Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Finite dimensional irreducible representations of Lie superalgebra D (2, 1; α)

  • Xi Chen(陈曦) , 1, * ,
  • Wen-Li Yang(杨文力) , 2, * ,
  • Xiang-Mao Ding(丁祥茂) 3 ,
  • Yao-Zhong Zhang(张耀中) 4
Expand
  • 1College of Intelligent Systems Science and Engineering, Hubei Minzu University 445000, China
  • 2Institute of Modern Physics, Northwest University, Xian 710069, China
  • 3Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
  • 4School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia

*Authors to whom any correspondence should be addressed.

Received date: 2023-10-10

  Revised date: 2023-12-07

  Accepted date: 2023-12-14

  Online published: 2024-02-01

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing Printed in China and the UK

Abstract

This paper focuses on the finite dimensional irreducible representations of Lie superalgebra D(2, 1; α). We explicitly construct the finite dimensional representations of the superalgebra D(2, 1; α) by using the shift operator and differential operator representations. Unlike ordinary Lie algebra representation, there are typical and atypical representations for most superalgebras. Therefore, its typical and atypical representation conditions are also given. Our results are expected to be useful for the construction of primary fields of the corresponding current superalgebra of D(2, 1; α).

Cite this article

Xi Chen(陈曦) , Wen-Li Yang(杨文力) , Xiang-Mao Ding(丁祥茂) , Yao-Zhong Zhang(张耀中) . Finite dimensional irreducible representations of Lie superalgebra D (2, 1; α)[J]. Communications in Theoretical Physics, 2024 , 76(2) : 025002 . DOI: 10.1088/1572-9494/ad1588

1. Introduction

Affine Lie algebras and their corresponding conformal field theories (CFTs) have essential applications in many subfields of physics [1]. Supersymmetry is the superalgebra associated with the symmetry generator. The concepts of supersymmetry relate to bosonic and fermionic degrees of freedom [2]. Supersymmetry theory is a uniform framework for the systems of bosons and fermions. The conformal field theories are based on current algebras. Current superalgebras and their corresponding two-dimensional conformal field theory have played a fundamental role in the high-energy physics and statistical physics at critical point, such as logarithmic CFTs [3], topological field theory [4], disordered systems and integer quantum Hall effects [511]. In most applications of conformal field theories, one needs to construct the finite-dimensional representations of a superalgebra explicitly.
Unlike ordinary bosonic algebra representation, there are typical and atypical representations for most superalgebras. The typical representation is similar to the representation that appeared in bosonic algebra. The atypical representation can be irreducible or not fully reducible. There is no atypical representation's counterpart in ordinary bosonic algebra representation [12, 13]. This makes the study of the representations of superalegbras extremely difficult. The superalgebras psl(nn) and osp(2n + 2∣2n) stand out as a most interesting class due to the fact that the corresponding sigma models with their supergroups have a vanishing super-dimension or vanishing dual Coexter number. The nonlinear sigma models based on the supergroups have a vanishing one-loop β function, which are expected to be conformal invariant without adding the Wess–Zumino terms [14]. Finite-dimensional typical and atypical representations of osp(2∣2) and gl(2∣2) have been studied in several papers [15, 16].
The sigma model associated with psl(4∣4) (or su(2, 2∣4)) is related to the string theory on the AdS5 × S5 background. Recent studies show that the superalgebra D(2, 1; α) is the one-parameter deformation of Lie superalgebra D(2, 1) = osp(4∣2) and has a vanishing dual Coexter number. It has played an important role in describing the origin of the Yangian symmetry of AdS/CFT [17, 18] and the symmetry of string theory on AdS3 × S3 × S3 × S1. There are two types of AdS3 geometries which preserve superconformal symmetry; the finite-dimensional subalgebras of these superconformal algebras are psu(1, 1∣2) and D(2, 1; α) [19]. The parameter α is related to the relative size of the radius of geometry [20]. Thus, the study of the D(2, 1; α) model would provide essential insight into the quantization of the string theory on the AdS3 × S3 × S3 × S1 background.
This paper is organized as follows. In section 2, we review the definition of finite-dimensional exceptional superalgebra D(2, 1; α) and its commutation relations. In section 3, we explicitly give the differential operator representations of all the generators. In section 4, we give the shift operators. In section 5, we construct the finite-dimensional representation of superalgebra D(2, 1; α). In section 6, we give four atypical conditions. If none of the four atypical conditions are satisfied, then the representation is a typical representation. Section 7 is devoted to our conclusions.

2. D(2, 1; α) superalgebra

The exceptional Lie superalgebra D(2, 1; α) with α forms a continuous one-parameter family of superalgebras of rank 3 and dimension 17 [2]. It is a deformation of the Lie superalgebra osp(4∣2) with the parameter α ≠ 0, − 1, ∞ . The bosonic (or even) part is a su(2) ⊕ su(2) ⊕ su(2) of dimension 9, and the fermionic (or odd) part is a spinor representation (2, 2, 2) of the bosonic part of dimension 8. In terms of the orthogonal basis vector ε1, ε2, ε3 with the inner product
$\begin{eqnarray}\begin{array}{l}({\epsilon }_{1},{\epsilon }_{1})=-\displaystyle \frac{1+\alpha }{2},\ \ ({\epsilon }_{2},{\epsilon }_{2})=\displaystyle \frac{1}{2},\\ ({\epsilon }_{3},{\epsilon }_{3})=\displaystyle \frac{\alpha }{2},\ \ ({\epsilon }_{i},{\epsilon }_{j})=0\ \ {for}\ i\ne j.\end{array}\end{eqnarray}$
The even roots Δ0 and the odd roots Δ1 of D(2, 1; α) are given by
$\begin{eqnarray}{{\rm{\Delta }}}_{0}=\{\pm 2{\epsilon }_{i}\},\ \ {{\rm{\Delta }}}_{1}=\{\pm {\epsilon }_{1}\pm {\epsilon }_{2}\pm {\epsilon }_{3}\}.\end{eqnarray}$
Let Π = {α1 = ε1ε2ε3, α2 = 2ε2, α3 = ε3} be the simple root system, with α1 being fermionic and α2, α3 being bosonic. The positive roots system ${{\rm{\Delta }}}^{+}={{\rm{\Delta }}}_{0}^{+}\cup {{\rm{\Delta }}}_{1}^{+}$ is a union of the positive even and odd roots. The positive even roots set ${{\rm{\Delta }}}_{0}^{+}$ and positive odd roots set ${{\rm{\Delta }}}_{1}^{+}$ are given by ${{\rm{\Delta }}}_{0}^{+}=\{{\alpha }_{2},{\alpha }_{3},2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}\}$, ${{\rm{\Delta }}}_{1}^{+}=\{{\alpha }_{1},{\alpha }_{1}+{\alpha }_{2},{\alpha }_{1}+{\alpha }_{3},{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}\}$. The Cartan matrix aij is given by
$\begin{eqnarray}a=\left(\begin{array}{ccc}0 & 1 & \alpha \\ -1 & 2 & 0\\ -1 & 0 & 2\end{array}\right),\end{eqnarray}$
and with each positive root δ, there are generators Eδ (raising operator), FδEδ (lowering operator) and Hδ (Cartan generator). These operators have definite Z2-gradings:
$\begin{eqnarray}[{H}_{\delta }]=0,\quad \quad [{E}_{\delta }]=[{F}_{\delta }]=\left\{\begin{array}{ll}0, & \delta \in {{\rm{\Delta }}}_{0}^{+},\\ 1, & \delta \in {{\rm{\Delta }}}_{1}^{+}.\end{array}\right.\end{eqnarray}$
For any two generators a, bD(2, 1; α), the (anti)commutator is defined by
$\begin{eqnarray}[a,b]={ab}-{(-)}^{[a][b]}{ba},\end{eqnarray}$
the commutation relations of D(2, 1; α) are
$\begin{eqnarray}[{E}_{{\alpha }_{i}},{F}_{{\alpha }_{j}}]={\delta }_{{ij}}\,{H}_{{\alpha }_{i}},\,[{H}_{{\alpha }_{i}},{H}_{{\alpha }_{j}}]=0,\,i,j=1,2,3,\end{eqnarray}$
$\begin{eqnarray*}\begin{array}{l}[{H}_{{\alpha }_{i}},{E}_{{\alpha }_{j}}]={a}_{{ij}}{E}_{{\alpha }_{j}},\quad [{H}_{{\alpha }_{i}},{F}_{{\alpha }_{j}}]=-{a}_{{ij}}{F}_{{\alpha }_{j}},,\quad i,j=1,2,3,\\ [{E}_{{\alpha }_{1}},{E}_{{\alpha }_{2}}]=-{E}_{{\alpha }_{1}+{\alpha }_{2}},\quad \quad [{E}_{{\alpha }_{1}},{E}_{{\alpha }_{3}}]=-{E}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}},{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-(1+\alpha ){E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}},{H}_{{\alpha }_{2}}]=[{E}_{{\alpha }_{1}},{H}_{{\alpha }_{3}}]={E}_{{\alpha }_{1}},\\ [{E}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]={F}_{{\alpha }_{2}},\quad [{E}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]=\alpha {F}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{2}},{E}_{{\alpha }_{1}+{\alpha }_{3}}]\\ ={E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{2}},{H}_{{\alpha }_{1}}]=-{E}_{{\alpha }_{2}},\quad [{E}_{{\alpha }_{2}},{H}_{{\alpha }_{2}}]=-2{E}_{{\alpha }_{2}},\\ [{E}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]={F}_{{\alpha }_{1}},\quad [{E}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]={F}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{3}},{E}_{{\alpha }_{1}+{\alpha }_{2}}]={E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{3}},{H}_{{\alpha }_{1}}]=-\alpha {E}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{3}},{H}_{{\alpha }_{3}}]=-2{E}_{{\alpha }_{3}},\quad [{E}_{{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]={F}_{{\alpha }_{1}},\\ [{E}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]={F}_{{\alpha }_{1}+{\alpha }_{2}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}},{H}_{{\alpha }_{1}}]=[{E}_{{\alpha }_{1}+{\alpha }_{2}},{H}_{{\alpha }_{2}}]\\ =-{E}_{{\alpha }_{1}+{\alpha }_{2}},[{E}_{{\alpha }_{1}+{\alpha }_{2}},{H}_{{\alpha }_{3}}]={E}_{{\alpha }_{1}+{\alpha }_{2}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}},{E}_{{\alpha }_{1}+{\alpha }_{3}}]=(1+\alpha ){E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}},{F}_{{\alpha }_{1}}]=-{E}_{{\alpha }_{2}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]=-{H}_{{\alpha }_{1}}+{H}_{{\alpha }_{2}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-\alpha {F}_{{\alpha }_{3}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]\\ =-{F}_{{\alpha }_{1}+{\alpha }_{3}},[{E}_{{\alpha }_{1}+{\alpha }_{3}},{H}_{{\alpha }_{1}}]=-\alpha {E}_{{\alpha }_{1}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{3}},{H}_{{\alpha }_{2}}]\\ ={E}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{3}},{H}_{{\alpha }_{3}}]=-{E}_{{\alpha }_{1}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{3}},{F}_{{\alpha }_{1}}]\\ =-\alpha {E}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{3}},{F}_{{\alpha }_{3}}]=-{E}_{{\alpha }_{1}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]\\ =-{H}_{{\alpha }_{1}}+\alpha {H}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-{F}_{{\alpha }_{2}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{3}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]\\ =-{F}_{{\alpha }_{1}+{\alpha }_{2}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{H}_{{\alpha }_{1}}]=-(1+\alpha ){E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{H}_{{\alpha }_{2}}]\\ ={E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{H}_{{\alpha }_{3}}]=-{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{2}}]\\ =-{E}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{3}}]=-{E}_{{\alpha }_{1}+{\alpha }_{2}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]=\alpha {E}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]={E}_{{\alpha }_{2}},\quad [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]\\ ={H}_{{\alpha }_{1}}-{H}_{{\alpha }_{2}}-\alpha {H}_{{\alpha }_{3}},\\ [{E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-{F}_{{\alpha }_{1}},\quad [{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{H}_{{\alpha }_{1}}]\\ =-(1+\alpha ){E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}}]={E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]\\ ={E}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]={E}_{{\alpha }_{1}+{\alpha }_{2}},\quad [{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]\\ ={E}_{{\alpha }_{1}},[{E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=\displaystyle \frac{2}{1+\alpha }{H}_{{\alpha }_{1}}-\displaystyle \frac{1}{1+\alpha }{H}_{{\alpha }_{2}}\\ +\displaystyle \frac{\alpha }{1+\alpha }{H}_{{\alpha }_{3}},[{H}_{{\alpha }_{1}},{F}_{{\alpha }_{2}}]=-{F}_{{\alpha }_{2}},\quad [{H}_{{\alpha }_{1}},{F}_{{\alpha }_{3}}]=-\alpha {F}_{{\alpha }_{3}},\\ [{H}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}},\quad [{H}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]=-\alpha {F}_{{\alpha }_{1}+{\alpha }_{2}},\\ [{H}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-(1+\alpha ){F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{H}_{{\alpha }_{1}},{F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]\\ =-(1+\alpha ){F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{H}_{{\alpha }_{2}},{F}_{{\alpha }_{1}}]={F}_{{\alpha }_{1}},\quad [{H}_{{\alpha }_{2}},{F}_{{\alpha }_{2}}]=-2{F}_{{\alpha }_{2}},\\ [{H}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}},\quad [{H}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]={F}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{H}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{H}_{{\alpha }_{3}},{F}_{{\alpha }_{1}}]={F}_{{\alpha }_{1}},\\ [{H}_{{\alpha }_{3}},{F}_{{\alpha }_{2}}]=-2{F}_{{\alpha }_{3}},\quad [{H}_{{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]={F}_{{\alpha }_{1}+{\alpha }_{2}},\\ [{H}_{{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]=-{F}_{{\alpha }_{1}+{\alpha }_{3}},\quad [{H}_{{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ [{F}_{{\alpha }_{1}},{F}_{{\alpha }_{2}}]=-{F}_{{\alpha }_{1}+{\alpha }_{2}},\quad [{F}_{{\alpha }_{1}},{F}_{{\alpha }_{3}}]=-{F}_{{\alpha }_{1}+{\alpha }_{3}},\\ [{F}_{{\alpha }_{1}},{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}]=(1+\alpha ){F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad \quad \\ [{F}_{{\alpha }_{2}},{F}_{{\alpha }_{1}+{\alpha }_{3}}]={F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\,[{F}_{{\alpha }_{3}},{F}_{{\alpha }_{1}+{\alpha }_{2}}]\end{array}\end{eqnarray*}$
$\begin{eqnarray}=\,{F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad [{F}_{{\alpha }_{1}+{\alpha }_{2}},{E}_{{\alpha }_{1}+{\alpha }_{3}}]=-(1+\alpha ){F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\end{eqnarray}$
and all the other commutators are zero.

3. Differential operator representation of D(2, 1; α)

To obtain a shift operator [22] of D(2, 1; α), one needs to construct the differential operator representations [2331] of the Lie superalgebra D(2, 1; α). Let ⟨Λ∣ be the highest weight vector in the representation of D(2, 1; α) with the highest weights λi, satisfying the following conditions:
$\begin{eqnarray}\langle {\rm{\Lambda }}| {F}_{{\alpha }_{i}}=0,\end{eqnarray}$
$\begin{eqnarray}\langle {\rm{\Lambda }}| {H}_{{\alpha }_{i}}={\lambda }_{i}\langle {\rm{\Lambda }}| .\end{eqnarray}$
An arbitrary vector in the representation space is parametrized by the bosonic coordinate variables ${x}_{{\alpha }_{i}}$ and fermionic coordinate variables ${\theta }_{{\alpha }_{i}}$,
$\begin{eqnarray}\langle {\rm{\Lambda }},x,\theta | =\langle {\rm{\Lambda }}| {G}_{+}(x,\theta ).\end{eqnarray}$
We constructed the corresponding G+(x, θ) as follows:
$\begin{eqnarray}{G}_{+}(x,\theta )={G}_{{\alpha }_{3}}{G}_{{\alpha }_{2}}{G}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{G}_{{\alpha }_{1}+{\alpha }_{3}}{G}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{G}_{{\alpha }_{1}+{\alpha }_{2}}{G}_{{\alpha }_{1}},\end{eqnarray}$
and the associated Gδ are given by (e is Euler's number)
$\begin{eqnarray}{G}_{\delta }=\Space{0ex}{2.5ex}{0ex}\{\begin{array}{ll}{e}^{{x}_{{\alpha }_{i}}{E}_{{\alpha }_{i}}}, & \mathrm{if}\quad [{E}_{{\alpha }_{i}}]=0,\\ {e}^{{\theta }_{{\alpha }_{i}}{E}_{{\alpha }_{i}}}, & \mathrm{if}\quad [{E}_{{\alpha }_{i}}]=1.\end{array}\end{eqnarray}$
One can define a differential operator realization ρ(d) of the generators of Lie superalgebra D(2, 1; α) by the following relation
$\begin{eqnarray}{\rho }^{(d)}(g)\langle {\rm{\Lambda }},x,\theta | \equiv \langle {\rm{\Lambda }},x,\theta | g,\quad \forall g\in D(2,1;\alpha ).\end{eqnarray}$
Here, ρ(d)(g) is a differential operator of the bosonic and fermionic coordinate variables $\{{x}_{{\alpha }_{i}},{\theta }_{{\alpha }_{i}}\}$ associated with the generator g. After some manipulations, we obtain the following differential operator representations of all generators of Lie superalgebra D(2, 1; α):
$\begin{eqnarray}{\rho }^{(d)}({E}_{{\alpha }_{1}})={\partial }_{{\theta }_{{\alpha }_{1}}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({E}_{{\alpha }_{2}})=-{\theta }_{{\alpha }_{1}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}+{\partial }_{{x}_{{\alpha }_{2}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({E}_{{\alpha }_{3}})=-{\theta }_{{\alpha }_{1}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}-(1+\alpha ){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ \,-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}+{\partial }_{{x}_{{\alpha }_{3}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}})={\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}})={\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ +(1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})={\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -(1+\alpha ){\theta }_{{\alpha }_{1}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}{\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})={\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}},\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({H}_{{\alpha }_{1}})=-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ -(1+\alpha ){x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}-\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ -(1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}-\alpha {x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}+{\lambda }_{{\alpha }_{1}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl}{\rho }^{(d)}({H}_{{\alpha }_{2}}) & = & {\theta }_{{\alpha }_{1}}{\partial }_{{\theta }_{{\alpha }_{1}}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}+{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ & & -{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}-2{x}_{{\alpha }_{2}}\partial {x}_{{\alpha }_{2}}+{\lambda }_{{\alpha }_{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({H}_{{\alpha }_{3}})={\theta }_{{\alpha }_{1}}{\partial }_{{\theta }_{{\alpha }_{1}}}+{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -2{x}_{{\alpha }_{3}}{\partial }_{{\alpha }_{3}}+{\lambda }_{{\alpha }_{3}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{1}})={\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}\\ +{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}-{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ -(1+\alpha ){\theta }_{{\alpha }_{1}}{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{a}_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}-(1+\alpha ){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}\\ +{\theta }_{{\alpha }_{1}}{\lambda }_{{\alpha }_{1}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{2}})=-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ -{x}_{{\alpha }_{2}}^{2}{\partial }_{{x}_{{\alpha }_{2}}}+{x}_{{\alpha }_{2}}{\lambda }_{{\alpha }_{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{3}})=-{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}}}+(1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}-{x}_{{\alpha }_{3}}^{2}{\partial }_{{x}_{{\alpha }_{3}}}+{x}_{{\alpha }_{3}}{\lambda }_{{\alpha }_{3}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}})=(1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}+{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}-{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\theta }_{{\alpha }_{1}}}\\ +(1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\lambda }_{{\alpha }_{2}}-{\theta }_{\alpha 1+{\alpha }_{2}}{\lambda }_{{\alpha }_{1}}\\ +{\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{2}}{\lambda }_{{\alpha }_{2}}\\ -{\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{2}}^{2}{\partial }_{{x}_{{\alpha }_{2}}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}})=-{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{2}}}\\ -\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ +{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ -\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ +\alpha (1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}-\alpha {\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{3}}^{2}{\partial }_{{x}_{{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}}{x}_{{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}-{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\lambda }_{{\alpha }_{1}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\lambda }_{{\alpha }_{3}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})=\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}}}+{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}^{2}{\partial }_{{x}_{{\alpha }_{2}}}\\ -\alpha (1+\alpha ){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}}}\\ +{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}+\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{3}}^{2}{\partial }_{{x}_{{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}-\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\lambda }_{{\alpha }_{2}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{2}}+{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{1}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})={\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{2}}}\\ -{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ -{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\alpha }_{1}+{\alpha }_{2}}\\ -\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\alpha }_{1}}\\ +\alpha (1+\alpha ){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ +\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\partial }_{{\alpha }_{1}+{\alpha }_{2}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{3}}^{2}{\partial }_{{x}_{{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}}{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}}}\\ -{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{2}{\partial }_{{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ +{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}^{2}{\partial }_{{x}_{{\alpha }_{2}}}\\ -{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\partial }_{{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}}\\ -{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\partial }_{{x}_{{\alpha }_{2}}}\\ -\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{x}_{{\alpha }_{3}}{\partial }_{{x}_{{\alpha }_{3}}}+{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\lambda }_{{\alpha }_{1}}\\ +\displaystyle \frac{2}{1+\alpha }{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{1}}-{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{1}}\\ +\alpha {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\lambda }_{{\alpha }_{3}}-\displaystyle \frac{\alpha }{1+\alpha }{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}\\ +\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{x}_{{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}+\alpha {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{3}}\\ -\displaystyle \frac{1}{1+\alpha }{x}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{2}}\\ +{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{x}_{{\alpha }_{2}}{\lambda }_{{\alpha }_{2}}+{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\lambda }_{{\alpha }_{2}}.\end{array}\end{eqnarray}$
One can directly check that the differential operator realizations satisfy the commutation relations of Lie superalgebra D(2, 1; α) [21].

4. Shift operator of D(2, 1; a)

The even part of Lie superalgebra D(2, 1; α) is su(2) ⊕ su(2) ⊕ su(2), with the basis si, ti, ui(i = 0, ± ), satisfying the relations
$\begin{eqnarray}\begin{array}{l}[{s}_{0},{s}_{\pm }]=\pm {s}_{\pm },\quad [{t}_{0},{t}_{\pm }]=\pm {t}_{\pm },\\ [{u}_{0},{u}_{\pm }]=\pm {u}_{\pm },\quad [{s}_{+},{s}_{-}]=2{s}_{0},\\ [{t}_{+},{t}_{-}]=2{t}_{0},\quad [{u}_{+},{u}_{-}]=2{u}_{0}.\end{array}\end{eqnarray}$
The odd part of Lie superalgebras D(2, 1; α) is a spinor representation (2, 2, 2) of the even part, with components ${R}_{{ijk}}(i,j,k=\pm \tfrac{1}{2})$ [22]. In our assumption, the elements of D(2, 1; α) are given by
$\begin{eqnarray}\begin{array}{l}{s}_{0}=\displaystyle \frac{1}{2(1+\alpha )}(2{H}_{{\alpha }_{1}}-{H}_{{\alpha }_{2}}-\alpha {H}_{{\alpha }_{3}}),\\ {s}_{+}=-{{iE}}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad {s}_{-}={{iF}}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ {t}_{0}=\displaystyle \frac{1}{2}{H}_{{\alpha }_{2}},\quad {t}_{+}={E}_{{\alpha }_{2}},\\ {t}_{-}={F}_{{\alpha }_{2}},\quad {u}_{0}=\displaystyle \frac{1}{2}{H}_{{\alpha }_{3}},\\ {u}_{+}={E}_{{\alpha }_{3}},\quad {u}_{-}={F}_{{\alpha }_{3}},\\ {R}_{\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}={E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\quad {R}_{-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}={{iF}}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}},\\ {R}_{\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}={E}_{{\alpha }_{1}+{\alpha }_{2}},\quad {R}_{-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}={{iF}}_{{\alpha }_{1}+{\alpha }_{2}},\\ {R}_{\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}={E}_{{\alpha }_{1}+{\alpha }_{3}},\quad {R}_{-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}={F}_{{\alpha }_{1}+{\alpha }_{3}},\\ {R}_{\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}={E}_{{\alpha }_{1}},\quad {R}_{-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}={{iF}}_{{\alpha }_{1}}.\end{array}\end{eqnarray}$
The invariant scalars of the Lie subalgebra of D(2, 1; α) are given by
$\begin{eqnarray}\begin{array}{l}{S}^{2}={s}_{+}{s}_{-}+{s}_{0}^{2}-{s}_{0},\quad {T}^{2}={t}_{+}{t}_{-}+{t}_{0}^{2}-{t}_{0},\\ {U}^{2}={u}_{+}{u}_{-}+{u}_{0}^{2}-{u}_{0}.\end{array}\end{eqnarray}$
Irreducible representations of Lie superalgebra can be reduced into the direct sum of a set of irreducible representations of subalgebra. The representation of su(2) ⊕ su(2) ⊕ su(2) can be labeled by (s, t, u), where s(s + 1), t(t + 1), u(u + 1) are the eigenvalues of the subalgebra invariants S2, T2, U2. And the representations of D(2, 1; α) are labeled by ∣s, ms; t, mt; u, mu; λ⟩, where ms, mt, mu are eigenvalues of the s0, t0, u0. The degeneracy representations can be labeled by λ. The operator $\hat{s}$ is defined by
$\begin{eqnarray}\hat{s}| s,{m}_{s};t,{m}_{t};u,{m}_{u};\lambda \rangle =s| s,{m}_{s};t,{m}_{t};u,{m}_{u};\lambda \rangle .\end{eqnarray}$
The operators $\hat{t}$ and $\hat{u}$ are defined in the same way. Let (p, q, r) be the corresponding (s, t, u) values, and p be the maximum s value in the reduction of a D(2, 1; α) representation. Therefore, the decomposition into su(2) ⊕ su(2) ⊕ su(2) is given by
$\begin{eqnarray}\begin{array}{l}{\mathbb{F}}=\{(p,q,r),\left(p-\displaystyle \frac{1}{2},q\pm \displaystyle \frac{1}{2},r\pm \displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{1}{2},q\pm \displaystyle \frac{1}{2},r\mp \displaystyle \frac{1}{2}\right),\\ (p-1,q\pm 1,r),(p-1,q,r\pm 1),(p-1,q,r;1),(p-1,q,r;2),\\ \left(p-\displaystyle \frac{3}{2},q\pm \displaystyle \frac{1}{2},r\pm \displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{3}{2},q\pm \displaystyle \frac{1}{2},r\mp \displaystyle \frac{1}{2}\right),(p-2,q,r)\}.\end{array}\end{eqnarray}$
The (s, t, u) = (p − 1, q, r) is a twofold degeneracy. Therefore, the multiplicity of the (s, t, u) representation is denoted as ∣p − 1, mp; q, mq; r, mr; λ⟩(λ = 1, 2).
The shift operators ${O}^{i,j,k}\left(i,j,k=\tfrac{1}{2}\right)$ have been studied by Hughes and Yadegar [32]. The shift operators for D(2, 1; α) are given by Van der Jeugt [22]
$\begin{eqnarray}\begin{array}{l}{O}^{\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0}+1)\\ \times (\hat{u}+{u}_{0}+1)-{\rho }^{(d)}({F}_{{\alpha }_{1}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}\times \,({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{s}+{s}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}\\ \times \,({F}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}){\rho }^{(d)}({E}_{{\alpha }_{3}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}+1)\\ \times \,(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\times \,{\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{s}+{s}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}+1){\rho }^{(d)}\\ \times \,({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}})(\hat{s}+{s}_{0}+1)(\hat{t}+{t}_{0})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}\\ \times \,({E}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}})(\hat{s}+{s}_{0}){\rho }^{(d)}\\ \times \,({F}_{{\alpha }_{2}}{\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0})\\ \times \,{\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0})\\ \times \,(\hat{t}+{t}_{0}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{s}+{s}_{0})\\ \times \,(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{t}+{t}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}})(\hat{s}+{s}_{0})(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0})\\ \times \,(\hat{t}+{t}_{0}+1){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{s}+{s}_{0})\\ \times \,{\rho }^{(d)}({E}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{-\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2}}=-{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,{\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}})(\hat{s}+{s}_{0}){\rho }^{(d)}({F}_{{\alpha }_{2}})(\hat{u}+{u}_{0}+1)\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0}){\rho }^{(d)}({F}_{{\alpha }_{2}}){\rho }^{(d)}({E}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0})(\hat{t}+{t}_{0})(\hat{u}+{u}_{0}+1)\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{s}+{s}_{0})(\hat{t}+{t}_{0}){\rho }^{(d)}({E}_{{\alpha }_{3}}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{O}^{-\displaystyle \frac{1}{2},\displaystyle \frac{1}{2},-\displaystyle \frac{1}{2}}=-{\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{2}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0})\\ -{\rho }^{(d)}({E}_{{\alpha }_{1}+{\alpha }_{3}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ +{\rho }^{(d)}({E}_{{\alpha }_{1}}){\rho }^{(d)}({F}_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}){\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}})(\hat{s}+{s}_{0})\\ \times \,(\hat{t}+{t}_{0}+1){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{3}})(\hat{s}+{s}_{0})\\ \times \,(\hat{t}+{t}_{0}+1)(\hat{u}+{u}_{0})\\ +{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}})(\hat{s}+{s}_{0}){\rho }^{(d)}\\ \times \,({E}_{{\alpha }_{2}}){\rho }^{(d)}({F}_{{\alpha }_{3}})\\ -{\rho }^{(d)}({F}_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}})\\ \times \,(\hat{s}+{s}_{0}){\rho }^{(d)}({E}_{{\alpha }_{2}})(\hat{u}+{u}_{0}).\end{array}\end{eqnarray}$
The shift operators Oi,j,k shift an eigenstate into one or two eigenstates (for the twofold degenerate case),
$\begin{eqnarray}\begin{array}{l}{O}^{i,j,k}| s,{m}_{s};t,{m}_{t};u,{m}_{u};\lambda \rangle \\ \propto \displaystyle \sum _{{\lambda }^{{\prime} }}| s+i,{m}_{s}+i;t+j,{m}_{t}+j;u+k,{m}_{u}+k;{\lambda }^{{\prime} }\rangle .\end{array}\end{eqnarray}$
The normalized shift operator Ai,j,k is
$\begin{array}{l} A^{i, j, k}=O^{i, j, k}\left[( \hat { s } + s _ { 0 } + \frac { 1 } { 2 } + i ) \left(\hat{t}+t_{0}\right.\right. \\ \left.\left.+\frac{1}{2}+j\right)\left(\hat{u}+u_{0}+\frac{1}{2}+k\right)\right]^{-\frac{1}{2}} \end{array}$

5. Representations of D(2, 1; α)

The exceptional Lie superalgebra D(2, 1; α) (α ≠ 0, − 1) forms
$\begin{eqnarray}\begin{array}{l}| p-2,{m}_{p};q,{m}_{q};r,{m}_{r}\rangle ={\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times {\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{3}{2},{m}_{p};q+\displaystyle \frac{1}{2},{m}_{q};r+\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ =\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -(q-{m}_{q}+\displaystyle \frac{1}{2})\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ -\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\\ \times \,{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{3}{2},{m}_{p};q-\displaystyle \frac{1}{2},{m}_{q};r+\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ =(r+{m}_{r}+\displaystyle \frac{1}{2}){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{3}{2},{m}_{p};q+\displaystyle \frac{1}{2},{m}_{q};r-\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ =\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}\\ \times \,{\chi }_{{\alpha }_{3}}^{r+\displaystyle \frac{1}{2}-{m}_{r}}-\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}-\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +(q-{m}_{q}+\displaystyle \frac{1}{2}){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\\ {\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{3}{2},{m}_{p};q-\displaystyle \frac{1}{2},{m}_{q};r-\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ ={\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}\,\times \,{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}\\ \times \,{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}-{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-1,{m}_{p};q,{m}_{q};r-1,{m}_{r}\right\rangle \\ =-4(p-1)q{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)q{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+1}\\ +4(p-1)q{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)q{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-1}-(p-{m}_{p}-1)\\ [4(1+\alpha )(p-1)q+\alpha (p-{m}_{p}-2)(q+{m}_{q})]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}\,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}| p-1,{m}_{p};q-1,{m}_{q};r,{m}_{r}\rangle \\ =4(p-1)r{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +4(p-1)r{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +4(p-1)r{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)r{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(p-{m}_{p}-1)\alpha (p-{m}_{p}-2)(r-{m}_{r})\\ \times \,{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-1,{m}_{p};q+1,{m}_{q};r,{m}_{r}\right\rangle \\ =4(p-1)r(q+{m}_{q}+1)(q+{m}_{q})r{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)r(q+{m}_{q}+1)(q-{m}_{q}+1)r{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}\times \,{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)r(q+{m}_{q}+1)(q-{m}_{q}+1)r{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +4(p-1)r(q-{m}_{q}+1)(q-{m}_{q})r{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}-(p-{m}_{p}-1)\\ (q+1-{m}_{q})(q+{m}_{q}+1)\alpha (p-{m}_{p}-2)(r-{m}_{r})\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}| p-1,{m}_{p};q,{m}_{q};r+1,{m}_{r}\rangle \\ =-2(r+{m}_{r}+1)(r+{m}_{r})q{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+1}\\ -2(r-{m}_{r}+1)(r+{m}_{r}+1)q{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +2(r-{m}_{r}+1)(r+{m}_{r}+1)q{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -2(r-{m}_{r}+1)(r-{m}_{r})q{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-1}+(r+{m}_{r}+1)\\ [(q+{m}_{q})\alpha (p-{m}_{p}-2)+4(1+\alpha )(p-1)q]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-1,{m}_{p};q,{m}_{q};r,{m}_{r};1\right\rangle \\ =4(p-1)(q+1)(r+{m}_{r})(q+{m}_{q}+1){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+1}+2(p-1)(q+{m}_{q}+1)\\ [(q+{m}_{q}+1)(r+{m}_{r})-(q-{m}_{q}+1)(r-{m}_{r})]\\ \times \,{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ {\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +4(p-1)r(q+{m}_{q}+1)(q+{m}_{q}){\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}+2(p-1)(q+{m}_{q}+1)\\ [(q+{m}_{q}+1)(r-{m}_{r})-(r+{m}_{r})(q-{m}_{q}+1)]\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)r(q+{m}_{q}+1)(q-{m}_{q}){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)(q+1)(q+{m}_{q}+1)(r-{m}_{r}){\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-1}+(p-{m}_{p}-1)(q+{m}_{q}+1)\\ [-4\alpha r(q+1)(r+1)+4(1+\alpha )(p-1)(q+1)m-r\\ -\alpha (p-{m}_{p}-2)(r-{m}_{r})(q+{m}_{q}+2)+4{qr}(q+1)]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}\\ \times \,{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}\\ \times \,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}| p-1,{m}_{p};q,{m}_{q};r,{m}_{r};2\rangle =-4(p-1)(r+{m}_{r})q{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+1}\\ +4(p-1)(q+{m}_{q})r{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}\,{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +2(p-1)[(q+{m}_{q})(r+{m}_{r})-(q-{m}_{q})(r-{m}_{r})]\\ {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +2(p-1)[-(q-{m}_{q})(r+{m}_{r})+(q+{m}_{q})(r-{m}_{r})]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)(q-{m}_{q})r{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ -4(p-1)(r-{m}_{r})q{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-1}\\ +(p-{m}_{p}-1)\left\{2(1+\alpha )(1-p)\left[{m}_{r}(2q+1)-\displaystyle \frac{1}{2}\right]+4{qr}(q+\alpha r+1+\alpha )\right.\\ \left.+{m}_{q}(2{m}_{r}-1)+\alpha {m}_{r}(2{m}_{q}-1)+\alpha (p-2-{m}_{p})(q+{m}_{q})(r-{m}_{r})\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{2}}{\theta }_{{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{1}{2},{m}_{p};q-\displaystyle \frac{1}{2},{m}_{q};r-\displaystyle \frac{1}{2},{m}_{r}\right\rangle =-4(2p-1)(p-1)q(2r-1){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}\\ {\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}-4(2p-1)(p-1)q(2r-1){\theta }_{{\alpha }_{1}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)q(2r-1){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}\\ {\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}-4(2p-1)(p-1)q(2r-1){\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[-\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)\left(-(1+\alpha )(p-2)-{m}_{q}-\displaystyle \frac{1}{2}+\alpha r\right)\right.\right.\\ -\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\left(\alpha \left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)+(1+\alpha )(2p-3)\right)+\left(r-{m}_{r}-\displaystyle \frac{5}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\\ \left.\left.+\left(r-{m}_{r}+\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{3}{2}\right)\right]-\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)(2p-3)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +(p-{m}_{p}-\displaystyle \frac{1}{2})\left\{4(p-1)q\left[-\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)(-(1+\alpha )(p-1)-q+\alpha (r+1))\right.\right.\\ \left.+\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\left(-3(1+\alpha )(p-1)-\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)-\alpha r+1-(1+\alpha )p+q\right)\right]\\ \left.-\alpha \left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)(2p-3)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[-(2r-1)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)+\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\right.\right.\\ \left(\left(1+\alpha )(p-1)-{m}_{q}-\displaystyle \frac{1}{2}+\alpha (r+1\right)\right)+\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(\alpha \left(r+{m}_{r}-\displaystyle \frac{3}{2}\right)-(1+\alpha )(2p-3)\right)\\ \left.-\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)\left((1+\alpha )(p-1)+{m}_{q}+\displaystyle \frac{1}{2}-\alpha {m}_{r}+\displaystyle \frac{1}{2}\alpha \right)+2(p-1)(1+\alpha )+\alpha \right]\\ \left.-\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)(2p-3)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\{4(p-1)q\left[\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)(\alpha r-(1+\alpha )(p-1)-(q+1))+\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\right.\\ \left.\left(\left(1+\alpha )(p-1)+\alpha (p-{m}_{p}-\displaystyle \frac{3}{2})+\alpha r-(q+1\right)\right)-(1+\alpha )(2p-3)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right]\\ \left.-\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)(2p-3)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{1}{2},{m}_{p};q+\displaystyle \frac{1}{2},{m}_{q};r-\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ =-4(2p-1)(p-1)q(2r-1)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)q(2r-1)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)q(2r-1)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)q(2r-1)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\left(-\left(p+{m}_{p}+\displaystyle \frac{3}{2}\right)-2\alpha r-2q-2\alpha p\right)\right.\right.\\ \left.+1+(1+\alpha )\left(p+{m}_{p}-\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)-\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)+\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\right]\\ -\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2})\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}+\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\\ \left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\left((1+\alpha )(p-1)+\alpha (p-{m}_{p}-\displaystyle \frac{3}{2}\right)+\alpha r+q\right)+\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)\right.\\ (-(1+\alpha )(p-1)+q+\alpha r)+q+\alpha r)+(1+\alpha )(2p-1)\\ \left.\left.-(1+\alpha )\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right]-\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[\left(r+{m}_{r}-\displaystyle \frac{1}{2})(-(1+\alpha )(p-2)+q+\alpha r\right)\right.\right.\\ +\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\left(\alpha \left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)+\alpha r+3q-(1+\alpha )p)+\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right]\\ \left.+\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}-\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left\{4(p-1)q\left[-\left(r-{m}_{r}-\displaystyle \frac{1}{2}\right)\left((1+\alpha )(p-1)+q+\alpha (r+1)\right)\right.\right.\\ +\left(r+{m}_{r}-\displaystyle \frac{1}{2}\right)\left((1+\alpha )(p-1)-q-\alpha r\right)+\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)(1+2\alpha )\\ \left.-2(1+\alpha )\left(p+{m}_{p}-\displaystyle \frac{3}{2}\right)\right]+\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}(q+{m}_{q}-\displaystyle \frac{1}{2})(r-{m}_{r}+\displaystyle \frac{1}{2})\right\}\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{1}{2},{m}_{p};q-\displaystyle \frac{1}{2},{m}_{q};r+\displaystyle \frac{1}{2},{m}_{r}\right\rangle \\ =4(2p-1)(p-1)r(2q-1)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +4(2p-1)(p-1)r(2q-1)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)r(2q-1)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)r(2q-1)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right){\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left\{4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\left[-\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)(-(1+\alpha )(p-1)+q+\alpha r)\right.\right.\\ \left.-\left(q-{m}_{q}-\displaystyle \frac{1}{2}\right)\left((1+\alpha )\left({m}_{p}+\displaystyle \frac{1}{2}\right)+q+\alpha r\right)\right]+\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\\ \left.\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\{4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)(2q-1)((1+\alpha )(p-1)-\alpha r-q)\\ \left.-\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\alpha (p-{m}_{p}-\displaystyle \frac{3}{2})\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left\{4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\right.\right.\\ \left.+(2q-1)\left[(1+\alpha )p+q+\alpha r\right]\right)+\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\\ \left.{\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)}^{2}\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\right\}{\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left\{4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(-\left(q-{m}_{q}-\displaystyle \frac{1}{2}\right)\left[-\alpha \left({m}_{r}+\displaystyle \frac{1}{2}\right)-q+(1+\alpha )p\right]\right.\right.\\ -\left.\left.\alpha \left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)(2q-1)\right]-\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\right)-\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\\ \left.\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right){\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)}^{2}\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\right\}\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p-\displaystyle \frac{1}{2},{m}_{p};q+\displaystyle \frac{1}{2},{m}_{q};r+\displaystyle \frac{1}{2},{m}_{r}\right\rangle =-4(2p-1)(p-1)r(2q+3)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\\ {\theta }_{{\alpha }_{1}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}+4(2p-1)(p-1)r(2q+3)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\\ {\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +4(2p-1)(p-1)r(2q+3)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ -4(2p-1)(p-1)r(2q+3)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left[4(p-1)r\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left\{\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right.\right.\\ \left[(2q+3)(-(1+\alpha )(p-1)-(1+q))+\alpha r\left(q-{m}_{q}+\displaystyle \frac{3}{2}\right)+\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\right.\\ \left.\left(\alpha {m}_{r}-\displaystyle \frac{1}{2}\alpha -2\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\right)\right]+\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\\ \left.\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left[4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\right.\\ \left\{\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)(-1-q+(1+\alpha )p+\alpha (r+1))+\alpha \left(r+{m}_{r}+\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{3}{2}\right)\right.\\ +\left((1+\alpha )(p-1)+\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)-\left(-{m}_{q}+\displaystyle \frac{1}{2}\right)-\alpha \left({m}_{r}+\displaystyle \frac{1}{2})\right)\right.\\ \left.-\left(q+{m}_{q}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{3}{2}\right)\right\}-\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)(q+{m}_{q}+\displaystyle \frac{3}{2})\\ \left.\alpha (p-{m}_{p}-\displaystyle \frac{3}{2}){\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)}^{2}\right]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}}\\ +\left[4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left\{\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)(2q+3)\right.\right.\\ ((1+\alpha )(p-1)+1+q-\alpha r)+\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{1}{2}\right)\left(\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\right.\\ -\alpha \left.\left.\left({m}_{r}+\displaystyle \frac{1}{2}\right)+\left({m}_{q}-\displaystyle \frac{1}{2}\right)+(1+\alpha )(p-1)\right)\right\}-\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\\ \left.\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(r+{m}_{r}+\displaystyle \frac{1}{2}\right)\right]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+\displaystyle \frac{1}{2}}\\ +\left[4(p-1)r\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left\{-(q-{m}_{q}+\displaystyle \frac{1}{2})\right.\right.\\ \left\{-\left(q-{m}_{q}+\displaystyle \frac{3}{2}\right)\left(-1+\alpha \left(p-{m}_{p}-\displaystyle \frac{3}{2}\right)-\alpha \left({m}_{r}+\displaystyle \frac{1}{2}\right)-q+(1+\alpha )(p-1)\right.\right.\\ \left.\left.-\alpha \left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\right)\right\}-\left(p-{m}_{p}-\displaystyle \frac{1}{2}\right)\left(q-{m}_{q}+\displaystyle \frac{1}{2}\right)\left(q+{m}_{q}+\displaystyle \frac{3}{2}\right)\\ \left.\alpha (p-{m}_{p}-\displaystyle \frac{3}{2}){\left(r-{m}_{r}+\displaystyle \frac{1}{2}\right)}^{2}\right]\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-\displaystyle \frac{3}{2}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-\displaystyle \frac{1}{2}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-\displaystyle \frac{1}{2}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}\left|p,{m}_{p};q,{m}_{q};r,{m}_{r}\right\rangle \\ =32{{pq}}^{2}r(p-1)(2p-1)(2r-1){\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(2p-1)(r+{m}_{r})[-(q+{m}_{q}-1)V-(q-{m}_{q}+1)W+4(p-{m}_{p})\\ (p-1)q(2r-1)(q-{m}_{q})(-(1+\alpha )(p-1)+\alpha (r-1)+q)]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}+1}\\ +(2p-1)[(q+{m}_{q})(r-{m}_{r}+1)V+(-(r+{m}_{r})+(q+{m}_{q}))Y\\ +(r+{m}_{r})(q-{m}_{q}+1)Z+4(p-{m}_{p})(p-1)q(2r-1)\{(q-{m}_{q})\\ [(r-{m}_{r})({m}_{q}+\alpha {m}_{r}-(1+\alpha )p)-(r+{m}_{r})(\alpha (r-{m}_{r}+1)-(q+{m}_{q}))]\\ +(q+{m}_{q})[(1+\alpha )(2p-1)-(q-{m}_{q}+1)(r-{m}_{r})+(r+{m}_{r})\\ (-(1+\alpha )p+{m}_{q}+\alpha r)\}]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(2p-1)(q+{m}_{q})[(r-{m}_{r}+1)W-(r-{m}_{r}+1)Z+4(p-{m}_{p})(p-1)\\ q(2r-1)\{(r-{m}_{r}+1)(\alpha (p-{m}_{p})+\alpha r+(1+\alpha )(p-1)+q)\\ +(r+{m}_{r})(-(1+\alpha )p+\alpha r+q)+(1+\alpha )p-\alpha (p-{m}_{p})-q+\alpha r)\}]\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}+1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(2p-1)[(r-{m}_{r}+1)V-(r-{m}_{r}+1)(q-{m}_{q}+1)W-(q-{m}_{q}+1)Z\\ -((q+{m}_{q})(r+{m}_{r})-1)Y+4(p-{m}_{p})(p-1)q(2r-1)\\ \{(q+{m}_{q})[(r+{m}_{r})\alpha (r-{m}_{r}+1)+(r-{m}_{r})(\alpha (p-{m}_{p}-1)\\ -\alpha {m}_{r}+{m}_{q}+(1+\alpha )p)]+(q-{m}_{q})[\alpha (r-{m}_{r}+1)-(q+{m}_{q})(r+{m}_{r})\\ +(r+{m}_{r})({m}_{q}+(1+\alpha )p-\alpha {m}_{r})-(1+\alpha )(2p-1)-\alpha -(q+{m}_{q}+1)\\ -(r-{m}_{r})\alpha (r+{m}_{r}+1)+(r-{m}_{r}+1)(r+{m}_{r})\}]\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(2p-1)(q-{m}_{q})[(r-{m}_{r}+1)V+(r+{m}_{r}-1)Y+4(p-1)q(2r-1)\\ (p-{m}_{p})\{2r(-(q+1)+(1+\alpha (p-\alpha r)-(2p-1)(1+\alpha )\}]\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}-1}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}}\\ +(2p-1)(r-{m}_{r})[-(q+{m}_{q}-1)Y-(q-{m}_{q}+1)Z+4(p-1)q(2r-1)\\ (p-{m}_{p})\{(q-{m}_{q})(-\alpha (p-{m}_{p}-1)+\alpha -(1+\alpha )p-q-\alpha r)\\ -(r+m-r)\alpha (q-{m}_{q})+(q-{m}_{q})(\alpha ({m}_{r}+1)-(1+\alpha )p-q)\}\\ {\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-1}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}-1}\\ +(p-{m}_{p}-1)[4(p-{m}_{p})(p-1)(2p-1)q(2r-1)\{-2q(r-{m}_{r}+1)\\ \alpha (1+\alpha )-(q+m-q)(1+\alpha )(-\alpha (p-{m}_{p}-2)+\alpha (r-{m}_{r})\\ -(1+\alpha )p-q+\alpha r)-(1+\alpha )(q-{m}_{q})(\alpha {m}_{r}-(1+\alpha )p-q)\}\\ +(r-{m}_{r}+1)V\{-(q+{m}_{q})(-\alpha (p-{m}_{p}-2)-(1+\alpha )(p-1)\\ -{m}_{q}-\alpha r)+({m}_{q}-\alpha r-(1+\alpha )(p-1))-(q-{m}_{q})(q+{m}_{q}+1)\}\\ +(q-{m}_{q}+1)W(r-{m}_{r}+1)(q+(1+\alpha )(p-1)+\alpha r)\\ +Y\{((1+\alpha )p-{m}_{q}-\alpha {m}_{r})((r+{m}_{r})(q+{m}_{q}-1)-1)\\ -(r+{m}_{r}+1)((q-{m}_{q})(q+{m}_{q}+1)+(q+{m}_{q}-1)\alpha (r-{m}_{r}))\\ -(q+{m}_{q})(-(1+\alpha )(p-1)-\alpha (p-{m}_{p}-2)+\alpha {m}_{r}-{m}_{q})\}\\ +Z(q-{m}_{q}+1)\{-(r+{m}_{r})(-(1+\alpha )p+q+\alpha {m}_{r})\\ +(r-{m}_{r})((q-{m}_{q}+1)-\alpha (r+{m}_{r}+1))+((1+\alpha )(p-1)+{m}_{q}-\alpha {m}_{r})\\ {\theta }_{{\alpha }_{1}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}}{\theta }_{{\alpha }_{1}+{\alpha }_{3}}{\theta }_{{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}{\chi }_{2{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}}^{p-{m}_{p}-2}{\chi }_{{\alpha }_{2}}^{q-{m}_{q}}{\chi }_{{\alpha }_{3}}^{r-{m}_{r}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}V=4(p-1)q(p-{m}_{p})[-(r+{m}_{r}-1)(-(1+\alpha )(p-2)-{m}_{q}+\alpha r)\\ -(r+{m}_{r})(\alpha (r-{m}_{r})+(1+\alpha )(2p-3))+(r+{m}_{r}-3)\\ (q-{m}_{q}+1)(r-{m}_{r}+2)(q+{m}_{q}+1)]-\alpha (p-{m}_{p}-1)\\ (q+{m}_{q})(2p-3)(r+{m}_{r}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}W=4(p-1)q(p-{m}_{p})[-(r+{m}_{r}-1)(-(1+\alpha )(p-1)-q+\alpha (r+1))\\ +(r+{m}_{r})(-3(1+\alpha )(p-1)-\alpha (p-{m}_{p}-1)-\alpha r+1+q)]\\ -\alpha (p-{m}_{p}-1)(q+{m}_{q})(2p-3)(r+{m}_{r}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}Y=4(p-1)q(p-{m}_{p})[-(2r-1)(q-{m}_{q}+1)+(r-{m}_{r})((1+\alpha )(p-1)\\ -{m}_{q}+\alpha (r+1))+(r-{m}_{r}+1)(\alpha (r+{m}_{r}-2)-(1+\alpha )(2p-3))\\ -(r+{m}_{r}-1)((1+\alpha )(p-1)+{m}_{q}-\alpha {m}_{r}+\alpha )+2(p-1)(1+\alpha )\\ +\alpha ]-\alpha (p-{m}_{p}-1)(q+{m}_{q})(2p-3)(r-{m}_{r}-1),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}Z=4(p-1)q(p-{m}_{p})[(r+{m}_{r}+1)(\alpha r-(1+\alpha )(p-1)-(q+1))\\ +(r-{m}_{r})((1+\alpha )9p-1)-\alpha (p-{m}_{p}-1)+\alpha r(q+1))-(1+\alpha )(2p-3)\\ (r-{m}_{r}+1)]-\alpha (p-{m}_{p}-1)(q+{m}_{q})(2p-3)(r-{m}_{r}-1).\end{array}\end{eqnarray}$

6. The typical and atypical representation of D(2, 1; α)

The (s, t, u) components must satisfy
$\begin{eqnarray}s,t,u\in \displaystyle \frac{1}{2}N=\left\{0,\displaystyle \frac{1}{2},1,\ldots \right\},\end{eqnarray}$
and the (p, q, r) also belongs to this set. If p ≥ 2, q ≥ 1, r ≥ 1, there are four atypical conditions [22] given by
$\begin{eqnarray}(1+\alpha )p+q+\alpha r=0,\end{eqnarray}$
$\begin{eqnarray}(1+\alpha )p-(q+1)-\alpha r=0,\end{eqnarray}$
$\begin{eqnarray}(1+\alpha )p+q-\alpha (r+1)=0,\end{eqnarray}$
$\begin{eqnarray}(1+\alpha )p-(q+1)-\alpha (r+1)=0.\end{eqnarray}$
If none of the four atypical conditions are satisfied, then the representation is a typical representation, which decomposes into 16 subalgebra irreducible representations. If one of the conditions is satisfied, the representation is reducible but indecomposable generally. The shift operator will separate the 16-dimensional lattice into two 8-dimensional lattices. Since
$\begin{eqnarray}{O}^{\tfrac{1}{2},-j,-k}{O}^{-\tfrac{1}{2},j,k}| s,t,u\gt =\ 0.\end{eqnarray}$
For (6.2), $j=\tfrac{1}{2},k=\tfrac{1}{2}$, the two 8-dimensional lattices are given by:
$\begin{eqnarray}\begin{array}{l}{{\mathbb{F}}}_{1}=\{(p,q,r),\left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\\ \left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),(p-1,q,r;1),(p-1,q,r-1),\\ (p-1,q-1,r),\left(p-\displaystyle \frac{3}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right)\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}{{\mathbb{F}}}_{2}=\{\left(p-\frac{1}{2},q+\frac{1}{2},r+\frac{1}{2}\right),(p-1,q+1,r),(p-1,q,r+1)\\ (p-1,q,r;2),\left(p-\frac{3}{2},q+\frac{1}{2},r+\frac{1}{2}\right),\left(p-\frac{3}{2},q+\frac{1}{2},r-\frac{1}{2}\right),\\ \left(p-\frac{3}{2},q-\frac{1}{2},r+\frac{1}{2}\right),(p-2,q,r)\}.\end{array}\end{eqnarray}$
For (6.3), $j=-\tfrac{1}{2},k=\tfrac{1}{2}$, the two 8-dimensional lattices are given by:
$\begin{eqnarray}\begin{array}{l}{{\mathbb{F}}}_{1}=\{(p,q,r),\left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\\ \left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),(p-1,q,r;1),(p-1,q,r-1),\\ (p-1,q,r-1);\left(p-\displaystyle \frac{3}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right)\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}{{\mathbb{F}}}_{2}=\Space{0ex}{2.5ex}{0ex}\{\left(p-\frac{1}{2},q-\frac{1}{2},r+\frac{1}{2}\right),(p-1,q-1,r),(p-1,q,r+1)\\ (p-1,q,r;2),\left(p-\frac{3}{2},q-\frac{1}{2},r+\frac{1}{2}\right),\left(p-\frac{3}{2},q-\frac{1}{2},r-\frac{1}{2}\right),\\ \left(p-\frac{3}{2},q+\frac{1}{2},r+\frac{1}{2}\right),(p-2,q,r)\Space{0ex}{2.5ex}{0ex}\}.\end{array}\end{eqnarray}$
For (6.4), $j=\tfrac{1}{2},k=-\tfrac{1}{2}$, the two 8-dimensional lattices are given by:
$\begin{eqnarray}\begin{array}{l}{{\mathbb{F}}}_{1}=\{(p,q,r),\left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),\\ \left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),(p-1,q,r;1),(p-1,q,r-1),\\ (p-1,q,r-1);\left(p-\displaystyle \frac{3}{2},q-\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right)\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{c}{{\mathbb{F}}}_{2}=\{\left(p-\frac{1}{2},q+\frac{1}{2},r-\frac{1}{2}\right),(p-1,q,r-1),(p-1,q+1,r)\\ (p-1,q,r;2),\left(p-\frac{3}{2},q-\frac{1}{2},r-\frac{1}{2}\right),\left(p-\frac{3}{2},q+\frac{1}{2},r-\frac{1}{2}\right),\\ \left(p-\frac{3}{2},q+\frac{1}{2},r+\frac{1}{2}\right),(p-2,q,r)\}.\end{array}\end{eqnarray}$
For (6.5), $j=-\tfrac{1}{2},k=-\tfrac{1}{2}$, the two 8-dimensional lattices are given by:
$\begin{eqnarray}\begin{array}{l}{{\mathbb{F}}}_{1}=\{(p,q,r),\left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\\ \left(p-\displaystyle \frac{1}{2},q+\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),(p-1,q,r;1),(p-1,q,r+1),\\ (p-1,q+1,r);\left(p-\displaystyle \frac{3}{2},q+\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right)\},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{{\mathbb{F}}}_{2}=\{\left(p-\displaystyle \frac{1}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),(p-1,q-1,r),(p-1,q,r-1)\\ (p-1,q,r;2),\left(p-\displaystyle \frac{3}{2},q-\displaystyle \frac{1}{2},r+\displaystyle \frac{1}{2}\right),\left(p-\displaystyle \frac{3}{2},q-\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),\\ \left(p-\displaystyle \frac{3}{2},q+\displaystyle \frac{1}{2},r-\displaystyle \frac{1}{2}\right),(p-2,q,r)\}.\end{array}\end{eqnarray}$
If p < 2, q < 1, r < 1, only none-negative value elements appear in the decomposition of the (s, t, u) lattice.

7. Conclusions

First, we have reviewed the explicit differential operator representations for Lie superalgebra D(2, 1; α). Based on the shift operator and differential operator representations, we have constructed the explicitly finite-dimensional representations of superalgebra D(2, 1; α) by using bosonic and fermionic coordinates. Our results are expected to be useful for the construction of primary fields of the corresponding current superalgebra of D(2, 1; α), which play an important role in the computation of quantization of the string theory on the AdS3 × S3 × S3 × S1 background.

This work received financial support from the National Natural Science Foundation of China (Grant No. 11 405 051). Yao-Zhong Zhang was supported by the Australian Research Council Discovery Project DP190101529. Xiang-Mao Ding was supported by NSFC Grant 11 775 299.

1
Di Francesco P Mathieu P Senehal D 1997 Conformal Field Theory Berlin Springer

2
Frappat L Sorba P Scarrino A 2000 Dictionary on Lie Algebras and Superalgebras New York Academic

3
Flohr M 2003 Bits and pieces in logarithmic conformal field theory Int. J. Mod. Phys. A 18 4497 4592

DOI

4
Isidro M Ramallo A V 1994 gl(N,N) current algebras and topological field theories Nucl. Phys. B 414 715 762

DOI

5
Efetov K 1983 Supersymmetry and theory of disordered metals Adv. Phys. 32 53 127

DOI

6
Bernard S Conformal Field Theory Applied To 2D Disordered Systems: An Introduction hep-th/9509137

7
Mudry C Chamon C Wen X G 1996 Two-dimensional conformal field theory for disordered systems at criticality Nucl. Phys. B 466 383 443

DOI

8
Maassarani Z Serban D 1997 Non-unitary conformal field theory and logarithmic operators for disordered systems Nucl. Phys. B 489 603 625

DOI

9
Zirnbauer M R Conformal field theory of the integer quantum Hall plateau transition hep-th/9905054

10
Bassi Z S LeClair A 2000 The exact s-matrix for an osp(2∣2) disordered system Nucl. Phys. B 578 577 627

DOI

11
Guruswamy S LeClair A Ludwig A W W 2000 Nucl. Phys. B 583 475

DOI

12
Kac V G 1977 Characters of typical representations of classical Lie superalgebras Commun. Algebra. 5 889 897

DOI

13
Kac V G 1978 Lecture Notes in Mathematics vol 676 Berlin Springer 597

14
Bershadsky M Zhukov S Vaintrob A 1999 PSL(nn) sigma model as a conformal field theory Nucl. Phys. B 559 205 234

DOI

15
Zhang Y Z 2004 Coherent state construction of representations of osp(2∣2) and primary fields of osp(2∣2) conformal field theory Phys. Lett. A 327 442 451

DOI

16
Zhang Y Z Gould M D 2005 A unified and complete construction of all finite dimensional irreducible representations of gl(2∣2) J. Math. Phys. 46 013505

DOI

17
Matsumoto T Moriyama S 2008 An exceptional algebraic origin of the AdS/CFT Yangian symmetry J. High Energy Phys. JHEP04(2008)022

DOI

18
Matsumoto T Moriyama S 2009 Serre relation and higher grade generators of the AdS/CFT Yangian symmetry J. High Energy Phys. JHEP09(2009)097

DOI

19
Ohlsson Sax O Stefanski B 2011 Integrability, spin-chains and the AdS3/CFT2 correspondence J. High Energy Phys. JHEP08(2011)029

DOI

20
Gauntlett J P Myers R C Townsend P K 1999 Supersymmetry of rotating branes Phys. Rev. D 59 025001

DOI

21
Chen X Yang W-L Ding X-M Feng J Ke S-M Wu K Zhang Y-Z 2012 Free-field realization of the exceptional current superalgebra D(2, 1; α)k J. Phys. A 45 405204

DOI

22
Van der Jeugt J 1985 Irreducible representations of the exceptional Lie superalgebras D(2, 1; α) J. Math. Phys. 26 913 924

DOI

23
Feigin B Frenkel E 1990 Affine Kac-Moody algebras and semi-infinite flag manifolds Commun. Math. Phys. 128 161 189

24
Bouwknegt P McCarthy J Pilch K 1990 Free field approach to 2-dimensional conformal field theories Prog. Phys. 102 67 135

DOI

25
Ito K 1990 Feigin-Fuchs representation of generalized parafermions Phys. Lett. B 252 69 73

DOI

26
Rasmussen J 1998 Free field realizations of affine current superalgebras, screening currents and primary fields Nucl. Phys. B 510 688

DOI

27
Ding X-M Gould M Zhang Y-Z 2003 gl(2∣2) current superalgebra and non-unitary conformal field theory Phys. Lett. A 318 354 363

DOI

28
Zhang Y-Z Liu X Yang W-L 2005 Primary fields and screening currents of gl(2∣2) non-unitary conformal field theory Nucl. Phys. B 704 510 526

DOI

29
Yang W-L Zhang Y-Z Liu X 2006 gl(4∣4) current superalgebra: free field realization and screening currents Phys. Lett. B 641 329 334

DOI

30
Yang W-L Zhang Y-Z 2008 Free field realization of the current algebra Phys. Rev. D 78 106004

DOI

31
Yang W-L Zhang Y-Z Kault S 2009 Differential operator realizations of super-algebras and free field representations of corresponding current algebras Nucl. Phys. B 823 372 402

DOI

32
Hughes J W B Yadergar J 1978 o(3) shift operators: the general analysis J. Math. Phys. 19 2068

DOI

Outlines

/