Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schrödinger equation

  • Si-Jia Chen , 1 ,
  • Xing Lü , 2, 3,
Expand
  • 1College of Science, Tianjin University of Technology, Tianjin 300384, People's Republic of China
  • 2Department of Mathematics, Beijing Jiaotong University, Beijing 100044, People's Republic of China
  • 3Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China

Author to whom any correspondence should be addressed.

Received date: 2023-11-13

  Revised date: 2024-01-07

  Accepted date: 2024-01-30

  Online published: 2024-02-27

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

Based on the long wave limit method, the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schrödinger equation are given by introducing some arbitrary parameters. The interaction solutions between the first-order rogue wave and one-breather wave are constructed by taking a long wave limit on the two-breather solutions. By applying the same method to the three-breather solutions, two types of interaction solutions are obtained, namely the first-order rogue wave and two breather waves, the second-order rogue wave and one-breather wave, respectively. The influence of the parameters related to the phase on the interaction phenomena is graphically demonstrated. Collisions occur among the rogue waves and breather waves. After the collisions, the shape of them remains unchanged. The abundant interaction phenomena in this paper will contribute to a better understanding of the propagation and control of nonlinear waves.

Cite this article

Si-Jia Chen , Xing Lü . Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schrödinger equation[J]. Communications in Theoretical Physics, 2024 , 76(3) : 035003 . DOI: 10.1088/1572-9494/ad23d1

1. Introduction

Rogue waves are also known as monster waves, abnormal waves, giant waves and so on [1]. In oceanography, a rogue wave is described as a strange and large wave that appears suddenly [2]. A considerable number of maritime disasters are caused by rogue waves [3]. More recently, the concept of rogue waves has been extended to many fields, such as optical fibres, Bose-Einstein condensates, finance and superfluids [4-9]. Mathematically, the focusing nonlinear Schrödinger (NLS) equation is the classical model for the description of the generation mechanism of rogue waves [10]. In 1983, Peregrine derived the first-order rogue wave solution to an NLS equation (called Peregrine breather) [11]. The Peregrine breather, localized in both time and space, can approach a nonzero constant background when time goes to ± ∞. Moreover, the rogue wave can also be line-shaped. The line rogue wave arises from the constant background and then returns to the original background [12, 13]. Up to now, the rogue wave solutions to various nonlinear equations in the form of determinants have been studied by the bilinear method, such as the NLS equation [14], the Davey-Stewartson II equation [15], the NLS-Boussinesq equation [16] and the (1+1)-dimensional Yajima-Oikawa system [17]. The Darboux transformation and generalized Darboux transformation are also effective approaches to investigate rogue wave solutions to nonlinear equations, such as the NLS equation [18], the Hirota equation [18], the Gerdjikov-Ivanov equation [19] and the (2+1)-dimensional derivative NLS equation [20].
The breather wave, which is a pulsating wave, has also attracted much attention [21, 22]. The Kuznetsov-Ma breather (KMB) and Akhmediev breather (AB) are periodic in time and space, respectively [23]. The Peregrine breather, which is not periodic in time or space, can be regarded as the infinite-period limit of the KMB and AB [24]. Rogue wave solutions can be generated as a long wave limit of breather solutions [25-28]. One can obtain breather solutions by taking complex conjugation of wave numbers of multi-soliton solutions [29]. In addition, breather solutions to some nonlinear equations with bilinear forms have been constructed by virtue of the extended homoclinic test approach, such as the modified Korteweg-de Vries equation [30], the (2+1)-dimensional Boussinesq equation [31], the (1+1)-dimensional Sinh-Poisson equation [32] and a (2+1)-dimensional generalized breaking soliton equation [33].
The exploration of interaction phenomena among different localized waves can reveal rich structure and evolution characteristics of waves [34-41]. The interaction between rogue waves and breather waves is a hot topic. For the Manakov system, one-rogue-one-breather solutions have been derived by reconstructing the Darboux transformation [42]. Inelastic and semi-elastic collisions occur between the two types of waves for this system. The rogue wave cannot pass through the breather wave during the collision [42]. For the (2+1)-dimensional NLS equation, the one-rogue-one-breather solutions have been generated from the four-soliton solutions via the long wave limit method [43]. The rogue wave can pass through the breather wave over time. After the collision, the shape and velocity of them remain unchanged [43].
In this paper, we consider the focusing NLS equation [44]
$\begin{eqnarray}{\rm{i}}{u}_{t}+{u}_{{xx}}+| u{| }^{2}u=0,\end{eqnarray}$
where i is an imaginary unit and u = u(x, t). Equation (1) can be regarded as a universal model which describes the propagation of waves in some physical systems, such as plasma, Bose-Einstein condensation, optics and deep water [45]. It plays a vital role in understanding the physical analogy and difference in the nonlinear behavior of dispersive waves [46]. Equation (1) possesses N-envelope-soliton solutions satisfying the boundary condition u → 0 when ∣x∣ → ∞ [47]. High-order rogue waves to equation (1) have been obtained by virtue of several methods, such as the generalized Darboux transformation [18, 48], Kadomtsev-Petviashvili (KP) hierarchy reduction [14, 49] and the long wave limit method [26]. It has been shown that equation (1) has N-breather solutions through the Hirota transformation [47]. The interaction phenomena between the rogue wave and breather wave have been investigated based on the generalized Darboux transformation [50].
Inspired by the long wave limit method in [26], we will introduce some arbitrary parameters to the second-order and third-order rogue wave solutions to equation (1), the result will be more general than that in [26]. The interaction solutions among rogue waves and breather waves will be constructed by virtue of the long wave limit method for the first time. Compared with the interaction solutions obtained by the generalized Darboux transformation [50], collisions occur among the rogue waves and breather waves when choosing and controlling the parameters related to the phase in this paper. The advantage of this technique compared with other approaches is that it provides an efficient and convenient approach to quickly get rogue wave and rogue-breather solutions to some nonlinear equations.
The rest of this paper is organized as follows. The second-order and third-order rogue wave solutions to equation (1) will be constructed via the long wave limit method in section 2. Three types of interaction phenomena will be discussed in section 3: (i) the first-order rogue wave and one-breather wave, (ii) the first-order rogue wave and two-breather waves, (iii) the second-order rogue wave and one-breather wave. Some conclusions will then be given in section 4.

2. Rogue wave solutions

The N-breather solutions to equation (1) can be written as follows
$\begin{eqnarray}\begin{array}{l}u=\exp ({\rm{i}}\theta )\displaystyle \frac{g}{f},\\ \theta =\sigma x-({\sigma }^{2}-1)t,\\ g=\displaystyle \sum _{\mu =0,1}\exp \left[\displaystyle \sum _{1\leqslant i\lt j\leqslant 2N}{\mu }_{i}{\mu }_{j}{A}_{{ij}}+\displaystyle \sum _{l=1}^{2N}{\mu }_{l}({\eta }_{l}+2{\rm{i}}{\phi }_{l})\right],\\ f=\displaystyle \sum _{\mu =0,1}\exp \left[\displaystyle \sum _{1\leqslant i\lt j\leqslant 2N}{\mu }_{i}{\mu }_{j}{A}_{{ij}}+\displaystyle \sum _{l=1}^{2N}{\mu }_{l}{\eta }_{l}\right],\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{l}\exp ({A}_{{ij}})={\left[\displaystyle \frac{\sin \tfrac{1}{2}({\phi }_{i}-{\phi }_{j})}{\sin \tfrac{1}{2}({\phi }_{i}+{\phi }_{j})}\right]}^{2},\,\,\,\,1\leqslant i\lt j\leqslant 2N,\\ {\eta }_{l}=\sqrt{2}{\rm{i}}x\sin {\phi }_{l}-(2\sqrt{2}{\rm{i}}\sigma \sin {\phi }_{l}+2{\sin }^{2}{\phi }_{l}\cot {\phi }_{l})t+{\eta }_{l}^{0},\,\,\,\,l=1,2,\ldots ,2N,\\ {\phi }_{k}={\phi }_{k+N}^{* }+\pi ,\,\,{\eta }_{k}^{0}={\eta }_{k+N}^{0},\,\,\,\,k=1,2,\ldots ,N.\end{array}\end{eqnarray}$
where σ is a real constant, φk and ${\eta }_{k}^{0}$ are complex constants, and ∑μ=0,1 represents the summation over all combinations of μl = 0, 1 (l = 1, 2,…,2N).
To obtain the rogue wave solutions, we set ${c}_{l}=\exp ({\eta }_{l}^{0})\,(l=1,2,\ldots ,2N)$ and propose the following constraint conditions of parameters for equation (2) with N = 2
$\begin{eqnarray}\begin{array}{l}{\phi }_{1}={\omega }_{1}\varepsilon ,\,{\phi }_{2}={\omega }_{2}\varepsilon ,\,{\phi }_{3}={\omega }_{1}\varepsilon +\pi ,\,{\phi }_{4}={\omega }_{2}\varepsilon +\pi ,\\ {c}_{1}={c}_{3}={b}_{10}+{b}_{12}{\varepsilon }^{2}+{b}_{13}{\varepsilon }^{3},\,{c}_{2}={c}_{4}={b}_{20}+{b}_{22}{\varepsilon }^{2}+{b}_{23}{\varepsilon }^{3},\end{array}\end{eqnarray}$
where ω1, ω2, bi0, bi2 and bi3 (i = 1, 2) are real constants.
Based on the long wave limit method, f and g can be expanded as following series
$\begin{eqnarray}\begin{array}{l}f={f}^{(0)}+{f}^{(1)}\varepsilon +{f}^{(2)}{\varepsilon }^{2}+{f}^{(3)}{\varepsilon }^{3}+{f}^{(4)}{\varepsilon }^{4}+{f}^{(5)}{\varepsilon }^{5}+{f}^{(6)}{\varepsilon }^{6}+O({\varepsilon }^{7}),\\ g={g}^{(0)}+{g}^{(1)}\varepsilon +{g}^{(2)}{\varepsilon }^{2}+{g}^{(3)}{\varepsilon }^{3}+{g}^{(4)}{\varepsilon }^{4}+{g}^{(5)}{\varepsilon }^{5}+{g}^{(6)}{\varepsilon }^{6}+O({\varepsilon }^{7}),\end{array}\end{eqnarray}$
when ϵ → 0.
By solving {f(i) = 0, g(i) = 0, i = 0, 1,…,5}, the relation among ω1, ω2, bj0, bj2 and bj3 (j = 1, 2) is
$\begin{eqnarray}{b}_{10}=\displaystyle \frac{{\omega }_{1}+{\omega }_{2}}{{\omega }_{1}-{\omega }_{2}},\,{b}_{20}=-\displaystyle \frac{{\omega }_{1}+{\omega }_{2}}{{\omega }_{1}-{\omega }_{2}},\,{b}_{12}=\displaystyle \frac{{\omega }_{1}({\omega }_{1}{\omega }_{2}+{\omega }_{2}^{2}-6{b}_{22})}{6{\omega }_{2}},\,\end{eqnarray}$
and the rest of the parameters are arbitrary constants. Note that the relation in equation (6) is more general than that in [26] since ω1 and ω2 are arbitrary. By choosing parameters b22 = 1, b13 = 6, b23 = 0, ω1 = 2 and ω2 = − 1, the second-order rogue wave solutions to equation (1) are
$\begin{eqnarray}u=\exp \left[{\rm{i}}\sigma x-{\rm{i}}({\sigma }^{2}-1)t\right]\displaystyle \frac{{g}^{(6)}}{{f}^{(6)}},\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{l}{g}^{(6)}=\displaystyle \frac{64\,{t}^{6}}{9}-\displaystyle \frac{128\,{\rm{i}}}{3}{t}^{5}+\displaystyle \frac{1}{9}\left(-48\,{\psi }^{2}-528\right){t}^{4}+\displaystyle \frac{1}{9}\left(192\,{\rm{i}}{\psi }^{2}+576-192\,{\rm{i}}\right){t}^{3}\\ \,+\displaystyle \frac{1}{9}\left(12\,{\psi }^{4}+360\,{\psi }^{2}-468-1728{\rm{i}}\right){t}^{2}+\displaystyle \frac{1}{9}\left(-432+360\,{\rm{i}}-24\,{\rm{i}}{\psi }^{4}+\left(432-144\,{\rm{i}}\right){\psi }^{2}\right)t\\ \,+149+48\,{\rm{i}}-\displaystyle \frac{1}{9}{\psi }^{6}-{\psi }^{4}+\left(5-48\,{\rm{i}}\right){\psi }^{2},\\ {f}^{(6)}=\displaystyle \frac{64\,{t}^{6}}{9}+\displaystyle \frac{1}{9}\left(-48\,{\psi }^{2}+432\right){t}^{4}+64\,{t}^{3}+\displaystyle \frac{1}{9}\left(12\,{\psi }^{4}+72\,{\psi }^{2}+396\right){t}^{2}+\displaystyle \frac{1}{9}\left(432\,{\psi }^{2}+1296\right)t\\ \,-\displaystyle \frac{1}{9}{\psi }^{6}+\displaystyle \frac{1}{3}{\psi }^{4}-3\,{\psi }^{2}+145,\end{array}\end{eqnarray*}$
where $\psi =\sqrt{2}{\rm{i}}x-2\sqrt{2}{\rm{i}}\sigma t$.
To obtain the third-order rogue wave solutions to equation (1), we set the following constraint conditions of parameters for equation (2) with N = 3
$\begin{eqnarray}\begin{array}{l}{\phi }_{1}={\omega }_{1}\varepsilon ,\,{\phi }_{2}={\omega }_{2}\varepsilon ,\,{\phi }_{3}={\omega }_{3}\varepsilon ,\,{\phi }_{4}={\omega }_{1}\varepsilon +\pi ,\,{\phi }_{5}={\omega }_{2}\varepsilon +\pi ,\,{\phi }_{6}={\omega }_{3}\varepsilon +\pi ,\\ {c}_{1}={c}_{4}={b}_{10}+{b}_{12}{\varepsilon }^{2}+{b}_{13}{\varepsilon }^{3}+{b}_{14}{\varepsilon }^{4}+{b}_{15}{\varepsilon }^{5},\,{c}_{2}={c}_{5}={b}_{20}+{b}_{22}{\varepsilon }^{2}+{b}_{23}{\varepsilon }^{3}+{b}_{24}{\varepsilon }^{4}+{b}_{25}{\varepsilon }^{5},\\ {c}_{3}={c}_{6}={b}_{30}+{b}_{32}{\varepsilon }^{2}+{b}_{33}{\varepsilon }^{3}+{b}_{34}{\varepsilon }^{4}+{b}_{35}{\varepsilon }^{5}\end{array}\end{eqnarray}$
Based on the long wave limit method, f and g can be written as
$\begin{eqnarray}\begin{array}{l}f=\displaystyle \sum _{i=0}^{12}{f}^{(i)}{\varepsilon }^{i}+O({\varepsilon }^{13}),\\ g=\displaystyle \sum _{i=0}^{12}{g}^{(i)}{\varepsilon }^{i}+O({\varepsilon }^{13}).\end{array}\end{eqnarray}$
By solving {f(i) = 0, g(i) = 0, i = 0, 1,…,11}, the relation among ω1, ω2, ω3, bj0, bj2, bj3, bj4 and bj5 (j = 1, 2, 3) is
$\begin{eqnarray}\begin{array}{l}{b}_{10}=-\displaystyle \frac{\left({\omega }_{1}+{\omega }_{3}\right)\left({\omega }_{1}+{\omega }_{2}\right)}{\left({\omega }_{1}-{\omega }_{3}\right)\left({\omega }_{1}-{\omega }_{2}\right)},\,\\ {b}_{20}=\displaystyle \frac{\left({\omega }_{2}+{\omega }_{3}\right)\left({\omega }_{1}+{\omega }_{2}\right)}{\left({\omega }_{2}-{\omega }_{3}\right)\left({\omega }_{1}-{\omega }_{2}\right)},\\ {b}_{30}=-\displaystyle \frac{\left({\omega }_{2}+{\omega }_{3}\right)\left({\omega }_{1}+{\omega }_{3}\right)}{\left({\omega }_{2}-{\omega }_{3}\right)\left({\omega }_{1}-{\omega }_{3}\right)},\\ {b}_{12}=\displaystyle \frac{\left(-{\omega }_{3}{\omega }_{1}{\omega }_{2}-{\omega }_{3}^{2}{\omega }_{1}-{\omega }_{3}^{2}{\omega }_{2}-{\omega }_{3}^{3}+6\,{\omega }_{2}{b}_{\mathrm{3,2}}-6\,{\omega }_{3}{b}_{\mathrm{3,2}}\right){\omega }_{1}\left({\omega }_{1}+{\omega }_{2}\right)}{6\left({\omega }_{2}+{\omega }_{3}\right){\omega }_{3}\left({\omega }_{1}-{\omega }_{2}\right)},\,\\ {b}_{22}=-\displaystyle \frac{{\omega }_{2}}{6\left({\omega }_{1}^{2}-{\omega }_{1}{\omega }_{2}+{\omega }_{1}{\omega }_{3}-{\omega }_{2}{\omega }_{3}\right){\omega }_{3}}\left(-{\omega }_{1}^{2}{\omega }_{2}{\omega }_{3}-{\omega }_{1}^{2}{\omega }_{3}^{2}-{\omega }_{1}{\omega }_{2}^{2}{\omega }_{3}-2\,{\omega }_{1}{\omega }_{2}{\omega }_{3}^{2}\right.\\ \left.-{\omega }_{1}{\omega }_{3}^{3}-{\omega }_{2}^{2}{\omega }_{3}^{2}-{\omega }_{2}{\omega }_{3}^{3}+6\,{b}_{\mathrm{3,2}}{\omega }_{1}^{2}+6\,{b}_{\mathrm{3,2}}{\omega }_{1}{\omega }_{2}-6\,{b}_{\mathrm{3,2}}{\omega }_{1}{\omega }_{3}-6\,{\omega }_{2}{b}_{\mathrm{3,2}}{\omega }_{3}\right),\\ {b}_{13}=-\displaystyle \frac{{\omega }_{1}\left({b}_{\mathrm{2,3}}{\omega }_{1}^{2}{\omega }_{3}+2{b}_{\mathrm{2,3}}{\omega }_{1}{\omega }_{3}^{2}+{b}_{\mathrm{2,3}}{\omega }_{3}^{3}+{b}_{\mathrm{3,3}}{\omega }_{1}^{2}{\omega }_{2}+2\,{b}_{\mathrm{3,3}}{\omega }_{1}{\omega }_{2}^{2}+{b}_{\mathrm{3,3}}{\omega }_{2}^{3}\right)}{{\omega }_{2}{\omega }_{3}\left({\omega }_{2}^{2}+2\,{\omega }_{2}{\omega }_{3}+{\omega }_{3}^{2}\right)},\\ {b}_{14}=-\displaystyle \frac{{\omega }_{1}}{360\,{\omega }_{2}{\omega }_{3}^{2}{\left({\omega }_{2}+{\omega }_{3}\right)}^{3}\left({\omega }_{1}+{\omega }_{3}\right)}\left(7\,{\omega }_{1}^{4}{\omega }_{2}^{4}{\omega }_{3}^{2}+21\,{\omega }_{1}^{4}{\omega }_{2}^{3}{\omega }_{3}^{3}+21\,{\omega }_{1}^{4}{\omega }_{2}^{2}{\omega }_{3}^{4}\right.\\ \,+7\,{\omega }_{1}^{4}{\omega }_{2}{\omega }_{3}^{5}+7\,{\omega }_{1}^{3}{\omega }_{2}^{5}{\omega }_{3}^{2}+42\,{\omega }_{1}^{3}{\omega }_{2}^{4}{\omega }_{3}^{3}+72\,{\omega }_{1}^{3}{\omega }_{2}^{3}{\omega }_{3}^{4}+46\,{\omega }_{1}^{3}{\omega }_{2}^{2}{\omega }_{3}^{5}\\ \,+9\,{\omega }_{1}^{3}{\omega }_{2}{\omega }_{3}^{6}+21\,{\omega }_{1}^{2}{\omega }_{2}^{5}{\omega }_{3}^{3}+72\,{\omega }_{1}^{2}{\omega }_{2}^{4}{\omega }_{3}^{4}+78\,{\omega }_{1}^{2}{\omega }_{2}^{3}{\omega }_{3}^{5}+24\,{\omega }_{1}^{2}{\omega }_{2}^{2}{\omega }_{3}^{6}\\ \,-3\,{\omega }_{1}^{2}{\omega }_{2}{\omega }_{3}^{7}+21\,{\omega }_{1}{\omega }_{2}^{5}{\omega }_{3}^{4}+46\,{\omega }_{1}{\omega }_{2}^{4}{\omega }_{3}^{5}+24\,{\omega }_{1}{\omega }_{2}^{3}{\omega }_{3}^{6}-6\,{\omega }_{1}{\omega }_{2}^{2}{\omega }_{3}^{7}-5\,{\omega }_{1}{\omega }_{2}{\omega }_{3}^{8}\\ \,+7\,{\omega }_{2}^{5}{\omega }_{3}^{5}+9\,{\omega }_{2}^{4}{\omega }_{3}^{6}-3\,{\omega }_{2}^{3}{\omega }_{3}^{7}-5\,{\omega }_{2}^{2}{\omega }_{3}^{8}-60{b}_{\mathrm{3,2}}{\omega }_{1}^{3}{\omega }_{2}^{3}{\omega }_{3}^{2}+60\,{b}_{\mathrm{3,2}}{\omega }_{1}^{3}{\omega }_{2}{\omega }_{3}^{4}\\ \,-60\,{b}_{\mathrm{3,2}}{\omega }_{1}^{2}{\omega }_{2}^{4}{\omega }_{3}^{2}+60\,{b}_{\mathrm{3,2}}{\omega }_{1}^{2}{\omega }_{2}^{2}{\omega }_{3}^{4}+60\,{b}_{\mathrm{3,2}}{\omega }_{1}{\omega }_{2}^{3}{\omega }_{3}^{4}-60\,{b}_{\mathrm{3,2}}{\omega }_{1}{\omega }_{2}{\omega }_{3}^{6}\\ \,+60\,{b}_{\mathrm{3,2}}{\omega }_{2}^{4}{\omega }_{3}^{4}-60\,{b}_{\mathrm{3,2}}{\omega }_{2}^{2}{\omega }_{3}^{6}-180\,{b}_{3,2}^{2}{\omega }_{1}^{3}{\omega }_{2}^{3}+360\,{b}_{3,2}^{2}{\omega }_{1}^{3}{\omega }_{2}^{2}{\omega }_{3}\\ \,-180\,{b}_{3,2}^{2}{\omega }_{1}^{3}{\omega }_{2}{\omega }_{3}^{2}-180\,{b}_{3,2}^{2}{\omega }_{1}^{2}{\omega }_{2}^{4}+720\,{b}_{3,2}^{2}{\omega }_{1}^{2}{\omega }_{2}^{3}{\omega }_{3}-900\,{b}_{3,2}^{2}{\omega }_{1}^{2}{\omega }_{2}^{2}{\omega }_{3}^{2}\\ \,+360\,{b}_{3,2}^{2}{\omega }_{1}^{2}{\omega }_{2}{\omega }_{3}^{3}+360\,{b}_{3,2}^{2}{\omega }_{1}{\omega }_{2}^{4}{\omega }_{3}-900\,{b}_{3,2}^{2}{\omega }_{1}{\omega }_{2}^{3}{\omega }_{3}^{2}+720\,{b}_{3,2}^{2}{\omega }_{1}{\omega }_{2}^{2}{\omega }_{3}^{3}\\ \,-180\,{b}_{3,2}^{2}{\omega }_{1}{\omega }_{2}{\omega }_{3}^{4}-180\,{b}_{3,2}^{2}{\omega }_{2}^{4}{\omega }_{3}^{2}+360\,{b}_{3,2}^{2}{\omega }_{2}^{3}{\omega }_{3}^{3}-180\,{b}_{3,2}^{2}{\omega }_{2}^{2}{\omega }_{3}^{4}\\ \,+360\,{b}_{\mathrm{2,4}}{\omega }_{1}^{3}{\omega }_{2}{\omega }_{3}^{2}+360\,{b}_{\mathrm{2,4}}{\omega }_{1}^{3}{\omega }_{3}^{3}+1080\,{b}_{\mathrm{2,4}}{\omega }_{1}^{2}{\omega }_{2}{\omega }_{3}^{3}+1080\,{b}_{\mathrm{2,4}}{\omega }_{1}^{2}{\omega }_{3}^{4}\\ \,+1080\,{b}_{\mathrm{2,4}}{\omega }_{1}{\omega }_{2}{\omega }_{3}^{4}+1080\,{b}_{\mathrm{2,4}}{\omega }_{1}{\omega }_{3}^{5}+360\,{b}_{\mathrm{2,4}}{\omega }_{2}{\omega }_{3}^{5}+360\,{b}_{\mathrm{2,4}}{\omega }_{3}^{6}+360\,{b}_{\mathrm{3,4}}{\omega }_{1}^{3}{\omega }_{2}^{2}{\omega }_{3}\\ \,+360\,{b}_{\mathrm{3,4}}{\omega }_{1}^{3}{\omega }_{2}{\omega }_{3}^{2}+720\,{b}_{\mathrm{3,4}}{\omega }_{1}^{2}{\omega }_{2}^{3}{\omega }_{3}+1080\,{b}_{\mathrm{3,4}}{\omega }_{1}^{2}{\omega }_{2}^{2}{\omega }_{3}^{2}+360\,{b}_{\mathrm{3,4}}{\omega }_{1}^{2}{\omega }_{2}{\omega }_{3}^{3}\\ \,+360\,{b}_{\mathrm{3,4}}{\omega }_{1}{\omega }_{2}^{4}{\omega }_{3}+1080\,{b}_{\mathrm{3,4}}{\omega }_{1}{\omega }_{2}^{3}{\omega }_{3}^{2}+720\,{b}_{\mathrm{3,4}}{\omega }_{1}{\omega }_{2}^{2}{\omega }_{3}^{3}+360\,{b}_{\mathrm{3,4}}{\omega }_{2}^{4}{\omega }_{3}^{2}\\ \,\left.+360\,{b}_{\mathrm{3,4}}{\omega }_{2}^{3}{\omega }_{3}^{3}\right),\end{array}\end{eqnarray}$
Note that the relation in equation (10) is more general than that in [26] since ω1, ω2 and ω3 are arbitrary. If we take ω1 = 2, ω2 = 1, ω3 = 3, b32 = 1, b23 = 180, b33 = 0, b24 = 0, b34 = 1, b15 = 0, b25 = 0 and b35 = 0, the third-order rogue wave solutions to equation (1) are
$\begin{eqnarray}u=\exp \left[{\rm{i}}\sigma x-{\rm{i}}({\sigma }^{2}-1)t\right]\displaystyle \frac{{g}^{(12)}}{{f}^{(12)}},\end{eqnarray}$
with
$\begin{eqnarray*}\begin{array}{rcl}{g}^{(12)} & = & 4096\,{t}^{12}-49152{\rm{i}}{t}^{11}+\left(-6144\,{\psi }^{2}-141312\right){t}^{10}\\ & & +\ \left(61\,440{\rm{i}}{\psi }^{2}+230400-307200{\rm{i}}\right){t}^{9}\\ & & +\left(3840\,{\psi }^{4}+207360\,{\psi }^{2}-2085120-2073600{\rm{i}}\right){t}^{8}\\ & & +\ \left(-30720{\rm{i}}{\psi }^{4}-184320{\rm{i}}{\psi }^{2}-5537280+2672640{\rm{i}}\right){t}^{7}\\ & & +\left(-1280\,{\psi }^{6}-103680\,{\psi }^{4}-218880\,{\psi }^{2}-440640\right.\\ & & \left.+1436160{\rm{i}}\right){t}^{6}+\left(-25597440-4268160{\rm{i}}+7680{\rm{i}}{\psi }^{6}-\left(86\,400-161280{\rm{i}}\right){\psi }^{4}\right.\\ & & \left.-\left(4\,682\,880-1313280{\rm{i}}\right){\psi }^{2}\right){t}^{5}+\left(-55728000+50688000{\rm{i}}+240\,{\psi }^{8}+22080\,{\psi }^{6}\right.\\ & & \left.+\left(36\,000+432000{\rm{i}}\right){\psi }^{4}-\left(5\,950\,800-18230400{\rm{i}}\right){\psi }^{2}\right){t}^{4}+\left(9\,334\,800+127699200{\rm{i}}\right.\\ & & -960{\rm{i}}{\psi }^{8}+\left(28\,800-26880{\rm{i}}\right){\psi }^{6}+\left(434\,400+86400{\rm{i}}\right){\psi }^{4}+\left(14\,385\,600+27950400{\rm{i}}\right)\\ & & \left.\times {\psi }^{2}\right){t}^{3}+\left(172\,007\,100+109112400{\rm{i}}-24\,{\psi }^{10}-1800\,{\psi }^{8}-\left(7920+86400{\rm{i}}\right){\psi }^{6}\right.\\ & & \left.-\left(596\,700+7200{\rm{i}}\right){\psi }^{4}+\left(9\,784\,800-3931200{\rm{i}}\right){\psi }^{2}\right){t}^{2}+\left(248\,583\,600-19755000{\rm{i}}\right.\\ & & +48{\rm{i}}{\psi }^{10}-\left(2700-720{\rm{i}}\right){\psi }^{8}-\left(75\,000+7200{\rm{i}}\right){\psi }^{6}+\left(241\,200+1279800{\rm{i}}\right){\psi }^{4}\\ & & \left.-\left(30\,723\,300-7516800{\rm{i}}\right){\psi }^{2}\right)t+102002625-28911600{\rm{i}}+{\psi }^{12}+18\,{\psi }^{10}\\ & & -\left(225-2700{\rm{i}}\right){\psi }^{8}+\left(1\,090\,800+82800{\rm{i}}\right){\psi }^{4}-\left(68\,175+33000{\rm{i}}\right){\psi }^{6}\\ & & -\left(4\,210\,875-27807300{\rm{i}}\right){\psi }^{2},\\ {f}^{(12)} & = & 4096\,{t}^{12}+\left(-6144\,{\psi }^{2}+129024\right){t}^{10}+230400\,{t}^{9}+\left(3840\,{\psi }^{4}-69120\,{\psi }^{2}+956160\right){t}^{8}\\ & & +2757120\,{t}^{7}+\left(-1280\,{\psi }^{6}+3840\,{\psi }^{4}-864000\,{\psi }^{2}+2923200\right){t}^{6}+\left(-86400\,{\psi }^{4}\right.\\ & & \left.-4682880\,{\psi }^{2}-5022720\right){t}^{5}+\left(240\,{\psi }^{8}+2880\,{\psi }^{6}-21600\,{\psi }^{4}-8542800\,{\psi }^{2}\right.\\ & & \left.-29505600\right){t}^{4}+\left(28\,800\,{\psi }^{6}-429600\,{\psi }^{4}-11707200\,{\psi }^{2}-19580400\right){t}^{3}+\left(-24\,{\psi }^{10}\right.\\ & & \left.-360\,{\psi }^{8}-2160\,{\psi }^{6}-553500\,{\psi }^{4}-32659200\,{\psi }^{2}+68456700\right){t}^{2}+\left(-2700\,{\psi }^{8}\right.\\ & & \left.+11400\,{\psi }^{6}+248400\,{\psi }^{4}-26878500\,{\psi }^{2}+139212000\right)t\\ & & +\ {\psi }^{12}-6\,{\psi }^{10}+135\,{\psi }^{8}\\ & & -73215\,{\psi }^{6}+472500\,{\psi }^{4}-549675\,{\psi }^{2}+103844925.\end{array}\end{eqnarray*}$

3. Interaction solutions among rogue waves and breather waves

Firstly, we aim to construct the interaction solutions between first-order rogue waves and one-breather waves. According to the result of the first-order rogue wave solutions in [47], taking ${\phi }_{1}=\varepsilon ,\,{\phi }_{2}=\tfrac{\pi }{3},\,{\phi }_{3}=\varepsilon +\pi ,\,{\phi }_{4}=\tfrac{4\pi }{3},\,{c}_{1}=-1$, c3 = − 1, $\sigma =\tfrac{1}{3}$ and ϵ → 0 for equation (2) with N = 2, we have the interaction solutions between the first-order rogue wave and one-breather wave
$\begin{eqnarray}u=\exp \left[{\rm{i}}\sigma x-{\rm{i}}({\sigma }^{2}-1)t\right]\displaystyle \frac{{g}^{(2)}}{{f}^{(2)}},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{l}{g}^{\left(2\right)}=\left(2\sqrt{3}\left({\rm{i}}{t}^{2}-\frac{{\rm{i}}}{4}{\psi }^{2}-\frac{13{\rm{i}}}{12}+\frac{4}{3}\,t-\frac{2}{3}\,\psi \right)\right.\\ \,+\left.8{\rm{i}}t+4{\rm{i}}\psi -2\,{t}^{2}+\frac{1}{2}\,{\psi }^{2}+\frac{15}{2}\right){c}_{2}{{\rm{e}}}^{-\frac{\sqrt{3}}{2}\left(-\psi +t\right)}\\ \,+\left(2\sqrt{3}\left({\rm{i}}{t}^{2}-\frac{{\rm{i}}}{4}{\psi }^{2}-\frac{13{\rm{i}}}{12}+\frac{4}{3}\,t+\frac{2}{3}\,\psi \right)\right.\\ \,+ \left.8{\rm{i}}t-4{\rm{i}}\psi -2\,{t}^{2}+\frac{1}{2}\,{\psi }^{2}+\frac{15}{2}\right){c}_{4}{{\rm{e}}}^{-\frac{\sqrt{3}}{2}\left(\psi +t\right)}\\ \,-\left(8\sqrt{3}\left({\rm{i}}{t}^{2}-\frac{{\rm{i}}}{4}{\psi }^{2}-\frac{3}{4}{\rm{i}}+\frac{10}{3}\,t\right)\right.\\ \,+\left.16{\rm{i}}t+8\,{t}^{2}-2\,{\psi }^{2}+\frac{110}{3}\right){c}_{2}{c}_{4}{{\rm{e}}}^{-\sqrt{3}t}-8{\rm{i}}t+4\,{t}^{2}-{\psi }^{2}-3,\\ {f}^{\left(2\right)}=\left(\frac{8}{3}\sqrt{3}\left(t+\psi \right)+4\,{t}^{2}-{\psi }^{2}-3\right){c}_{2}{{\rm{e}}}^{-\frac{\sqrt{3}}{2}\left(-\psi +t\right)}\\ \,+ \left(\frac{8}{3}\sqrt{3}\left(t-\psi \right)+4\,{t}^{2}-{\psi }^{2}-3\right){c}_{4}{{\rm{e}}}^{-\frac{\sqrt{3}}{2}\left(\psi +t\right)}\\ \,+ \left(16{t}^{2}+\frac{64}{3}\sqrt{3}t-4\,{\psi }^{2}+\frac{76}{3}\right){c}_{2}{c}_{4}{{\rm{e}}}^{-\sqrt{3}t}+4\,{t}^{2}-{\psi }^{2}+1.\end{array}\end{eqnarray*}$
We choose six different sets of parameters c2 and c4 to investigate the effect on the interaction phenomena, which is shown in figure 1. As the parameters c2 and c4 increase from −60 to $-\tfrac{1}{600}$, the Akhmediev breather wave moves toward the negative axis of time and collides with the first-order rogue wave. As the parameters c2 and c4 increase from $\tfrac{1}{600}$ to 60, the Akhmediev breather wave moves toward the positive axis of time and collides with the first-order rogue wave again. After the collision, the distance between the two waves increases. The shape of them remains unchanged after the two collisions.
Figure 1. The interaction solutions between first-order rogue wave and one-breather wave to equation (1) via equation (12) with parameters (a) c2 = − 60, c4 = − 60, (b) c2 = − 1, c4 = − 1, (c) ${c}_{2}=-\tfrac{1}{600},\,{c}_{4}=-\tfrac{1}{600}$ (d) ${c}_{2}=\tfrac{1}{600},\,{c}_{4}=\tfrac{1}{600}$, (e) c2 = 1, c4 = 1, and (f) c2 = 60, c4 = 60.
For calculation simplicity, by choosing φ1 = ϵ, ${\phi }_{2}=-\tfrac{\pi }{6}$, ${\phi }_{3}=\tfrac{\pi }{3}$, φ4 = ϵ + π, ${\phi }_{5}=\tfrac{5\pi }{6}$, ${\phi }_{6}=\tfrac{4\pi }{3}$, c1 = − 1, c4 = − 1, $\sigma =\tfrac{1}{8}$ and ϵ → 0 for equation (2) with N = 3, we obtain the interaction solutions among the first-order rogue wave and two-breather waves, which are not shown here because of the complex expression. In figure 2, we demonstrate the effect of the parameters c2, c3, c5 and c6 on the collision among the first-order rogue wave and two-breather waves. From figure 2(a), the first-order rogue wave is in the middle of the two-breather waves. With the increase of the parameters c2, c3, c5 and c6 from −10 to $-\tfrac{1}{60}$, two Akhmediev breather waves move in opposite directions. Collisions occur among the first-order rogue wave and two-breather waves. After the collisions, the shape of them remains unchanged. When the parameters c2, c3, c5 and c6 increase from $\tfrac{1}{60}$ to 10, the direction of movement of the two-breather waves changes. They collide with the first-order rogue wave, and then gradually move away.
Figure 2. The interaction solutions among the first-order rogue wave and two-breather waves to equation (1) with parameters (a) c2 = − 10, c3 = − 10, c5 = − 10, c6 = − 10, (b) c2 = − 1, c3 = − 1, c5 = − 1, c6 = − 1, (c) ${c}_{2}=-\tfrac{1}{60},\,{c}_{3}=-\tfrac{1}{60},\,{c}_{5}=-\tfrac{1}{60}$, ${c}_{6}=-\tfrac{1}{60}$, (d) ${c}_{2}=\tfrac{1}{60},\,{c}_{3}=\tfrac{1}{60},\,{c}_{5}=\tfrac{1}{60}$, ${c}_{6}=\tfrac{1}{60}$, (e) c2 = 1, c3 = 1, c5 = 1, c6 = 1 and (f) c2 = 10, c3 = 10, c5 = 10, c6 = 10.
To discuss the interaction phenomena between the second-order rogue wave and one-breather wave, according to the process of constructing the second-order rogue wave solutions, the parameters are taken as follows φ1 = 2ϵ, φ2 = − ϵ, ${\phi }_{3}=-\tfrac{\pi }{3}$, φ4 = 2ϵ + π, φ5 = − ϵ + π, ${\phi }_{6}=\tfrac{2\pi }{3}$, ${c}_{1}=\tfrac{1}{3}+\tfrac{1}{3}{\varepsilon }^{2}$, ${c}_{2}=-\tfrac{1}{3}{\varepsilon }^{3}-10$, ${c}_{4}=\tfrac{1}{3}+\tfrac{1}{3}{\varepsilon }^{2}$, ${c}_{5}=-\tfrac{1}{3}{\varepsilon }^{3}-10$, $\sigma =\tfrac{1}{8}$ and ϵ → 0 for equation (2) with N = 3. Figure 3 clearly indicates that the position of the second-order rogue wave and the breather wave is dependent on the parameters c3 and c6. The Akhmediev breather wave moves toward the positive axis of time when parameters c3 and c6 are negative. The direction of the Akhmediev breather wave changes when the parameter becomes positive. Two collisions occur in this process. The Akhmediev breather wave can pass through the second-order rogue wave. The shape of them is not changed by the collisions.
Figure 3. The interaction solutions between the second-order rogue wave and one-breather wave to equation (1) with parameters (a) c3 = − 100, c6 = − 100, (b) c3 = − 1, c6 = − 1, (c) ${c}_{3}=-\tfrac{1}{300},\,{c}_{6}=-\tfrac{1}{300}$, (d) ${c}_{3}=\tfrac{1}{300},\,{c}_{6}=\tfrac{1}{300}$, (e) c3 = 1, c6 = 1 and (f) c3 = 100, c6 = 100.
Compared with the interaction solutions in [50], collisions occur among the rogue wave and breather wave by choosing and controlling the parameters related to the phase in this paper. Different from the two crossed breather waves in figure 8 of [50], the two-breather waves in figure 2 are parallel. For the interaction solutions between the second-order rogue wave and one-breather wave, figure 3 shows richer interaction phenomena than that in [51] by controlling the parameters c3 and c6. The direction of movement of the breather wave is determined by the sign of the parameters c3 and c6. The breather wave can pass through the second-order rogue wave. The shape of them remains unchanged after the collisions.

4. Conclusions

Based on the long wave limit method, the second-order and third-order rogue wave solutions to the focusing NLS equation have been obtained by introducing some arbitrary parameters. The expression of the rogue wave solutions is more general than that in [26]. The interaction solutions between the first-order rogue wave and one-breather wave have been derived by taking a long wave limit on the N-breather solutions with N = 2. By applying the same method to the N-breather solutions with N = 3, two types of interaction solutions among the first-order rogue wave and two-breather waves, the second-order rogue wave and one-breather wave have been constructed, respectively. The influence of the parameters related to the phase on the interaction phenomena has been analyzed. Compared with the interaction solutions obtained by the generalized Darboux transformation [50], collisions occur among the rogue waves and breather waves. After the collisions, the shape of them remains unchanged. This paper presents abundant interaction phenomena and provides possible ways to control collisions among nonlinear waves. In the future, we aim to explore high-order rogue wave solutions and interaction solutions to other nonlinear equations.

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

This work is supported by the National Natural Science Foundation of China under Grant No. 12275017 and the Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University.

1
Wang L Zhang J H Wang Z Q Liu C Li M Qi F H Guo R 2016 Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation Phys. Rev. E 93 012214

DOI

2
Chabchoub A Hoffmann N P Akhmediev N 2011 Rogue wave observation in a water wave tank Phys. Rev. Lett. 106 204502

DOI

3
Yue Y F Huang L L Chen Y 2020 Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation Commun. Nonlinear Sci. Numer. Simul. 89 105284

DOI

4
Solli D R Ropers C Koonath P Jalali B 2007 Optical rogue waves Nature 450 1054-1057

DOI

5
Yin Y H X 2023 Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE Commun. Nonlinear Sci. Numer. Simul. 126 107441

DOI

6
Bludov Y V Konotop V V Akhmediev N 2009 Matter rogue waves Phys. Rev.A 80 033610

DOI

7
Yan Z Y 2015 Two-dimensional vector rogue wave excitations and controlling parameters in the two-component Gross-Pitaevskii equations with varying potentials Nonlinear Dyn. 79 2515-2529

DOI

8
Yan Z Y 2010 Financial rogue waves Commun. Theor. Phys. 54 947-949

DOI

9
Ganshin A N Efimov V B Kolmakov G V Mezhov-Deglin L P Mcclintock P V E 2008 Observation of an inverse energy cascade in developed acoustic turbulence in superfluid Helium Phys. Rev. Lett. 101 065303

DOI

10
Dubard P Matveev V B 2011 Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation Nat. Hazards Earth Syst. Sci. 11 667-672

DOI

11
Peregrine D H 1983 Water waves, nonlinear Schrödinger equations and their solutions J. Aust. Math. Soc.B 25 16-43

DOI

12
Liu W H Zhang Y F 2020 High-order rational solutions and rogue wave for the (2+1)-dimensional nonlinear Schrödinger equation Phys. Scr. 95 045204

DOI

13
Shi Y B Zhang Y 2017 Rogue waves of a (3+1)-dimensional nonlinear evolution equation Commun. Nonlinear Sci. Numer. Simul. 44 120-129

DOI

14
Ohta Y Yang J K 2012 General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Proc, Roy. Soc. A 468 1716-1740

DOI

15
Ohta Y Yang J K 2013 Dynamics of rogue waves in the Davey-Stewartson II equation J. Phys. A: Math. Theor. 46 105202

DOI

16
Zhang X E Chen Y 2018 General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis Nonlinear Dyn. 93 2169-2184

DOI

17
Chen J C Chen Y Feng B F Maruno K Ohta Y 2018 General high-order rogue waves of the (1+1)-dimensional Yajima-Oikawa system J. Phys. Soc. Jpn. 87 094007

DOI

18
Guo B L Ling L M Liu Q P 2012 Nonlinear Schrödinger equation: Generalized Darboux transformation and rogue wave solutions Phys. Rev.E 85 026607

DOI

19
Guo L J Zhang Y S Xu S W Wu Z W He J S 2014 The higher order rogue wave solutions of the Gerdjikov-Ivanov equation Phys. Scr. 89 035501

DOI

20
Wen L L Zhang H Q 2016 Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrödinger equation Nonlinear Dyn. 86 877-889

DOI

21
Yang Y M Xia T C Liu T S 2023 Rational and semi-rational solutions of a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation Nonlinear Dyn. 111 16377-16394

DOI

22
Zhao D Zhaqilao 2021 On the role of K + L + M-wave mixing effect in the (2+1)-dimensional KP I equation Eur. Phys. J. Plus 136 399

DOI

23
Vishnu Priya N Senthilvelan M Lakshmanan M 2013 Akhmediev breathers, Ma solitons and general breathers from rogue waves: a case study in Manakov system Phys. Rev.E 88 022918

DOI

24
Wang L Li M Qi F H Geng C 2015 Breather interactions, higher-order rogue waves and nonlinear tunneling for a derivative nonlinear Schrödinger equation in inhomogeneous nonlinear optics and plasmas Eur. Phys. J.D 69 108

DOI

25
Chan H N Chow K W Kedziora D J Grimshaw R H J Ding E 2014 Rogue wave modes for a derivative nonlinear Schrödinger model Phys. Rev.E 89 032914

DOI

26
Zhang Z Yang X Y Li B Wazwaz A M Guo Q 2022 Generation mechanism of high-order rogue waves via the improved long-wave limit method: NLS case Phys. Lett.A 450 128395

DOI

27
Ablowitz M J Satsuma J 1978 Solitons and rational solutions of nonlinear evolution equations J. Math. Phys. 19 2180-2186

DOI

28
Satsuma J Ablowitz M J 1979 Two-dimensional lumps in nonlinear dispersive systems J. Math. Phys. 20 1496-1503

DOI

29
Lai D W C Chow K W 2001 Coalescence of ripplons, breathers, dromions and dark solitons J. Phys. Soc. Jpn. 70 666-677

DOI

30
Wang C J Dai Z D Mu G 2010 Breather-type soliton and two-soliton solutions for modified Korteweg-de Vries equation Appl. Math. Comput. 216 341-343

DOI

31
Luo H Y Wang C J Dai Z D 2013 Integrability test and spatiotemporal feature of breather-wave to the (2+1)-dimensional Boussinesq equation Commun. Theor. Phys. 59 719-722

DOI

32
Xu Z H Chen H L Xian D Q 2012 Breather-type periodic soliton solutions for (1+1)-dimensional Sinh-Poisson equation Commun. Theor. Phys. 57 400-402

DOI

33
Yan X W Tian S F Zhang T T 2018 Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2.1)-dimensional generalized breaking soliton equation Comput. Math. with Appl. 76 179-186

DOI

34
Chen S J Yin Y H X 2024 Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations Commun. Nonlinear Sci. Numer. Simul. 130 107205

DOI

35
Chen S J X 2022 Observation of resonant solitons and associated integrable properties for nonlinear waves Chaos Solitons Fractals 163 112543

DOI

36
Chen Y X Wang X L 2023 Bäcklund transformation, Wronskian solutions and interaction solutions to the (3.1)-dimensional generalized breaking soliton equation Eur. Phys. J. Plus 138 492

DOI

37
Yin Y H X Jiang R Jia B Gao Z Y 2024 Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS PhysicaA 635 129494

DOI

38
Chen S J X Yin Y H 2023 Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model Commun. Theor. Phys. 75 055005

DOI

39
Guo H D Xia T C Ma W X 2020 Localized waves and interaction solutions to an extended (3+1)-dimensional Kadomtsev-Petviashvili equation Mod. Phys. Lett.B 34 2050076

DOI

40
Ma X Xia T C 2021 Guo H D. Lumps, breathers, and interaction solutions of a (3+1)-dimensional generalized Kadovtsev-Petviashvili equation Mod. Phys. Lett.B 35 2150041

DOI

41
Liu T S Xia T C 2023 N-soliton, breathers, lumps and interaction solutions for a time-variable coefficients integrable equation in Kadomtsev-Petviashvili hierarchy Nonlinear Dyn. 111 11481-11495

DOI

42
Li B Q Ma Y L 2023 A 'firewall' effect during the rogue wave and breather interactions to the Manakov system Nonlinear Dyn. 111 1565-1575

DOI

43
Chen M D Li B 2017 Hybrid soliton solutions in the (2+1)-dimensional nonlinear Schrödinger equation Mod. Phys. Lett.B 31 1750298

DOI

44
Zakharov V E Shabat A B 1972 Exact theory of two-dimensional self-focusing and one-dimensional self modulation of waves in nonlinear median J. Exp. Theor. Phys. 34 62-69

45
Dudley J M Dias F Erkintalo M Genty G 2014 Instabilities, breathers and rogue waves in optics Nature Photon 8 755-764

DOI

46
Chabchouba A Kibler B Finot C Millot G Onoratoc M Dudleye J M Babanina A V 2015 The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface Ann. Phys. 361 490-500

DOI

47
Tajiri M Watanabe Y 1998 Breather solutions to the focusing nonlinear Schrödinger equation Phys. Rev.E 57 3510-3519

DOI

48
He J S Zhang H R Wang L H Porsezian K Fokas A S 2013 Generating mechanism for higher-order rogue waves Phys. Rev.E 87 052914

DOI

49
Yang B Yang J K 2021 Rogue wave patterns in the nonlinear Schrödinger equation PhysicaD 419 132850

DOI

50
Li B Q Ma Y L 2020 Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation Appl. Math. Comput. 386 125469

DOI

51
Liu X S Zhao L C Duan L Gao P Yang Z Y Yang W L 2018 Interaction between breathers and rogue waves in a nonlinear optical fiber Chin. Phys. Lett. 35 020501

DOI

Outlines

/