe arXiv:2306.16227

34
Yi Z Gao Q Gong Y Wang Y Zhang F 2023 Scalar induced gravitational waves in light of Pulsar Timing Array data Sci. China Phys. Mech. Astron. 66 120404

DOI

35
Franciolini G Iovino A Jr. Vaskonen V Veermae H 2023 Recent gravitational wave observation by pulsar timing arrays and primordial black holes: the importance of non-gaussianities Phys. Rev. Lett. 131 201401

DOI

36
Liu L Chen Z C Huang Q G 2023 Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays arXiv:2307.01102

37
Vagnozzi S 2023 Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments J. High Energ. Astrophys. 39 81 98

DOI

38
Cai Y F He X C Ma X H Yan S F Yuan G W 2023 Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations Sci. Bull. 68 2929 2935

DOI

39
Bi Y C Wu Y M Chen Z C Huang Q G 2023 Implications for the supermassive black hole binaries from the NANOGrav 15 year data set Sci. China Phys. Mech. Astron. 66 120402

40
Wu Y M Chen Z C Huang Q G 2023 Cosmological interpretation for the stochastic signal in pulsar timing arrays arXiv:2307.03141

41
Franciolini G Racco D Rompineve F 2023 Footprints of the QCD crossover on cosmological gravitational waves at pulsar timing arrays arXiv:2306.17136

42
You Z Q Yi Z Wu Y 2023 Constraints on primordial curvature power spectrum with pulsar timing arrays J. Cosmol. Astropart. Phys. JCAP11(2023)065

DOI

43
Jin J H Chen Z C Yi Z You Z Q Liu L Wu Y 2023 Confronting sound speed resonance with pulsar timing arrays J. Cosmol. Astropart. Phys. JCAP09(2023)016

DOI

44
Liu L Chen Z C Huang Q G 2023 Probing the equation of state of the early Universe with pulsar timing arrays J. Cosmol. Astropart. Phys. JCAP11(2023)071

DOI

45
An H Su B Tai H Wang L T Yang C 2023 Phase transition during inflation and the gravitational wave signal at pulsar timing arrays arXiv:2308.00070

46
Zhang Z Cai C Su Y H Wang S Yu Z H Zhang H H 2023 Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations Phys. Rev. D 108 095037

DOI

47
Das B Jaman N Sami M 2023 Gravitational wave background from quintessential inflation and NANOGrav data Phys. Rev. D 108 103510

DOI

48
Balaji S Domènech G Franciolini G 2023 Scalar-induced gravitational wave interpretation of PTA data: the role of scalar fluctuation propagation speed J. Cosmol. Astropart. Phys. JCAP10(2023)041

DOI

49
Du X K Huang M X Wang F Zhang Y K 2023 Did the nHZ gravitational waves signatures observed by nanograv indicate multiple sector susy breaking? arXiv:2307.02938

50
Oikonomou V K 2023 Flat energy spectrum of primordial gravitational waves versus peaks and the NANOGrav 2023 observation Phys. Rev. D 108 043516

DOI

51
Yi Z You Z Q Wu Y Chen Z C Liu L 2023 Exploring the NANOGrav signal and planet-mass primordial black holes through Higgs inflation arXiv:2308.14688

52
Yi Z You Z Q Wu Y 2023 Model-independent reconstruction of the primordial curvature power spectrum from PTA data arXiv:2308.05632

53
Chen Z C Huang Q G Liu C Liu L Liu X J Wu Y Wu Y M Yi Z You Z Q 2023 Prospects for Taiji to detect a gravitational-wave background from cosmic strings arXiv:2310.00411

54
Liu L Wu Y Chen Z C 2023 Simultaneously probing the sound speed and equation of state of the early Universe with pulsar timing arrays arXiv:2310.16500

55
Guo S Y Khlopov M Liu X Wu L Wu Y Zhu B 2023 Footprints of axion-like particle in pulsar timing array data and JWST observations arXiv:2306.17022

56
Zhu X J Cui W Thrane E 2019 The minimum and maximum gravitational-wave background from supermassive binary black holes Mon. Not. Roy. Astron. Soc. 482 2588 2596

DOI

57
Li J Chen Z C Huang Q G 2019 Measuring the tilt of primordial gravitational-wave power spectrum from observations Sci. China Phys. Mech. Astron. 62 110421

DOI

LI J Chen Z C Haung Q G 2021 Sci. China Phys. Mech. Astron. 64 250451

58
Chen Z C Yuan C Huang Q G 2021 Non-tensorial gravitational wave background in NANOGrav 12.5 year data set Sci. China Phys. Mech. Astron. 64 120412

59
Wu Y M Chen Z C Huang Q G 2022 Constraining the polarization of gravitational waves with the parkes pulsar timing array second data release Astrophys. J. 925 37

DOI

60
Chen Z C Wu Y M Huang Q G 2022 Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release Commun. Theor. Phys. 74 105402

DOI

61
Chen Z C Wu Y M Huang Q G 2022 Search for the gravitational-wave background from cosmic strings with the parkes pulsar timing array second data release Astrophys. J. 936 20

DOI

62
Wu Y M Chen Z C Huang Q G Zhu X Bhat N D R Feng Y Hobbs G Manchester R N Russell C J Shannon R M 2022 Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release Phys. Rev. D 106 L081101

DOI

63
Falxa M (IPTA) 2023 Searching for continuous gravitational waves in the second data release of the international pulsar timing array Mon. Not. Roy. Astron. Soc. 521 5077 5086

DOI

64
Wu Y M Chen Z C Huang Q G 2023 Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5 year dataset Phys. Rev. D 107 042003

DOI

65
Wu Y M Chen Z C Huang Q G 2023 Pulsar timing residual induced by ultralight tensor dark matter J. Cosmol. Astropart. Phys. JCAP09(2023)021

DOI

66
Agazie G (International Pulsar Timing Array) 2023 Comparing recent PTA results on the nanohertz stochastic gravitational wave background arXiv:2309.00693

67
Wu Y M Chen Z C Bi Y C Huang Q G 2023 Constraining the graviton mass with the NANOGrav 15 year data set arXiv:2310.07469

68
Bi Y C Wu Y M Chen Z C Huang Q G 2023 Constraints on the velocity of gravitational waves from NANOGrav 15 year data set arXiv:2310.08366

69
Chen Z C Wu Y M Bi Y C Huang Q G 2023 Search for non-tensorial gravitational-wave backgrounds in the NANOGrav 15 year data set arXiv:2310.11238

70
Chen Z C Li S L Wu P Yu H 2023 NANOGrav hints for first-order confinement-deconfinement phase transition in different QCD-matter scenarios arXiv:2312.01824

71
Wang Z Lei L Jiao H Feng L Fan Y Z 2023 The nanohertz stochastic gravitational wave background from cosmic string loops and the abundant high redshift massive galaxies Sci. China Phys. Mech. Astron. 66 120403

DOI

72
Ananda K N Clarkson C Wands D 2007 The Cosmological gravitational wave background from primordial density perturbations Phys. Rev. D 75 123518

DOI

73
Baumann D Steinhardt P J Takahashi K Ichiki K 2007 Gravitational wave spectrum induced by primordial scalar perturbations Phys. Rev. D 76 084019

DOI

74
Kohri K Terada T 2018 Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations Phys. Rev. D 97 123532

DOI

75
Hawking S 1971 Gravitationally collapsed objects of very low mass Mon. Not. Roy. Astron. Soc. 152 75

DOI

76
Carr B J Hawking S W 1974 Black holes in the early Universe Mon. Not. Roy. Astron. Soc. 168 399 415

DOI

77
Saito R Yokoyama J 2009 Gravitational wave background as a probe of the primordial black hole abundance Phys. Rev. Lett. 102 161101

DOI

Saito R Yokoyama J 2011 Phys. Rev. Lett. 107 069901

78
Alabidi L Kohri K Sasaki M Sendouda Y 2012 Observable spectra of induced gravitational waves from inflation J. Cosmol. Astropart. Phys. JCAP09(2012)017

DOI

79
Sasaki M Suyama T Tanaka T Yokoyama S 2018 Primordial black holes—perspectives in gravitational wave astronomy Class. Quant. Grav. 35 063001

DOI

80
Nakama T Silk J Kamionkowski M 2017 Stochastic gravitational waves associated with the formation of primordial black holes Phys. Rev. D 95 043511

DOI

81
Di H Gong Y 2018 Primordial black holes and second order gravitational waves from ultra-slow-roll inflation J. Cosmol. Astropart. Phys. JCAP07(2018)007

DOI

82
Cheng S L Lee W Ng K W 2018 Primordial black holes and associated gravitational waves in axion monodromy inflation J. Cosmol. Astropart. Phys. JCAP07(2018)001

83
Cai R G Pi S Wang S J Yang X Y 2019 Resonant multiple peaks in the induced gravitational waves J. Cosmol. Astropart. Phys. JCAP05(2019)013

DOI

84
Cai R g Pi S Sasaki M 2019 Gravitational waves induced by non-gaussian scalar perturbations Phys. Rev. Lett. 122 201101

DOI

85
Cai R G Pi S Wang S J Yang X Y 2019 Pulsar timing array constraints on the induced gravitational waves J. Cosmol. Astropart. Phys. JCAP10(2019)059

DOI

86
Cai R G Guo Z K Liu J Liu L Yang X Y 2020 Primordial black holes and gravitational waves from parametric amplification of curvature perturbations J. Cosmol. Astropart. Phys. JCAP06(2020)013

DOI

87
Wu Y 2020 Merger history of primordial black-hole binaries Phys. Rev. D 101 083008

DOI

88
Cai R G Ding Y C Yang X Y Zhou Y F 2021 Constraints on a mixed model of dark matter particles and primordial black holes from the galactic 511 keV line J. Cosmol. Astropart. Phys. JCAP03(2021)057

DOI

89
Pi S Sasaki M 2020 Gravitational waves induced by scalar perturbations with a lognormal peak J. Cosmol. Astropart. Phys. JCAP09(2020)037

DOI

90
Domènech G Pi S Sasaki M 2020 Induced gravitational waves as a probe of thermal history of the universe J. Cosmol. Astropart. Phys. JCAP08(2020)017

DOI

91
Liu L Guo Z K Cai R G 2019 Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries Phys. Rev. D 99 063523

DOI

92
Liu L Guo Z K Cai R G 2019 Effects of the merger history on the merger rate density of primordial black hole binaries Eur. Phys. J. C 79 717

DOI

93
Liu L Guo Z K Cai R G Kim S P 2020 Merger rate distribution of primordial black hole binaries with electric charges Phys. Rev. D 102 043508

DOI

94
Liu L Yang X Y Guo Z K Cai R G 2023 Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations J. Cosmol. Astropart. Phys. JCAP01(2023)006

DOI

95
Chen Z C Yuan C Huang Q G 2020 Pulsar timing array constraints on Primordial black holes with NANOGrav 11 year dataset Phys. Rev. Lett. 124 251101

DOI

96
Yuan C Chen Z C Huang Q G 2020 Scalar induced gravitational waves in different gauges Phys. Rev. D 101 063018

DOI

97
Yuan C Chen Z C Huang Q G 2020 Log-dependent slope of scalar induced gravitational waves in the infrared regions Phys. Rev. D 101 043019

DOI

98
Yuan C Chen Z C Huang Q G 2019 Probing primordial–black-hole dark matter with scalar induced gravitational waves Phys. Rev. D 100 081301

DOI

99
Carr B Kohri K Sendouda Y Yokoyama J 2021 Constraints on primordial black holes Rept. Prog. Phys. 84 116902

DOI

100
Liu L Christiansen O Guo Z K Cai R G Kim S P 2020 Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: circular orbits on a cone Phys. Rev. D 102 103520

DOI

101
Liu L Christiansen O Ruan W H Guo Z K Cai R G Kim S P 2021 Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: elliptical orbits on a cone Eur. Phys. J. C 81 1048

DOI

102
Yi Z Fei Q 2023 Constraints on primordial curvature spectrum from primordial black holes and scalar-induced gravitational waves Eur. Phys. J. C 83 82

DOI

103
Papanikolaou T Tzerefos C Basilakos S Saridakis E N 2022 Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity J. Cosmol. Astropart. Phys. JCAP10(2022)013

DOI

104
Papanikolaou T Tzerefos C Basilakos S Saridakis E N 2023 No constraints for f(T) gravity from gravitational waves induced from primordial black hole fluctuations Eur. Phys. J. C 83 31

DOI

105
Chakraborty A Chanda P K Pandey K L Das S 2022 Formation and abundance of late-forming primordial black holes as dark matter Astrophys. J. 932 119

DOI

106
Liu L Kim S P 2022 Gravitational and electromagnetic radiations from binary black holes with electric and magnetic charges 17th Italian-Korean Symp. on Relativistic Astrophysics

107
Chen Z C Huang Q G 2018 Merger rate distribution of primordial-black-hole binaries Astrophys. J. 864 61

DOI

108
Liu L Kim S P 2022 Merger rate of charged black holes from the two-body dynamical capture J. Cosmol. Astropart. Phys. JCAP03(2022)059

DOI

109
Chen Z C Kim S P Liu L 2023 Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: hyperbolic orbits on a cone Commun. Theor. Phys. 75 065401

DOI

110
Meng D S Yuan C Huang Q G 2023 Primordial black holes generated by the non-minimal spectator field Sci. China Phys. Mech. Astron. 66 280411

111
Akrami Y (Planck) 2020 Planck 2018 results: X. Constraints on inflation Astron. Astrophys. 641 A10

DOI

112
Martin J Motohashi H Suyama T 2013 Ultra slow-roll inflation and the non-gaussianity consistency relation Phys. Rev. D 87 023514

DOI

113
Motohashi H Starobinsky A A Yokoyama J 2015 Inflation with a constant rate of roll J. Cosmol. Astropart. Phys. JCAP09(2015)018

DOI

114
Yi Z Gong Y 2018 On the constant-roll inflation J. Cosmol. Astropart. Phys. JCAP03(2018)052

DOI

115
Yi Z Gong Y 2016 Nonminimal coupling and inflationary attractors Phys. Rev. D 94 103527

DOI

116
Fei Q Gong Y Lin J Yi Z 2017 The reconstruction of tachyon inflationary potentials J. Cosmol. Astropart. Phys. JCAP08(2017)018

DOI

117
Garcia-Bellido J Ruiz Morales E 2017 Primordial black holes from single field models of inflation Phys. Dark Univ. 18 47 54

DOI

118
Germani C Prokopec T 2017 On primordial black holes from an inflection point Phys. Dark Univ. 18 6 10

DOI

119
Motohashi H Hu W 2017 Primordial black holes and slow-roll violation Phys. Rev. D 96 063503

DOI

120
Ezquiaga J M Garcia-Bellido J Ruiz Morales E 2018 Primordial black hole production in critical higgs inflation Phys. Lett. B 776 345 349

DOI

121
Di H Gong Y 2018 Primordial black holes and second order gravitational waves from ultra-slow-roll inflation J. Cosmol. Astropart. Phys. JCAP07(2018)007

DOI

122
Yi Z Gong Y 2019 Gauss–Bonnet inflation and the string swampland Universe 5 200

DOI

123
Yi Z Gong Y Sabir M 2018 Inflation with Gauss–Bonnet coupling Phys. Rev. D 98 083521

DOI

124
Ballesteros G Beltran Jimenez J Pieroni M 2019 Black hole formation from a general quadratic action for inflationary primordial fluctuations J. Cosmol. Astropart. Phys. JCAP06(2019)016

DOI

125
Dalianis I Kehagias A Tringas G 2019 Primordial black holes from α-attractors J. Cosmol. Astropart. Phys. JCAP01(2019)037

DOI

126
Bezrukov F Pauly M Rubio J 2018 On the robustness of the primordial power spectrum in renormalized Higgs inflation J. Cosmol. Astropart. Phys. JCAP02(2018)040

DOI

127
Kannike K Marzola L Raidal M Veermäe H 2017 Single field double inflation and primordial black holes J. Cosmol. Astropart. Phys. JCAP09(2017)020

DOI

128
Fei Q Yi Z Yang Y 2020 The reconstruction of non-minimal derivative coupling inflationary potentials Universe 6 213

DOI

129
Lin J Gao Q Gong Y Lu Y Zhang C Zhang F 2020 Primordial black holes and secondary gravitational waves from k and G inflation Phys. Rev. D 101 103515

DOI

130
Lin J Gao S Gong Y Lu Y Wang Z Zhang F 2023 Primordial black holes and scalar induced gravitational waves from Higgs inflation with noncanonical kinetic term Phys. Rev. D 107 043517

DOI

131
Yi Z Zhu Z H 2021 Inflationary attractors from a non-canonical kinetic term arXiv:2106.10303

132
Gao Q Gong Y Yi Z 2021 Primordial black holes and secondary gravitational waves from natural inflation Nucl. Phys. B 969 115480

DOI

133
Gao Q Gong Y Yi Z 2019 On the constant-roll inflation with large and small ηH Universe 5 215

DOI

134
Gao Q 2021 Primordial black holes and secondary gravitational waves from chaotic inflation Sci. China Phys. Mech. Astron. 64 280411

DOI

135
Yi Z Gong Y Wang B Zhu Z h 2021 Primordial black holes and secondary gravitational waves from the Higgs field Phys. Rev. D 103 063535

DOI

136
Yi Z Gao Q Gong Y Zhu Z h 2021 Primordial black holes and scalar-induced secondary gravitational waves from inflationary models with a noncanonical kinetic term Phys. Rev. D 103 063534

DOI

137
Yi Z Zhu Z H 2022 NANOGrav signal and LIGO-Virgo primordial black holes from the Higgs field J. Cosmol. Astropart. Phys. JCAP05(2022)046

DOI

138
Yi Z 2023 Primordial black holes and scalar-induced gravitational waves from the generalized Brans-Dicke theory J. Cosmol. Astropart. Phys. JCAP03(2023)048

DOI

139
Zhang F Gong Y Lin J Lu Y Yi Z 2021 Primordial non-Gaussianity from G-inflation J. Cosmol. Astropart. Phys. JCAP04(2021)045

DOI

140
Pi S Zhang Y l Huang Q G Sasaki M 2018 Scalaron from R2-gravity as a heavy field J. Cosmol. Astropart. Phys. JCAP05(2018)042

DOI

141
Kamenshchik A Y Tronconi A Vardanyan T Venturi G 2019 Non-canonical inflation and primordial black holes production Phys. Lett. B 791 201 205

DOI

142
Fu C Wu P Yu H 2019 Primordial black holes from inflation with nonminimal derivative coupling Phys. Rev. D 100 063532

DOI

143
Fu C Wu P Yu H 2020 Scalar induced gravitational waves in inflation with gravitationally enhanced friction Phys. Rev. D 101 023529

DOI

144
Dalianis I Karydas S Papantonopoulos E 2020 Generalized non-minimal derivative coupling: application to inflation and primordial black hole production J. Cosmol. Astropart. Phys. JCAP06(2020)040

DOI

145
Gundhi A Steinwachs C F 2021 Scalaron–Higgs inflation reloaded: Higgs-dependent scalaron mass and primordial black hole dark matter Eur. Phys. J. C 81 460

DOI

146
Cheong D Y Lee S M Park S C 2021 Primordial black holes in Higgs-R2 inflation as the whole of dark matter J. Cosmol. Astropart. Phys. JCAP01(2021)032

DOI

147
Zhang F 2022 Primordial black holes and scalar induced gravitational waves from the E model with a Gauss-Bonnet term Phys. Rev. D 105 063539

DOI

148
Zhang F Lin J Lu Y 2021 Double-peaked inflation model: scalar induced gravitational waves and primordial-black-hole suppression from primordial non-Gaussianity Phys. Rev. D 104 063515

DOI

Zhang F Lin J Lu Y 2021 Phys. Rev. D 104 129902

149
Kawai S Kim J 2021 Primordial black holes from Gauss-Bonnet-corrected single field inflation Phys. Rev. D 104 083545

DOI

150
Cai R G Chen C Fu C 2021 Primordial black holes and stochastic gravitational wave background from inflation with a noncanonical spectator field Phys. Rev. D 104 083537

DOI

151
Chen P Koh S Tumurtushaa G 2021 Primordial black holes and induced gravitational waves from inflation in the Horndeski theory of gravity arXiv:2107.08638

152
Karam A Koivunen N Tomberg E Vaskonen V Veermäe H 2023 Anatomy of single-field inflationary models for primordial black holes J. Cosmol. Astropart. Phys. JCAP03(2023)013

DOI

153
Ashoorioon A Rostami A Firouzjaee J T 2021 EFT compatible PBHs: effective spawning of the seeds for primordial black holes during inflation J. High Energy Phys. JHEP07(2021)087

DOI

154
Garcia-Saenz S Lu Y Shuai Z 2023 Scalar-induced gravitational waves from ghost inflation and parity violation Phys. Rev. D 108 123507

DOI

155
Lu Y Gong Y Yi Z Zhang F 2019 Constraints on primordial curvature perturbations from primordial black hole dark matter and secondary gravitational waves J. Cosmol. Astropart. Phys. JCAP12(2019)031

DOI

156
Inomata K Kawasaki M Mukaida K Tada Y Yanagida T T 2017 Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments Phys. Rev. D 95 123510

DOI

157
Espinosa J R Racco D Riotto A 2018 A cosmological signature of the sm higgs instability: gravitational waves J. Cosmol. Astropart. Phys. JCAP09(2018)012

DOI

158
Cai Y F Tong X Wang D G Yan S F 2018 Primordial black holes from sound speed resonance during inflation Phys. Rev. Lett. 121 081306

DOI

159
Ashton G 2019 BILBY: a user-friendly Bayesian inference library for gravitational-wave astronomy Astrophys. J. Suppl. 241 27

DOI

160
Skilling J N S 2004 AIP Conf. Proc. 735 395 405

161
Moore C J Vecchio A 2021 Ultra-low-frequency gravitational waves from cosmological and astrophysical processes Nat. Astron. 5 1268 1274

DOI

162
Lamb W G Taylor S R van Haasteren R 2023 Rapid refitting techniques for Bayesian spectral characterization of the gravitational wave background using pulsar timing arrays Phys. Rev. D 108 103019

DOI

163
Aghanim N (Planck) 2020 Planck 2018 results: VI. Cosmological parameters Astron. Astrophys. 641 A6 [Erratum: Astron.Astrophys. 652, C4 (2021)]

DOI

Aghanim 2021 Astron. Astrophys. 652 C4

164
Clarke T J Copeland E J Moss A 2020 Constraints on primordial gravitational waves from the cosmic microwave background J. Cosmol. Astropart. Phys. JCAP10(2020)002

DOI

165
Fixsen D J Cheng E S Gales J M Mather J C Shafer R A Wright E L 1996 The cosmic microwave background spectrum from the full COBE FIRAS data set Astrophys. J. 473 576

DOI

166
Inomata K Kawasaki M Tada Y 2016 Revisiting constraints on small scale perturbations from big-bang nucleosynthesis Phys. Rev. D 94 043527

DOI

Outlines

/