1. Introduction
2. Sum uncertainty relations for arbitrary finite N observables
For arbitrary finite N observables ${A}_{1},{A}_{2},\cdots ,{A}_{N}$ ($N\geqslant 2$), we have the following sum uncertainty relation via $(\alpha ,\beta ,\gamma )$ WWYD skew information,
For finite N observables ${A}_{1},{A}_{2},\cdots ,{A}_{N}$ ($N\geqslant 2$), the sum uncertainty relations with respect to WWYD skew information are given by
Consider the pure state $\rho =\tfrac{1}{2}({{\rm{I}}}_{2}+{\boldsymbol{r}}\cdot {\boldsymbol{\sigma }})$, where ${\boldsymbol{r}}=\left(\tfrac{\sqrt{2}}{2}\cos \theta ,\tfrac{\sqrt{2}}{2}\sin \theta ,\tfrac{\sqrt{2}}{2}\right)$, ${{\rm{I}}}_{2}$ is the 2 × 2 identity matrix and ${\boldsymbol{\sigma }}=({\sigma }_{1},{\sigma }_{2},{\sigma }_{3})$ is composed of Pauli matrices. We compare $\overline{{Lb}}$ with Lb1, Lb2 and Lb3 for any α and $\alpha =\tfrac{1}{3}$, respectively. It can be seen that $\overline{{Lb}}$ is tighter than Lb1, Lb2 and Lb3 for arbitrary α, see figure 1.
Figure 1. Comparison of the lower bound (Lb) $\overline{{Lb}}$ with Lb1, Lb2 and Lb3. (a) The red surface and the magenta surface represent $\overline{{Lb}}$ and Lb1, respectively. (b) The blue surface represents the difference value (DV) between $\overline{{Lb}}$ and Lb2. (c) The green surface represents the difference value between $\overline{{Lb}}$ and Lb3. (d) For fixed $\alpha =\tfrac{1}{3}$, the black, red dashed, magenta, blue and green curves represent the summation ${{\rm{K}}}_{\rho }^{\tfrac{1}{3}}({\sigma }_{1})+{{\rm{K}}}_{\rho }^{\tfrac{1}{3}}({\sigma }_{2})+{{\rm{K}}}_{\rho }^{\tfrac{1}{3}}({\sigma }_{3})$, $\overline{{Lb}}$, Lb1, Lb2 and Lb3, respectively. |
3. Sum uncertainty relations for finite quantum channels
Let ${{\rm{\Phi }}}_{1},\cdots ,{{\rm{\Phi }}}_{N}$ be N quantum channels with Kraus representations ${{\rm{\Phi }}}_{t}(\rho )={\sum }_{i=1}^{n}{E}_{i}^{t}\rho {\left({E}_{i}^{t}\right)}^{\dagger },\,t\,=\,1,2,\cdots ,N$ ($N\geqslant 2$). We have
According to the inequalities (
Let ${{\rm{\Phi }}}_{1},\cdots ,{{\rm{\Phi }}}_{N}$ be N quantum channels with Kraus representations ${{\rm{\Phi }}}_{t}{(\rho )={\sum }_{i=1}^{n}{E}_{i}^{t}\rho ({E}_{i}^{t})}^{\dagger },\,t\,=\,1,2,\cdots ,N$ ($N\geqslant 2$), we have the sum uncertainty relations with respect to WWYD skew information,
Let ${{\rm{\Phi }}}_{1},\cdots ,{{\rm{\Phi }}}_{N}$ be N quantum channels with Kraus representations ${{\rm{\Phi }}}_{t}(\rho )={\sum }_{i=1}^{n}{E}_{i}^{t}\rho {\left({E}_{i}^{t}\right)}^{\dagger },\,t=1,2,\cdots ,N$ ($N\geqslant 2$). We have
Consider the mixed state given by the Bloch vector ${\boldsymbol{r}}=(\tfrac{\sqrt{2}}{2}\cos \theta ,\tfrac{\sqrt{2}}{2}\sin \theta ,0)$, $\rho =\tfrac{1}{2}({{\rm{I}}}_{2}+{\boldsymbol{r}}\cdot {\boldsymbol{\sigma }})$, where $0\leqslant \theta \leqslant \pi $, ${{\rm{I}}}_{2}$ is the 2 × 2 identity matrix and ${\boldsymbol{\sigma }}=({\sigma }_{1},{\sigma }_{2},{\sigma }_{3})$ is given by the Pauli matrices. We consider the following three quantum channels:
i | (i)the phase damping channel ${{\rm{\Phi }}}_{{\rm{PD}}}$, $\begin{eqnarray*}\begin{array}{l}{{\rm{\Phi }}}_{{\rm{PD}}}(\rho )=\displaystyle \sum _{i=1}^{2}{A}_{i}\rho {A}_{i}^{\dagger },\quad {A}_{1}=| 0\rangle \langle 0| +\sqrt{1-q}| 1\rangle \langle 1| ,\\ {A}_{2}=\sqrt{q}| 1\rangle \langle 1| ;\end{array}\end{eqnarray*}$ |
ii | (ii)the amplitude damping channel ${{\rm{\Phi }}}_{{\rm{AD}}}$, $\begin{eqnarray*}\begin{array}{l}{{\rm{\Phi }}}_{{\rm{AD}}}(\rho )=\displaystyle \sum _{i=1}^{2}{B}_{i}\rho {B}_{i}^{\dagger },\quad {B}_{1}=| 0\rangle \langle 0| +\sqrt{1-q}| 1\rangle \langle 1| ,\\ {B}_{2}=\sqrt{q}| 0\rangle \langle 1| ;\end{array}\end{eqnarray*}$ |
iii | (iii)the bit flip channel ${{\rm{\Phi }}}_{{\rm{BF}}}$, $\begin{eqnarray*}\begin{array}{l}{{\rm{\Phi }}}_{{\rm{BF}}}(\rho )=\displaystyle \sum _{i=1}^{2}{C}_{i}\rho {C}_{i}^{\dagger },\quad {C}_{1}=\sqrt{q}(| 0\rangle \langle 0| +| 1\rangle \langle 1| ),\\ {C}_{2}=\sqrt{1-q}(| 0\rangle \langle 1| +| 1\rangle \langle 0| ),\end{array}\end{eqnarray*}$ with $0\leqslant q\lt 1$. We compare the lower bounds $\overline{{LB}}$, LB, LB3, LB2, LB1 with the sum $={{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{\rm{AD}}})+{{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{\rm{PD}}})\,+{{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{\rm{BF}}})$ for $\alpha =\tfrac{1}{4}$, q = 0.3. It is shown that our new lower bound $\overline{{LB}}$ is tighter than LB, LB3, LB2 and LB1, see figure 2. |
Figure 2. (a) The solid black, solid red and solid blue curves represent the sum $=\,{{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{AD}})+{{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{PD}})+{{\rm{K}}}_{\rho }^{\tfrac{1}{4}}({{\rm{\Phi }}}_{{BF}})$ , the lower bounds (Lb) $\overline{{LB}}$ and LB, respectively. The dashed green, dashed blue and dashed magenta curves represent the lower bounds LB3, LB2 and LB1, respectively. (b-d) The solid green curve denotes the difference value (DV) between $\overline{{LB}}$ and LB, LB3 and LB2, respectively. |
4. Sum uncertainty relations for finite unitary channels
Let ${U}_{1},\cdots ,{U}_{N}$ be N unitary operators, we have
Suppose that $\rho =\tfrac{1}{2}({{\rm{I}}}_{2}+{\boldsymbol{r}}\cdot {\boldsymbol{\sigma }})$ with ${\boldsymbol{r}}\,=(\tfrac{\sqrt{3}}{3}\cos \theta ,\tfrac{\sqrt{3}}{3}\sin \theta ,0)$. Consider the following three unitary operators generated by Pauli matrices,
Figure 3. The solid black, red and green dashed curves represent the sum $=\,{{\rm{K}}}_{\rho }^{\alpha }({U}_{1})+{{\rm{K}}}_{\rho }^{\alpha }({U}_{2})+{{\rm{K}}}_{\rho }^{\alpha }({U}_{3})$, $\widetilde{{Lb}}$ and Lb, respectively. (a) $\alpha =\tfrac{1}{3};$ (b) $\alpha =\tfrac{1}{5}$. |