Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Conservation laws, Lie symmetries, self adjointness, and soliton solutions for the Selkov–Schnakenberg system

  • Kashif Ali 1 ,
  • Aly R Seadawy , 2 ,
  • Syed T R Rizvi 1 ,
  • Noor Aziz 1
Expand
  • 1Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan
  • 2Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 41411, Saudi Arabia

Received date: 2023-04-02

  Revised date: 2023-10-17

  Accepted date: 2023-10-20

  Online published: 2024-01-31

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this article, we explore the famous Selkov–Schnakenberg (SS) system of coupled nonlinear partial differential equations (PDEs) for Lie symmetry analysis, self-adjointness, and conservation laws. Moreover, miscellaneous soliton solutions like dark, bright, periodic, rational, Jacobian elliptic function, Weierstrass elliptic function, and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations. All these results are displayed graphically by 3D, 2D, and contour plots.

Cite this article

Kashif Ali , Aly R Seadawy , Syed T R Rizvi , Noor Aziz . Conservation laws, Lie symmetries, self adjointness, and soliton solutions for the Selkov–Schnakenberg system[J]. Communications in Theoretical Physics, 2024 , 76(2) : 025003 . DOI: 10.1088/1572-9494/ad0540

1. Introduction

Partial differential equations (PDEs) play a vital role in the study of engineering and applied mathematics, particularly in fluid mechanics and electromagnetics [15]. Nonlinear evolution equations (NLEEs) are foremost in the study of nonlinear phenomena. NLEEs are commonly applied to demonstrate the problems of plasma physics, fluid mechanics, biology, optical fibers, chemically reactive materials, chemical kinetics, electricity etc [611]. Various methods have been utilized to find the solutions to NLEEs. They include an inverse scattering algorithm, Darboux transformations, Hirota bilinear approach, Lie symmetry analysis (LSA) etc [1215].
The Lie Group approach, also called LSA, is a successful and fruitful mechanism for attaining the symmetries, exact solutions, and conservation laws (CLs) of NLEEs [16]. It was introduced by the Norwegian mathematician Sophus Lie in 1880. Many NLEEs have been studied under this approach. LSA is used in fractional calculus as well to produce new results. A symmetry of a differential equation (DE) converts one solution to another solution. New solutions can be produced from the older ones with the aid of symmetries of DEs [17]. Symmetries and CLs are a vital part of the study of DEs. The CLs are essential because they provide a mathematical explanation of the model that certain physical quantity like energy, charge, linear, and angular momentum remains unaltered during the evolution of a physical system. An equation is integrable if it possesses CLs. The CLs of fractional PDEs are the amalgamation of works of Ibragimov [18] and Lukashchuk [19].
CLs of a model can be evaluated by various approaches which include Noether's theorem, variational approach, conservation theorem characteristic method, scaling invariance method etc [2023]. Hussain et al discussed the Burgers–Huxley equation by LSA and found the CLs [24]. Rashidi and Hejazi [25] in their work used LSA to attain the solutions of a fractional integro-differential system called the Vlasov–Maxwell system. Bahi and Hilal [26] used LSA to find the CLs and exact solutions of the generalized time-fractional Korteweg-de Vries-Burgers-like equation. Liu et al used LSA on generalized time-fractional diffusion equations and also derived the CLs and exact solutions of the model [2732].
Any equation is said to be self-adjoint if its adjoint equation upon substitution is equal to the original equation. CLs have been derived on the basis of self-adjointness. The equations that are nonlinearly self-adjoint can be written in a strictly self-adjoint form with the aid of suitable multipliers. As a result, any linear equation can be expressed in a nonlinear strictly self-adjoint form [33]. An integrable model possesses soliton solutions. A soliton is a wave that retains its shape and velocity on collision with another soliton. Many researchers have worked on finding the soliton solutions of the models [3440] by different techniques.
In 1952, Alan Turning [41] gave a concept of turning pattern which describes how patterns like stripes and spots can be set up naturally from a homogeneous uniform state. In one of his papers, he pondered over the behavior of the system where two diffusible materials come across each other to form a spatially periodic pattern. Reaction-diffusion systems (DRS) are mathematical models corresponding to physical phenomena. They are frequently used in the alteration in time and space of concentration of one or several chemical products. We can observe DRS in chemistry, biology, physics, etc. In this article, we will acknowledge a simple reaction model for glycolysis known as a Selkov–Schnakenberg (SS) system proposed by Schnakenberg in 1979. It is a chemical reaction with limited cycle behavior involving three stages:
$\begin{eqnarray*}P\rightleftharpoons V,T\rightleftharpoons W,2V+W=3V,\end{eqnarray*}$
V, W and P, T are chemical products and chemical sources representing dimensionless concentrations of the reactants. So the SS system is a couple of nonlinear PDEs of the form [42]
$\begin{eqnarray}\begin{array}{l}\alpha {R}_{{xx}}+\beta -R+{R}^{2}S+\delta S-{R}_{t}=0,\\ \gamma {S}_{{xx}}+\sigma -{R}^{2}S-\delta S-{S}_{t}=0,\end{array}\end{eqnarray}$
where R(x, t) and S(x, t) represent the concentrations of the two reactants. α and γ are diffusion coefficients of R and S. β, δ ≥ 0, σ > 0. If β = 0 = δ, equation (1) is transformed into the Selkov model [43]. If δ = 0 and σ > 0 equation (1) is turned to the Schnakenberg model [44]. The remaining manuscript is organized as follows: In section 2, LSA is performed for the above-quoted model. In section 3, CLs have been formulated. In section 4, the self-adjointness (SA) of the model is discussed. In section 5, the model is solved by the sub-ordinary differential equations (sub-ODE) approach in detail. In section 6, we will interpret the solution of the model with their 3D, 2D, and contour profiles for various parameters. Later, section 7 provides results and discussions of our model. At the end, in section 8, we will wind up the article by providing our conclusion.

2. Lie Symmetry Analysis

In this section, our main focus is on LSA for equation (1) which is elaborated below. Let us assume we have one parameter Lie Group of point transmformations [45, 46]
$\begin{eqnarray*}\begin{array}{rcl}\overline{x} & = & x+\epsilon {\xi }^{1}(x,t,R,S)+O({\epsilon }^{2}),\\ \overline{t} & = & t+\epsilon {\xi }^{2}(x,t,R,S)+O({\epsilon }^{2}),\\ \overline{R} & = & R+\epsilon {\eta }_{1}(x,t,R,S)+O({\epsilon }^{2}),\\ \overline{S} & = & S+\epsilon {\eta }_{2}(x,t,R,S)+O({\epsilon }^{2}),\end{array}\end{eqnarray*}$
where ε ≤ 1 is the group parameter. ξ1(x, t, R, S), ξ2(x, t, R, S), η1(x, t, R, S) and η2(x, t, R, S) are the infinitesimal generators which we have to calculate. The vector field associated with the above-mentioned group of transformations is given by
$\begin{eqnarray}\begin{array}{l}Y={\xi }^{1}(x,t,R,S)+\displaystyle \frac{\partial }{\partial x}+{\xi }^{2}(x,t,R,S)\displaystyle \frac{\partial }{\partial t}\\ \quad +{\eta }_{1}(x,t,R,S)\displaystyle \frac{\partial }{\partial R}+{\eta }_{2}(x,t,R,S)\displaystyle \frac{\partial }{\partial S}.\end{array}\end{eqnarray}$
For system 1 Pr2 will be the second prolongation then the Lie’s invariance condition is
$\begin{eqnarray*}\begin{array}{l}{{\Pr }}^{2}Y({\bigtriangleup }_{1}){| }_{{\bigtriangleup }_{1}=0,{\bigtriangleup }_{2}=0}=0,\\ {{\Pr }}^{2}Y({\bigtriangleup }_{2}){| }_{{\bigtriangleup }_{1}=0,{\bigtriangleup }_{2}=0}=0,\end{array}\end{eqnarray*}$
where
$\begin{eqnarray}{\bigtriangleup }_{1}=\alpha {R}_{{xx}}+\beta -R+{R}^{2}S+\delta S,\end{eqnarray}$
$\begin{eqnarray}{\bigtriangleup }_{2}=\gamma {S}_{{xx}}+\sigma -{R}^{2}S-\delta S.\end{eqnarray}$
Using SYM package launched by Dimas and Tsoubelis [47] we get the determining equations which are obtained by equating the polynomials to zero. Solution of these determining equations give values of ξ1(x, t, R, S), ξ2(x, t, R, S), η1(x, t, R, S) and η2(x, t, R, S) as
Case (i): When
α = 0, γ = 0 and RS ≠ 0.
$\begin{eqnarray}\begin{array}{l}{\eta }_{1}(x,t,R,S)=-\displaystyle \frac{1}{2{RS}}\left((\delta +{R}^{2}){\eta }_{2}(x,t,R,S)+(-{R}^{2}S+\sigma -\delta S){\eta }_{2,S}\right.\\ \quad -{R}^{4}{S}^{2}{\xi }_{S}^{2}-2\delta {R}^{2}{S}^{2}{\xi }_{S}^{2}-{\delta }^{2}{S}^{2}{\xi }_{S}^{2}+2{R}^{2}\sigma S{\xi }_{S}^{2}+2\delta \sigma S{\xi }_{S}^{2}\\ \quad -{\sigma }^{2}{\xi }_{S}^{2}-R{\eta }_{2,R}+{R}^{2}S{\eta }_{2,R}+\beta {\eta }_{2,R}+S\delta {\eta }_{2,R}-{R}^{3}S{\xi }_{R}^{2}\\ \quad +{R}^{4}{S}^{2}{\xi }_{R}^{2}+\beta {R}^{2}S{\xi }_{R}^{2}-\delta (R)S{\xi }_{R}^{2}+2\delta {R}^{2}{S}^{2}{\xi }_{R}^{2}\\ \quad +\beta \delta S{\xi }_{R}^{2}+{\delta }^{2}{S}^{2}{\xi }_{R}^{2}+R\sigma {\xi }_{R}^{2}-{R}^{2}\sigma S{\xi }_{R}^{2}-\beta \sigma {\xi }_{R}^{2}\\ \quad \left.-\delta \sigma S{\xi }_{R}^{2}+{\eta }_{2,t}+{R}^{2}S{\xi }_{t}^{2}+\delta S{\xi }_{t}^{2}-\sigma {\xi }_{t}^{2}\right).\end{array}\end{eqnarray}$
Case (ii): When
α = 0 and (γδR3σ + γδ2Rσ ≠ 0),
α = 0, δ = 0 and γRσ ≠ 0,
α = 0, σ = 0 and γR ≠ 0.
$\begin{eqnarray}{\xi }^{1}(x,t,R,S)={c}_{1}+{c}_{3},\end{eqnarray}$
$\begin{eqnarray}{\xi }^{2}(x,t,R,S)={c}_{2},\end{eqnarray}$
$\begin{eqnarray}{\eta }_{1}(x,t,R,S)=0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{2}(x,t,R,S)=0.\end{eqnarray}$
Case (iii): When
γ = α and $(\alpha \beta {\delta }^{2}\sigma -\alpha \beta \delta \sigma {\cot }^{2}(1)\ne 0),$
β = 0, γ = α and $(\alpha {\delta }^{2}\sigma -\alpha \delta \sigma {\cot }^{2}(1)\ne 0),$
$\gamma =\alpha ,\delta ={\cot }^{2}(1)$ and αRσ ≠ 0,
γ = α, σ = 0 and $(\alpha {\delta }^{3}-\alpha {\delta }^{2}{\cot }^{2}(1)+\alpha {\delta }^{2}{R}^{2}-\alpha \delta {R}^{2}{\cot }^{2}(1)\ne 0),$
$\gamma =\alpha ,\delta ={\cot }^{2}(1),\sigma =0$ and $\alpha {\cot }^{2}(1)+\alpha {R}^{2}\ne 0).$
$\begin{eqnarray}{\xi }^{1}(x,t,R,S)={c}_{2},\end{eqnarray}$
$\begin{eqnarray}{\xi }^{2}(x,t,R,S)={c}_{1},\end{eqnarray}$
$\begin{eqnarray}{\eta }_{1}(x,t,R,S)=0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{2}(x,t,R,S)=0.\end{eqnarray}$
Case (iv): When
γ = 0 and (αδ2 + αδR2 ≠ 0),
γ = 0, δ = 0, αβR ≠ 0,
β = 0, γ = 0, δ = 0 and αR ≠ 0.
$\begin{eqnarray}{\xi }^{1}(x,t,R,S)={c}_{2}+{c}_{3},\end{eqnarray}$
$\begin{eqnarray}{\xi }^{2}(x,t,R,S)={c}_{1},\end{eqnarray}$
$\begin{eqnarray}{\eta }_{1}(x,t,R,S)=0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{2}(x,t,R,S)=0.\end{eqnarray}$
Case (v): When
δ = 0 and α2βγRσαβγ2Rσ ≠ 0),
σ = 0 and (α2γδR4αγ2δR4α2βγδR3 + αβγ2δR3 + α2γδ2R2αγ2δ2R2α2βγδ2R + αβγ2δ2R ≠ 0),
β = 0, δ = 0 and α2γRσαγ2Rσ ≠ 0),
δ = 0, σ = 0 and α2βγRαβγ2R ≠ 0),
β = 0, δ = 0, σ = 0 and (α2γRαγ2R ≠ 0),
αγδσ(αγ)(R2δ) ≠ 0.
$\begin{eqnarray}{\xi }^{1}(x,t,R,S)={c}_{1},\end{eqnarray}$
$\begin{eqnarray}{\xi }^{2}(x,t,R,S)={c}_{2},\end{eqnarray}$
$\begin{eqnarray}{\eta }_{1}(x,t,R,S)=0,\end{eqnarray}$
$\begin{eqnarray}{\eta }_{2}(x,t,R,S)=0,\end{eqnarray}$
where c1, c2 and c3 are constants. The Lie symmetry algebra introduced by equation (1) is spanned by the linearly independent operators
$\begin{eqnarray}{Y}_{1}={\partial }_{x},\end{eqnarray}$
$\begin{eqnarray}{Y}_{2}={\partial }_{y}.\end{eqnarray}$

3. Conservation laws

In this section, we compute CLs [45] for the SS system by a new procedure that is based on the formal Lagrangian [48]. The conserved vectors for each symmetry are established below. The Lagrangian is given by
$\begin{eqnarray*}\begin{array}{l}L=z(x,t)(\beta -R(x,t)+\delta S(x,t)+{R}^{2}(x,t)S(x,t)\\ \quad -{R}_{t}+\alpha {R}_{{xx}}(x,t))+w(x,t)(\sigma -\delta S(x,t)\\ \quad -{R}^{2}(x,t)S(x,t)-{S}_{t}(x,t)+\gamma {S}_{{xx}}(x,t)),\end{array}\end{eqnarray*}$
where z(x, t) = RB1 and w(x, t) = − SB1. B1 ia an arbitrary constant.
For symmetry Y1, the conserved vectors are
$\begin{eqnarray}{Y}_{1}^{x}={\rm{B}}1\left(R\beta -S\sigma -{R}^{2}(x,t)+(R+S)\delta S(x,t)+(R+S)R{\left(x,t\right)}^{2}S(x,t)-{{RR}}_{t}+{{SS}}_{t}\right)\end{eqnarray}$
$\begin{eqnarray}{Y}_{1}^{t}={\rm{B}}1\left({{RR}}_{x}-{{SS}}_{x}\right).\end{eqnarray}$
For symmetry Y2, the conserved vectors are:
$\begin{eqnarray}{Y}_{2}^{x}=-{\rm{B}}1R\alpha {R}_{{xt}}+{\rm{B}}1S\gamma {S}_{{xt}},\end{eqnarray}$
$\begin{aligned} Y_{2}^{t} & =\mathrm{B} 1\left(R \beta-S \sigma-R^{2}(x, t)+(R+S) \delta S(x, t)\right. \\ & \left.+(R+S) R(x, t)^{2} S(x, t)+R \alpha R_{x x}-S \gamma S_{x x}\right) . \end{aligned}$

4. Self adjointness

Let us assume a system of DEs with $\overline{p}$ equations with p dependent variables and g = (g1,…,gp)[49].
$\begin{eqnarray}{M}_{\overline{\alpha }}(x,g,{g}_{(1)},\ldots ,{g}_{(n)})=0,\hspace{0.5cm}\overline{\alpha }=1,2,\ldots ,\overline{p}.\end{eqnarray}$
This system is said to have nonlinearly SA if the succeeding adjoint equations
$\begin{eqnarray}\begin{array}{l}{M}_{\alpha }^{* }(x,g,{g}_{(1)},{h}_{(1)},\ldots ,{g}_{(n)},{h}_{(n)})\equiv \delta ({h}^{\overline{{\rm{\Omega }}}}{M}_{\overline{{\rm{\Omega }}}})/\delta {g}^{\alpha }=0,\\ \alpha =1,2,\ldots ,p.\end{array}\end{eqnarray}$
are satisfied for all solutions g of the system (28) upon replacing
$\begin{eqnarray}{h}^{\overline{\alpha }}={\psi }^{\overline{\alpha }}(x,g),\hspace{0.5cm}\overline{\alpha }=1,2,\ldots ,\overline{p}.\end{eqnarray}$
such that
$\begin{eqnarray}\psi (x,g)\ne 0.\end{eqnarray}$

4.1. Nonlinear self adjointness of the Selkov–Schnakenberg system

Our main aim is to show that equation (1) is nonlinearly SA. The adjoint equation for equation (1) is stated as
$\begin{eqnarray}\begin{array}{l}2R(x,t)S(x,t)(-w(x,t)+z(x,t))+{z}_{t}+\alpha {z}_{{xx}}=z(x,t),\\ \left(\delta +{R}^{2}(x,t)\right)(w(x,t)-z(x,t))={w}_{t}+\gamma {w}_{{xx}}.\end{array}\end{eqnarray}$
Suppose z = Z(x, t, R, S) and w = W(x, t, R, S), after performing a few calculations the following equation is attained
$\begin{eqnarray*}\begin{array}{l}2R(x,t)S(x,t)(-W(x,t,R,S)+Z(x,t,R,S))+{S}_{t}{Z}_{S}\\ \quad +\alpha {Z}_{{SS}}{S}_{x}{}^{2}+{R}_{t}{Z}_{R}+2\alpha {R}_{x}{S}_{x}{Z}_{{RS}}+\alpha {Z}_{R}{R}_{{xx}}\\ \quad +\alpha {Z}_{S}{S}_{{xx}}+\alpha {R}_{x}^{2}{Z}_{{RR}}=Z(x,t,R,S),\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{l}(\delta +{R}^{2}(x,t))(W(x,t,R,S)-Z(x,t,R,S))={S}_{t}{W}_{S}\\ \quad +\gamma {W}_{{SS}}{S}_{x}^{2}+{R}_{t}{W}_{R}+2\gamma {R}_{x}{S}_{x}{W}_{{RS}}+\gamma {W}_{R}{R}_{{xx}}\\ \quad +\gamma {W}_{S}{S}_{{xx}}+\gamma {R}_{x}^{2}{W}_{{RR}}.\end{array}\end{eqnarray*}$
Now equating the coefficients of Rt, St, Rx, Sx, Rxx, Sxx to zero, we obtain
$\begin{eqnarray}\begin{array}{l}-(\delta +{R}^{2}(x,t)(W(x,t,R,S)-Z(x,t,R,S))={S}_{t}{W}_{S}+\gamma {W}_{{SS}}{S}_{x}{}^{2}\\ \quad +{R}_{t}{W}_{R}+2\gamma {R}_{x}{S}_{x}{W}_{{RS}}+\gamma {W}_{R}{R}_{{xx}}\\ \quad +\gamma {W}_{S}{S}_{{xx}}+\gamma {R}_{x}{}^{2}{W}_{{RR}})+(2R(x,t)S(x,t)(-W(x,t,R,S)+Z(x,t,R,S))+{S}_{t}{Z}_{S}\\ \,+\alpha {Z}_{{SS}}{S}_{x}{}^{2}\\ \quad +{R}_{t}{Z}_{R}+2\alpha {R}_{x}{S}_{x}{Z}_{{RS}}+\alpha {Z}_{R}{R}_{{xx}}+\alpha {Z}_{S}{S}_{{xx}}+\alpha {R}_{x}{}^{2}{Z}_{{RR}}=Z(x,t,R,S))=0.\end{array}\end{eqnarray}$
The solution of Z(x, t, R, S) and W(x, t, R, S) is found to be
$\begin{eqnarray}\begin{array}{rcl}Z & = & {{RB}}_{1},\\ W & = & -{{SB}}_{1},\end{array}\end{eqnarray}$
where B1 is any constant. Hence, equation (1) is a nonlinearly SA with the substitution equation given by equation (33).

5. Sub-ODE technique

In this section, the soliton solutions of SS equation (1) will be obtained via a sub-ODE mechanism by the assumption [50],
$\begin{eqnarray*}R(x,t)=A(\psi ),\quad S(x,t)=B(\psi ).\end{eqnarray*}$
and
$\begin{eqnarray}\psi ={qx}-{ct}.\end{eqnarray}$
where c is the non-zero velocity of the soliton, A(ψ) and B(ψ) are real functions explaining the appearance of the solitary wave. Inserting equation (5) and equation (35) in equation (1) we achieve a system of ODEs
$\begin{eqnarray}\begin{array}{l}{cA}^{\prime} +{q}^{2}\alpha A^{\prime\prime} +\beta -A+{A}^{2}B+\delta B=0,\\ {cB}^{\prime} +{q}^{2}\gamma B^{\prime\prime} +\sigma -{A}^{2}B-\delta B=0.\end{array}\end{eqnarray}$
Now putting
$\begin{eqnarray}B(\psi )=\eta A(\psi ),\qquad \eta \ne 0.\end{eqnarray}$
In equation (36) we get
$\begin{eqnarray}{cA}^{\prime} +{q}^{2}\alpha A^{\prime\prime} +\beta -A+\eta {A}^{3}+\delta \eta A=0,\end{eqnarray}$
$\begin{eqnarray}c\eta A^{\prime} +{q}^{2}\gamma \eta A^{\prime\prime} +\sigma -\eta {A}^{3}+\delta \eta A=0.\end{eqnarray}$
As stated in the sub-ODE algorithm, we presume that (38) has a solution
$\begin{eqnarray}A(\psi )=\mu {G}^{m}(\psi ),\,\,\,\,\,\,\mu \gt 0,\end{eqnarray}$
where m is a parameter and G(ψ) satisfies the equation
$\begin{eqnarray}\begin{array}{l}G{{\prime} }^{2}(\psi )={{JG}}^{2-2p}(\psi )+{{HG}}^{2-p}(\psi )+{{LG}}^{2}(\psi )\\ \quad +{{MG}}^{2+p}(\psi )+{{QG}}^{2+2p}(\psi ),\,\,\,\,\,\,\,p\gt 0,\end{array}\end{eqnarray}$
where J, H, L, M, and Q are constants and m is found by the homogeneous balance method [50] between A″ and A3 in equation (38)
$\begin{eqnarray}m+2p=3m\Longrightarrow p=m,\end{eqnarray}$
Now the solution of equation (38) is given as:
$\begin{eqnarray}A(\psi )=\mu {G}^{p}(\psi ).\end{eqnarray}$
Substituting equation (41) together with equation (43) in equation (38) and equating the coefficients of powers of G we arrive at the following equations:
$\begin{eqnarray}\begin{array}{l}{G}^{0}(\psi ):\beta +\displaystyle \frac{1}{2}\alpha H\mu {p}^{2}{q}^{2}=0,\\ {G}^{p}(\psi ):-\mu +\alpha \mu {{Lp}}^{2}{q}^{2}+\delta \eta \mu =0,\\ {G}^{2p}(\psi ):\displaystyle \frac{3}{2}\alpha \mu {{Mp}}^{2}{q}^{2}=0,\\ {G}^{3p}(\psi ):2\alpha \mu {p}^{2}{q}^{2}Q+\eta {\mu }^{3}=0.\end{array}\end{eqnarray}$
Type 1. Substituting J = H = M = 0 in equation (44) we have
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2Q\alpha }{\eta }}{pq},\,\,\,\,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (45) along with equation (25) of [50] in equation (43) we obtain the bright soliton solution of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{1}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{1}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
Using equation (45) along with equation (26) of [50] in equation (43) we achieve the periodic solution of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{2}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\sec \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{2}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\sec \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
Using equation (45) along with equation (27) of [50] in equation (43) we get the rational solution of equation (1)
$\begin{eqnarray}{A}_{3}(x,t)=\displaystyle \frac{\sqrt{2}q\epsilon \sqrt{-\tfrac{\alpha Q}{\eta }}}{\sqrt{Q}({qx}-{ct})},\end{eqnarray}$
$\begin{eqnarray}{B}_{3}(x,t)=\displaystyle \frac{\sqrt{2}\eta q\epsilon \sqrt{-\tfrac{\alpha Q}{\eta }}}{\sqrt{Q}({qx}-{ct})}.\end{eqnarray}$
given that $\tfrac{\alpha Q}{\eta }\lt 0,\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}\gt 0.$
Type 2. Putting $H=M=0,J=\tfrac{{L}^{2}}{4Q}$ in equation (44) we obtain
$\begin{eqnarray}\mu =\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }},\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (52) along with equation (28) of [50] in equation (43) we get the dark soliton solution of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{4}(x,t)=\sqrt{2}{pq}\epsilon \sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\tanh \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{4}(x,t)=\sqrt{2}\eta {pq}\epsilon \sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\tanh \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
Using equation (52) along with equation (29) of [50] in equation (43) the periodic solution is given by
$\begin{eqnarray}\begin{array}{l}{A}_{5}(x,t)=\sqrt{2}{pq}\epsilon \sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\tan \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{5}(x,t)=\sqrt{2}\eta {pq}\epsilon \sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\\ \quad \times \,\tan \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
provided that $\tfrac{\alpha Q}{\eta }\lt 0,\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}\gt 0.$
Type 3. Putting H = M = 0 in equation (44) we obtain
$\begin{eqnarray}\mu =\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }},\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (57) along with equation (30) of [50] in equation (43) we get the Jacobian elliptic solutions of equation (1) as
$\begin{eqnarray*}\begin{array}{l}{A}_{6}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{{m}^{2}(\delta \eta -1)}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{cn}\left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}{B}_{6}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{{m}^{2}(1-\delta \eta )}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{cn}\left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
When m → 0, then equation (58) is converted to:
$\begin{eqnarray}\begin{array}{l}{A}_{7}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{{m}^{2}(\delta \eta -1)}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\cos \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{7}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{{m}^{2}(1-\delta \eta )}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\cos \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
When m → 1, then equation (58) is converted to:
$\begin{eqnarray}\begin{array}{l}{A}_{8}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{{m}^{2}(\delta \eta -1)}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{8}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{{m}^{2}(1-\delta \eta )}{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p(({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2{m}^{2}-1\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
Using equation (57) along with equation (31) of [50] in equation (43) we get
$\begin{eqnarray*}\begin{array}{l}{A}_{9}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left({m}^{2}-2\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{dn}\left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha \left({m}^{2}-2\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}{B}_{9}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{1-\delta \eta }{\alpha \left(2-{m}^{2}\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{dn}\left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2-{m}^{2}\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
When m → 1, then equation (63) is converted to:
$\begin{eqnarray}\begin{array}{l}{A}_{10}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left({m}^{2}-2\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha \left({m}^{2}-2\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{10}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{1-\delta \eta }{\alpha \left(2-{m}^{2}\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,{\rm{sech}} \left(p({qx}-{ct})\sqrt{\displaystyle \frac{1-\delta \eta }{\alpha \left(2-{m}^{2}\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
Using equation (57) along with equation (32) of [50] in equation (43) we get
$\begin{eqnarray*}\begin{array}{l}{A}_{11}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{{m}^{2}(\delta \eta -1)}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{sn}\left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray*}$
$\begin{eqnarray}\begin{array}{l}{B}_{11}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{{m}^{2}(1-\delta \eta )}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\mathrm{sn}\left(p({qx}-{ct})\sqrt{-\displaystyle \frac{1-\delta \eta }{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
When m → 0, then equation (66) is converted to:
$\begin{eqnarray}\begin{array}{l}{A}_{12}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{\displaystyle \frac{{m}^{2}(\delta \eta -1)}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\sin \left(p({qx}-{ct})\sqrt{\displaystyle \frac{\delta \eta -1}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}}}\right),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{12}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\sqrt{-\displaystyle \frac{{m}^{2}(1-\delta \eta )}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}Q}}\\ \quad \times \,\sin \left(p({qx}-{ct})\sqrt{-\displaystyle \frac{1-\delta \eta }{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}}}\right).\end{array}\end{eqnarray}$
provided that $\tfrac{\alpha Q}{\eta }\lt 0,\tfrac{{m}^{2}(1-\delta \eta )}{\alpha \left({m}^{2}+1\right){p}^{2}{q}^{2}Q}\lt 0.$
Type 4. Putting J = H = Q = 0 in equation (44) we attain
$\begin{eqnarray}\mu =\mu ,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (69) along with equation (33) of [50] in equation (43) we get the bright soliton solution of equation (1) as
$\begin{eqnarray}{A}_{13}(x,t)=\displaystyle \frac{\mu (\delta \eta -1){{\rm{sech}} }^{2}\left(\tfrac{p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}}{\sqrt{2}}\right)}{\alpha {{Mp}}^{2}{q}^{2}},\end{eqnarray}$
$\begin{eqnarray}{B}_{13}(x,t)=-\displaystyle \frac{\eta \mu (1-\delta \eta ){{\rm{sech}} }^{2}\left(\tfrac{p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}}{\sqrt{2}}\right)}{\alpha {{Mp}}^{2}{q}^{2}}.\end{eqnarray}$
Using equation (69) along with equation (34) of [50] in equation (43) we get the periodic solution of equation (1) as
$\begin{eqnarray}{A}_{14}(x,t)=\displaystyle \frac{\mu (\delta \eta -1){\sec }^{2}\left(\tfrac{p({qx}-{ct})\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}}{\sqrt{2}}\right)}{\alpha {{Mp}}^{2}{q}^{2}},\end{eqnarray}$
$\begin{eqnarray}{B}_{14}(x,t)=-\displaystyle \frac{\eta \mu (1-\delta \eta ){\sec }^{2}\left(\tfrac{p({qx}-{ct})\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}}{\sqrt{2}}\right)}{\alpha {{Mp}}^{2}{q}^{2}}.\end{eqnarray}$
Type 5. Putting L = Q = 0 in equation (44) we attain
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2\beta }{H\alpha }\displaystyle \frac{1}{{pq}}},\,\,\,\,\,\,\,\,\eta =\displaystyle \frac{1}{\delta }.\end{eqnarray}$
Using equation (74) along with equation (36) of [50] in equation (43) we get various Weierstrass elliptic solutions of equation (1) as
$\begin{eqnarray}{A}_{15}(x,t)=\displaystyle \frac{\sqrt{2}\sqrt{-\tfrac{\beta }{\alpha H}}\wp \left(\tfrac{1}{2}\sqrt{M}p({qx}-{ct}),\tfrac{4H}{M},0\right)}{{pq}},\end{eqnarray}$
$\begin{eqnarray}{B}_{15}(x,t)=\displaystyle \frac{\sqrt{2}\eta \sqrt{-\tfrac{\beta }{\alpha H}}\wp \left(\tfrac{1}{2}\sqrt{M}p({qx}-{ct}),\tfrac{4H}{M},0\right)}{{pq}}.\end{eqnarray}$
provided that pq ≠ 0 , $\tfrac{\beta }{H\alpha }\lt 0.$
Putting H = M = 0 in equation (44) we attain
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2Q\alpha }{\eta }}{pq},\,\,\,\,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (77) along with equation (37) of [50] in equation (43) we get more Weierstrass elliptic solutions of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{16}(x,t)=\sqrt{2}{pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\\ \times \sqrt{\displaystyle \frac{\delta \eta -1}{3\alpha {p}^{2}{q}^{2}}+\displaystyle \frac{\wp \left(p({qx}-{ct}),\tfrac{4{\left(\delta \eta -1\right)}^{2}}{3{p}^{4}{q}^{4}{\alpha }^{2}},-\tfrac{8{\left(\delta \eta -1\right)}^{3}}{27{p}^{6}{q}^{6}{\alpha }^{3}}\right)}{Q}},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{16}(x,t)=\sqrt{2}\eta {pq}\sqrt{-\displaystyle \frac{\alpha Q}{\eta }}\\ \times \sqrt{\displaystyle \frac{\wp \left(p({qx}-{ct}),\tfrac{4{\left(1-\delta \eta \right)}^{2}}{3{p}^{4}{q}^{4}{\alpha }^{2}},\tfrac{8{\left(1-\delta \eta \right)}^{3}}{27{p}^{6}{q}^{6}{\alpha }^{3}}\right)}{Q}-\displaystyle \frac{1-\delta \eta }{3\alpha {p}^{2}{q}^{2}}}.\end{array}\end{eqnarray}$
Using equation (77) along with equation (41) of [50] in equation (43) we get
$\begin{eqnarray}{A}_{17}(x,t)=\displaystyle \frac{3\sqrt{2}\alpha {p}^{3}{q}^{3}\sqrt{\tfrac{1}{Q}}\sqrt{-\tfrac{\alpha Q}{\eta }}\wp ^{\prime} \left(p({qx}-{ct}),\tfrac{{\left(\delta \eta -1\right)}^{2}}{12{p}^{4}{q}^{4}{\alpha }^{2}},0\right)}{-\delta \eta +6\alpha {p}^{2}{q}^{2}\wp \left(p({qx}-{ct}),\tfrac{{\left(\delta \eta -1\right)}^{2}}{12{p}^{4}{q}^{4}{\alpha }^{2}},0\right)+1},\end{eqnarray}$
$\begin{eqnarray}{B}_{17}(x,t)=\displaystyle \frac{3\sqrt{2}\eta {pq}\sqrt{\tfrac{1}{Q}}\sqrt{-\tfrac{\alpha Q}{\eta }}\wp ^{\prime} \left(p({qx}-{ct}),\tfrac{{\left(1-\delta \eta \right)}^{2}}{12{p}^{4}{q}^{4}{\alpha }^{2}},0\right)}{6\wp \left(p({qx}-{ct}),\tfrac{{\left(1-\delta \eta \right)}^{2}}{12{p}^{4}{q}^{4}{\alpha }^{2}},0\right)+\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}.\end{eqnarray}$
provided that $\tfrac{\alpha Q}{\eta }\lt 0$ , Q > 0.
Using equation (77) with the condition $J=\tfrac{5{L}^{2}}{36Q}$ along with equation (42) of [50] in equation (43) we get
$\begin{eqnarray}{A}_{18}(x,t)=\displaystyle \frac{\sqrt{15}{pq}(\delta \eta -1)\sqrt{-\tfrac{\alpha Q}{\eta }}\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}Q}}\wp \left(p({qx}-{ct}),\tfrac{2{\left(\delta \eta -1\right)}^{2}}{9{p}^{4}{q}^{4}{\alpha }^{2}},-\tfrac{{\left(\delta \eta -1\right)}^{3}}{54{p}^{6}{q}^{6}{\alpha }^{3}}\right)}{\delta \eta -3\alpha {p}^{2}{q}^{2}\wp \left(p({qx}-{ct}),\tfrac{2{\left(\delta \eta -1\right)}^{2}}{9{p}^{4}{q}^{4}{\alpha }^{2}},-\tfrac{{\left(\delta \eta -1\right)}^{3}}{54{p}^{6}{q}^{6}{\alpha }^{3}}\right)-1},\end{eqnarray}$
$\begin{eqnarray}{B}_{18}(x,t)=\displaystyle \frac{\sqrt{15}\eta (1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}Q}}\wp \left(p({qx}-{ct}),\tfrac{2{\left(1-\delta \eta \right)}^{2}}{9{p}^{4}{q}^{4}{\alpha }^{2}},\tfrac{{\left(1-\delta \eta \right)}^{3}}{54{p}^{6}{q}^{6}{\alpha }^{3}}\right)}{\alpha {pq}\left(\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}+3\wp \left(p({qx}-{ct}),\tfrac{2{\left(1-\delta \eta \right)}^{2}}{9{p}^{4}{q}^{4}{\alpha }^{2}},\tfrac{{\left(1-\delta \eta \right)}^{3}}{54{p}^{6}{q}^{6}{\alpha }^{3}}\right)\right)}.\end{eqnarray}$
Type 6. Putting $J=H=0,Q=\tfrac{{M}^{2}}{4L}-L$ in equation (44) we obtain
$\begin{eqnarray}\mu =\mu ,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (84) along with equation (43) of [50] in equation (43) we get different positive solutions of equation (1) as
$\begin{eqnarray}{A}_{19}(x,t)=\displaystyle \frac{2\mu (\delta \eta -1)}{p\left(\alpha {{pq}}^{2}\sqrt{\tfrac{4{\left(\delta \eta -1\right)}^{2}+2(\eta -1)\eta {\mu }^{2}}{\alpha {p}^{2}{q}^{2}}}+2({qx}-{ct})\cosh (\delta \eta -1)\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)},\end{eqnarray}$
$\begin{eqnarray}{B}_{19}(x,t)=\displaystyle \frac{\eta \mu }{p({qx}-{ct})\cosh \sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}-\tfrac{\alpha {p}^{2}{q}^{2}\sqrt{\tfrac{4{\delta }^{2}{\eta }^{2}-8\delta \eta +2{\eta }^{2}{\mu }^{2}-2\eta {\mu }^{2}+4}{\alpha {p}^{2}{q}^{2}}}}{2(1-\delta \eta )}}.\end{eqnarray}$
provided that $\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}\gt 0$, $\tfrac{4{\delta }^{2}{\eta }^{2}-8\delta \eta +2{\eta }^{2}{\mu }^{2}-2\eta {\mu }^{2}+4}{\alpha {p}^{2}{q}^{2}}\gt 0$.
Putting $J=H=0,M=-2\sqrt{{LQ}}$ in equation (44) we obtain
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2Q\alpha }{\eta }}{pq},\,\,\,\,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (87) along with equation (44) of [50] in equation (43) we get
$\begin{eqnarray}{A}_{20}(x,t)=\displaystyle \frac{{pq}\sqrt{-\tfrac{\alpha Q}{\eta }}\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}Q}}\left(\epsilon \tanh \left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)+1\right)}{\sqrt{2}},\end{eqnarray}$
$\begin{eqnarray}{B}_{20}(x,t)=\displaystyle \frac{\eta {pq}\sqrt{-\tfrac{\alpha Q}{\eta }}\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}Q}}\left(\epsilon \tanh \left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)+1\right)}{\sqrt{2}}.\end{eqnarray}$
given that $\tfrac{\alpha Q}{\eta }\lt 0,\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}Q}\gt 0.$
Putting J = H = 0, L = 0, M = 1 in equation (44) we obtain
$\begin{eqnarray}\mu =\mu ,\,\,\,\,\,\,\,\,\,\,\,\,\eta =\displaystyle \frac{1}{\delta },\,\,\,\,\,\,\,\,\,\,\,\,Q=\displaystyle \frac{-{\mu }^{2}}{2{p}^{2}{q}^{2}\alpha \delta },\end{eqnarray}$
Using equation (87) along with equation (45) of [50] in equation (43) we get
$\begin{eqnarray}{A}_{21}(x,t)=\displaystyle \frac{4\alpha \delta \mu {p}^{2}{q}^{2}}{2{\mu }^{2}+\alpha \delta {p}^{4}{q}^{2}{\left({qx}-{ct}\right)}^{2}},\end{eqnarray}$
$\begin{eqnarray}{B}_{21}(x,t)=\displaystyle \frac{\eta \mu }{\tfrac{{\mu }^{2}}{2\alpha \delta {p}^{2}{q}^{2}}+\tfrac{{p}^{2}{\left({qx}-{ct}\right)}^{2}}{4}}.\end{eqnarray}$
Type 7. Substituting J = H = 0 in equation (44) we have
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2Q\alpha }{\eta }}{pq},\,\,\,\,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (93) along with equation (46) of [50] in equation (43) we obtain the hyperbolic function solutions of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{22}(x,t)\\ \,=\,\displaystyle \frac{2\sqrt{2}(1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{{\rm{sech}} }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}-M\right){{\rm{sech}} }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)-2\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{22}(x,t)\\ =\displaystyle \frac{2\sqrt{2}\eta (1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{{\rm{sech}} }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}-M\right){{\rm{sech}} }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)-2\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}\right)}.\end{array}\end{eqnarray}$
Using equation (93) along with equation (47) of [50] in equation (43) we attain
$\begin{eqnarray}\begin{array}{l}{A}_{23}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}(1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\mathrm{csch}}^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}-M\right){\mathrm{csch}}^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)+2\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{23}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}\eta (1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\mathrm{csch}}^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}-M\right){\mathrm{csch}}^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)+2\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}\right)}.\end{array}\end{eqnarray}$
provided that $\tfrac{\alpha Q}{\eta }\lt 0,\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}Q}\gt 0,{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}\gt 0.$
Type 8. Substituting J = H = 0 in equation (44) we have
$\begin{eqnarray}\mu =\sqrt{\displaystyle \frac{-2Q\alpha }{\eta }}{pq},\,\,\,\,\,\,\,\,\,\,\,\,L=\displaystyle \frac{1-\delta \eta }{{p}^{2}{q}^{2}\alpha }.\end{eqnarray}$
Using equation (98) along with equation (48) of [50] in equation (43) we obtain the periodic solutions of equation (1) as
$\begin{eqnarray}\begin{array}{l}{A}_{24}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}(1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\sec }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}-M\right){\sec }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right)-2\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{24}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}\eta (1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\sec }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}-M\right){\sec }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)-2\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}\right)}.\end{array}\end{eqnarray}$
Using equation (98) along with equation (49) of [50] in equation (43) we attain
$\begin{eqnarray}\begin{array}{l}{A}_{25}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}(1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\csc }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left(\left(\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}-M\right){\csc }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{\tfrac{\delta \eta -1}{\alpha {p}^{2}{q}^{2}}}\right)-2\sqrt{{M}^{2}+\tfrac{4Q(\delta \eta -1)}{\alpha {p}^{2}{q}^{2}}}\right)},\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{B}_{25}(x,t)\\ \,=\displaystyle \frac{2\sqrt{2}\eta (1-\delta \eta )\sqrt{-\tfrac{\alpha Q}{\eta }}{\csc }^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)}{\alpha {pq}\left({{\csc }}^{2}\left(\tfrac{1}{2}p({qx}-{ct})\sqrt{-\tfrac{1-\delta \eta }{\alpha {p}^{2}{q}^{2}}}\right)\left(\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}-M\right)-2\sqrt{{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}}\right)}.\end{array}\end{eqnarray}$
provided that $\tfrac{\alpha Q}{\eta }\lt 0,{M}^{2}-\tfrac{4Q(1-\delta \eta )}{\alpha {p}^{2}{q}^{2}}\gt 0.$

6. Graphical Representation

The graphical representation of the SS system is given below by 3D, 2D, and contour plots.

7. Result and discussions

Many authors have worked on the SS diffusion-reaction system. Li et al analyzed the SS diffusion-reaction system for the stability and instability of constant steady-state solutions [51]. Al Noufaey discovered the semi-analytical solutions of the SS system by the Glarekin approach [52]. Iqbal et al explored the soliton solutions of the SS model [42]. Uecker and Wetzel proved the existence of various spatial patterns of the SS system [53]. In this paper, we have utilized LSA to find the infinitesimal generators and symmetries of the SS system represented by equation (1). Next, its nonlinear self adjointness has been discussed. Moreover, the sub-ODE method is used to find soliton solutions of the model. Bright and periodic soliton solutions are shown by A1(x, t), B1(x, t), A13(x, t), B13(x, t), A2(x, t), B2(x, t), A5(x, t), B5(x, t), A14(x, t), B14(x, t), A24(x, t), B24(x, t) and A25(x, t), B25(x, t), respectively (figures 110). A4(x, t) and B4(x, t) present the dark soliton solutions and their graphical representation is given in figures 4 and 5 and JES solutions are represented by A6(x, t), B6(x, t), A7(x, t), B7(x, t), A8(x, t), B8(x, t), A9(x, t), B9(x, t), A10(x, t), B10(x, t), A11(x, t), B11(x, t), A12(x, t) and B12(x, t) and graphically by figures 812. Weierstrass elliptic solutions are presented by A15(x, t), B15(x, t), A16(x, t), B16(x, t), A17(x, t), B17(x, t), A18(x, t) and B18(x, t) and from figures 1317. Hyperbolic function solutions are given by A22(x, t), B22(x, t) and A23(x, t), B23(x, t) and graphically by figures 18 and 19. The governing model has positive solutions shown by A19(x, t), B19(x, t), A20(x, t), B20(x, t), A21(x, t) and B21(x, t) and graphically by figures 20 and 21.
Figure 1. Numerical graphs of solution A1(x, t) for suitable parameters α = 0.5, c = 3, δ = 1, η = 0.5, p = 3, q = 2, Q = − 0.5.
Figure 2. Numerical graphs of solution A2(x, t) for suitable parameters α = 0.5, c = 3, δ = 1, η = 0.5, p = 3, q = 2, Q = 0.5.
Figure 3. Numerical graphs of solution A3(x, t) for suitable parameters α = 0.5, c = 3, δ = 1, η = − 0.5, p = 3, q = 2, Q = 0.5, ε = 0.01.
Figure 4. Numerical graphs of solution B4(x, t) for suitable parameters α = 2, c = − 3, δ = 0.5, η = 1, p = 2, q = 2, Q = − 3, ε = 0.01.
Figure 5. Numerical graphs of solution B5(x, t) for suitable parameters α = 2, c = − 3, δ = 0.5, η = − 2, p = 5, q = 4, Q = 3, ε = 0.01.
Figure 6. Numerical graphs of solution A7(x, t) for suitable parameters α = 0.5, c = 3, δ = 0, η = 3, m = 1, p = 2, q = 2, Q = 4.
Figure 7. Numerical graphs of solution A10(x, t) for suitable parameters α = − 2, c = 3, δ = 0, η = 3, m = 1, p = 5, q = 2, Q = 0.5.
Figure 8. Numerical graphs of solution A12(x, t) for suitable parameters α = 2, c = − 5, δ = 2, η = 3, m = 1, p = 1, q = 2, Q = 0.5.
Figure 9. Numerical graphs of solution B13(x, t) for suitable parameters α = 2, c = − 1, δ = 0, η = 2, μ = 1, M = − 4, p = 3, q = 2.
Figure 10. Numerical graphs of solution B14(x, t) for suitable parameters μ = 1, α = 2, c = − 1, δ = 0.5, η = 4, M = 4, p = 3, q = 1.
Figure 11. Numerical graphs of solution A15(x, t) for suitable parameters δ = 0.5, α = − 3, β = 2, c = 3, η = 2, H = 1, M = 4, p = 3, q = 2.
Figure 12. Numerical graphs of solution B16(x, t) for suitable parameters α = − 3, c = 2, δ = 0, η = 2, p = 1, q = 1, Q = 3.
Figure 13. Numerical graphs of solution B17(x, t) for suitable parameters α = − 3, c = 2, δ = 6, η = 2, p = 1, q = 4, Q = 3.
Figure 14. Numerical graphs of solution A18(x, t) for suitable parameters α = 5, c = 2, δ = 1, η = − 2, p = 1, q = 1, Q = 3.
Figure 15. Numerical graphs of solution B19(x, t) for suitable parameters α = 5, c = 25, δ = 15, η = 20, μ = 10, p = 10, q = 10.
Figure 16. Numerical graphs of solution B20(x, t) for suitable parameters α = 5, c = 2, δ = 1, η = − 4, μ = 2, p = 1, q = 1, Q = 5, ε = 1.
Figure 17. Numerical graphs of solution B21(x, t) for suitable parameters α = 5c = − 2, δ = 0.25, η = 4, μ = 2, p = 1, q = 1.
Figure 18. Numerical graphs of solution A22(x, t) for suitable parameters α = 2.5, c = 3, δ = 0, η = 2, μ = 0.5, M = 2, p = 1, q = 1, Q = 1.
Figure 19. Numerical graphs of solution A23(x, t) for suitable parameters α = 5, c = 2, δ = 0, η = − 4, μ = 1, M = 4, p = 1, q = 1, Q = 1.
Figure 20. Numerical graphs of solution B24(x, t) for suitable parameters α = − 2.5, c = − 2, δ = 1, η = 2, M = 1, p = 1, q = 1, Q = 2.
Figure 21. Numerical graphs of solution B25(x, t) for suitable parameters α = − 3, c = 3, δ = 0, η = 3, M = 4, p = 1, q = 1, Q = 2.

8. Concluding remarks

In this paper, the SS system has been discussed by LSA. We have explored the Lie point symmetries, infinitesimal generators, and the nonlinear SA and CLs of the SS system. Several soliton solutions like bright, dark solitons, periodic solitons, bell, kink shaped, Weierstrass elliptic function solutions, Jacobi, and Hyperbolic are developed for the above model by using the sub-ODE method with the help of Mathematica. A graphical representation is given for all the solutions evaluated in the paper.
1
Harris F E 2014 Partial differential equations Math. Physical Sci. Eng. New York Academic Press

2
Li X Wang L Zhou Z Chen Y Yan Z 2022 Stable dynamics and excitations of single- and double-hump solitons in the Kerr nonlinear media with PT-symmetric HHG potentials Nonlinear Dyn. 108 4045 4056

DOI

3
Li X Chen Y Yan Z 2018 Fundamental solitons and dynamical analysis in the defocusing Kerr medium and PT-symmetric rational potential Nonlinear Dyn. 91 853 861

DOI

4
Liu J-G Yang X-J Geng L-L Yu X-J 2022 On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation Int. J. Geom. Meth. Mod. Phys. 19 2250173

DOI

5
Liu J-G Zhang Y-F Wang J-J 2023 Investigation of the time fractional generalized (2+1)-dimensional Zakharov–Kuznetsov equation with single-power law nonlinearity Fractals 31 2350033

DOI

6
Ahmed M T Khan K Akbar M A 2013 Study of nonlinear evolution equations to construct traveling wave solutions via modified simple equation method Phys. Rev. Res. Int. 3 490 503

7
Shami A M A Syed T R R Aly R S 2023 Study of stochastic-fractional Drinfel’d–Sokolov–Wilson equation for M-shaped rational, homoclinic breather, periodic and kink-cross rational solutions Mathematics 11 1504

DOI

8
Ahmad H Seadawy A R Khan T A 2020 Numerical solution of Korteweg-de Vries–Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves Phys. Scr. 95 045210

DOI

9
Seadawy A R Iqbal M Lu D 2020 Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma Physica A 544 123560

DOI

10
Seadawy A R Rizvi S T R Ahmad S Younis M Baleanu D 2021 Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation Open Phys. 19 1 10

DOI

11
Seadawy A R Kumar D Chakrabarty A K 2018 Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrodinger equations via the extended sinh-Gordon equation expansion method Eur. Phys. J. Plus 133 1 12

DOI

12
Ablowitz M J Clarkson P A 1990 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform Cambridge Cambridge University Press

13
Matveev V B Salle M A 1991 Darboux Transformations and Solitons Berlin Springer

14
Hirota R 2004 Direct Methods in Soliton Theory Berlin Springer

15
Olver P 1993 Applications of Lie Groups to Differential Equations Berlin Springer

16
Mao J J Tiana S F Zhangb T T Yanc X J 2020 Lie symmetry analysis, conservation laws and analytical solutions for chiral nonlinear Schrödinger equation in (2 + 1)-dimensions Nonlinear Anal.: Model. Control 25 358 377

17
Al-Nassar S K 2016 Lie symmetries and partial differential equations (PDEs) J. Thi-Qar Univ. 11

DOI

18
Ibragimov N H 2007 A new conservation theorem J. Math. Anal. Appl. 333 311 328

DOI

19
Lukashchuk S Y 2015 Conservation laws for time-fractional subdiffusion and diffusion-wave equations Nonlinear Dyn. 80 791 802

DOI

20
Yakut A 2012 Conservation laws for partial differential equations Master's thesis Eskisehir Osmangazi University

21
Naz R Mahomed F M Mason D P 2008 Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics Appl. Math. Comput. 205 212 230

DOI

22
Baleanu D Yusuf A Aliyu A I 2018 Optimal system, nonlinear self-adjointness and conservation laws for generalized shallow water wave equation Open Phys. 16 364 370

DOI

23
Zhang Z Y 2017 Conservation laws of partial differential equations: symmetry, adjoint symmetry and nonlinear self-adjointness Comput. Math. Appl. 74 3129 3140

DOI

24
Hussain A Bano S Khan I Baleanu D Nisar K S 2020 Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers-Huxley equation Symmetry 12 170

DOI

25
Rashidi S Hejazi S R 2018 Lie symmetry approach for the Vlasov-Maxwell system of equations J. Geom. Phys. 132 1 12

DOI

26
El Bahi M I Hilal K 2021 Lie symmetry analysis, exact solutions, and conservation laws for the generalized time-fractional KdV-like equation J. Funct. Spaces 2021 6628130

DOI

27
Liu J G Yang X J Feng Y Y Zhang H Y 2020 On the generalized time fractional diffusion equation, symmetry analysis, conservation laws, optical system and exact solutions Int. J. Geom. Meth. Mod. Phys. 17 2050013

DOI

28
Seadawy A R 2015 Approximation solutions of derivative nonlinear Schrodinger equation with computational applications by variational method Eur. Phys. J. Plus 130 1 10

29
Seadawy A R 2014 Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma Comp. Math. Appl. 67 172 180

DOI

30
Seadawy A R 2016 Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries–Zakharov–Kuznetsov equation in a magnetized electron-positron plasma Physica A 455 44 51

DOI

31
Çelik N Seadawy A R Özkan Y S Yasar E 2021 A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws Chaos, Solitons Fractals 143 110486

DOI

32
Shah K Seadawy A R Arfan M 2020 Evaluation of one dimensional fuzzy fractional partial differential equations Alexandria Eng. J. 59 3347 3353

DOI

33
Ibragimov N I 2011 Nonlinear self-adjointness and conservation laws J. Phys. A: Math. Theor. 44 432002

DOI

34
Seadawy A R Rizvi S T R Ahmed S Bashir A 2022 Lump solutions, Kuznetsov-Ma breathers, rogue waves and interaction solutions for magneto electro-elastic circular rod Chaos, Solitons Fractals 163 112563

DOI

35
Bashir A Seadawy A R Ahmed S Rizvi S T R 2022 The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation Chaos, Solitons Fractals 163 112538

DOI

36
Aziz N Seadawy A R Raza U Ali K Rizvi S T R 2022 Chirped optical pulses for generalized longitudinal Luglato Lefever: cubic nonlinear Schrödinger equation Opt. Quantum Electron. 54 649

DOI

37
Seadawy A R Rizvi S T R Akram U Naqvi S K 2022 Optical and analytical solitons to higher order non-Kerr nonlinear Schrödinger dynamical model J. Geom. Phys. 179 104616

DOI

38
Seadawy A R Ahmed S Rizvi S T R 2022 Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: applications in nuclear reactor theory Chaos, Solitons Fractals 161 112326

DOI

39
Aziz N Seadawy A R Ali K Sohail M Rizvi S T R 2022 The nonlinear Schrödinger equation with polynomial law nonlinearity: localized chirped optical and solitary wave solutions Opt. Quantum Electron. 54 458

DOI

40
Rizvi S T R Seadawy A R Younis M Ali I Althobaiti S Mahmoud S F 2021 Soliton solutions, painleve analysis and conservation laws for a nonlinear evolution equation Res. Phys. 23 103999

DOI

41
Turing A 1952 The chemical basis of morphogenesis Philos. Trans. R. Soc. 237B 37 72

42
Iqbal M S Seadawy A R Baber M Z 2022 Demonstration of unique problems from Soliton solutions to nonlinear Selkov–Schnakenberg system Chaos Solitons Fractals 162 112485

DOI

43
Sel’kov E E 1986 Self-oscillations in glycolysis Eur. J. Biochem. 4 79 86

44
Schnakenberg J 1979 Simple chemical reaction systems with limit cycle behaviour J. Theor. Biol. 81 389 400

DOI

45
Göktas Ü Hereman W 2011 Symbolic computation of conservation laws, generalized symmetries, and recursion operators for nonlinear differential-difference equations Dynamical Systems and Methods Berlin Springer 153 168

46
Hereman W 1998 Lie symmetry analysis with symbolic software Encyclopedia of Mathematics, Supplement Hazewinkel M Dordrecht Kluwer Vol. 1 351 355

47
Dimas S Tsoubelis D 2005 SYM: a new symmetry-finding package for mathematica The X Int. Conf. in Modern Group Analysis Ibragimov N H Sophocleous C Damianou P A University of Cyprus 64 70

48
Tchier F Yusuf A Aliyu A I Inc M 2017 Soliton solutions and conservation laws for lossy nonlinear transmission line equation Superlattices Microstruct. 107 320 336

DOI

49
Baleanua D Inc M Yusufc A Aliyuc A I 2017 Optical solitons, nonlinear self-adjointness and conservation laws for Kundu–Eckhaus equation Chin. J. Phys. 55 2341 2355

DOI

50
Zayed E M E Alngar M E M Biswas A Triki H Yidlrim Y Alshomrani A S 2020 Chirped and chirp free optical solitons in fiber Bragg gratings with dispersive reflectivity having quadratic cubic nonlinearity by sub-ODE approach Optik 203 163993

DOI

51
Lia B Wanga F Zhangb X 2018 Analysis on a generalized Sel’kov–Schnakenberg reaction-diffusion system Nonlinear Anal. Real World Appl. 44 537 558

52
Al Noufaey K S 2021 Stability analysis for Selkov–Schnakenberg reaction-diffusion system Open Math. 19 46 62

DOI

53
Uecker H Wetzel D 2014 Numerical results for snaking of patterns over patterns in some 2D Selkov–Schnakenberg reaction-diffusion systems SIAM J. Appl. Dyn. Syst. 13

DOI

Outlines

/