Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Rogue waves for the (2+1)-dimensional Myrzakulov—Lakshmanan-IV equation on a periodic background

  • Xiao-Hui Wang 1, 2, 3 ,
  • Zhaqilao , 1, 2, 3
Expand
  • 1College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China
  • 2 Laboratory of Infinite-dimensional Hamiltonian System and Its algorithm Application, Hohhot 010022, China
  • 3 Center for Applied Mathematical Science, Inner Mongolia, Hohhot 010022, China

Received date: 2023-11-12

  Revised date: 2024-01-20

  Accepted date: 2024-02-23

  Online published: 2024-03-28

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, the rogue wave solutions of the (2+1)-dimensional Myrzakulov–Lakshmanan (ML)-IV equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation (DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained. The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.

Cite this article

Xiao-Hui Wang , Zhaqilao . Rogue waves for the (2+1)-dimensional Myrzakulov—Lakshmanan-IV equation on a periodic background[J]. Communications in Theoretical Physics, 2024 , 76(4) : 045004 . DOI: 10.1088/1572-9494/ad2c78

1. Introduction

A rogue wave is a strange wave with an extremely large amplitude. It usually occurs in the ocean, coming from nowhere and disappearing without a trace, which can lead to a deadly disaster [1, 2]. However, there is currently no effective method available to accurately forecast the rogue waves in advance. Therefore, the study of rogue waves is necessary and relevant [3, 4]. In recent years, more and more attention has been paid to rogue periodic waves generated on the background of Jacobian elliptic periodic waves. In 2018, Chen and Pelinovsky established a method for calculating such rogue periodic waves based on the precise description of the periodic and aperiodicial characteristic functions of the the Ablowitz–Kaup–Newell–Segur (AKNS) spectrum. They combined the method of the nonlinearization of the Lax pair with the Darboux transformation to obtain the rogue periodic wave of the focused nonlinear Schrödinger (NLS) equation [5]. Then, rogue wave on a periodic background of the modified Korteweg–de Vries (mKdV) equation [6, 7], Ito equation [8], fourth-, fifth-, sixth-, seven-order NLS equation [912], the sine-Gordon equation [13], and the Hirota equation [14, 15] has been studied similarly. In recent years, the same method has been used to study the (2+1) dimensional nonlinear evolution equation [16, 17].
As a model of nonlinear partial differential equations, integrable spin systems are important because of their applicability in many scientific fields. They give rise to important applications in applied magnetism [18] and nanophysics [19]. The Landau–Lifshitz–Gilbert (LLG) equation [20] in ferromagnetism and Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation [19] in spin transfer nanomagnetic multilayers are some of the fundamental equations that play a crucial role in understanding various physical properties of magnetic materials and the development of new technological innovations, like microwave generation using the spin transfer effect [21]. The continuum limit of the Heisenberg ferromagnetic spin system and its various generalizations give rise to some of the important integrable spin systems in (1 + 1) dimensions [22, 23]. They are also intimately related to the nonlinear Schrödinger family of equations through geometrical (or Lakshmanan equivalence or L-equivalence) and gauge equivalence concepts and these systems often admit magnetic soliton solutions. Moreover, the system is closely related to the well-known NLS equation [24]. R Myrzakulov, G K Mamyrbekova and others mainly presented convincing studies of the integral (2 + 1)-dimensional spin model with self-compatibility potential, namely the ML-II, III, and IV equations [25]. In this paper, we study the (2 + 1)-dimensional ML-IV equation, which has the following form:
$\begin{eqnarray}\begin{array}{rcl} & & \,\,{\rm{i}}{K}_{t}+2{\epsilon }_{1}\,{Z}_{x}+{\rm{i}}{\epsilon }_{2}{\left(\,,{K}_{{xy}}+[{K}_{x},Z]\right)}_{x}\\ & & +\,{\left({wK}\right)}_{x}+\displaystyle \frac{1}{\omega }\,[K,W]=0,\\ & & \,\,{u}_{x}-\displaystyle \frac{{\rm{i}}}{4}{tr}\,(K\cdot [{K}_{x},{K}_{y}])=0,\\ & & \,\,{w}_{x}-\displaystyle \frac{{\rm{i}}}{4}{\epsilon }_{2}{\left[\,,\mathrm{tr}\,({K}_{x}^{2})\right]}_{y}=0,\\ & & \,\,{\rm{i}}{W}_{x}+\omega \,[K,W]=0,\end{array}\end{eqnarray}$
where $Z=\tfrac{1}{4}\,([K,{K}_{y}]+2{\rm{i}}{uK})$.
The gauge equivalent counterpart of the ML-IV equation takes the form:
$\begin{eqnarray}\begin{array}{rcl} & & {\rm{i}}{q}_{t}+{\epsilon }_{1}\,{q}_{{xy}}+{\rm{i}}{\epsilon }_{2}\,{q}_{{xxy}}-{vq}+{\rm{i}}{\left(\,,{wq}\right)}_{x}-2{\rm{i}}p=0,\\ & & {v}_{x}+2{\epsilon }_{1}\,\tau {\left(\,,| q{| }^{2}\right)}_{y}-2{\rm{i}}{\epsilon }_{2}\,\tau \,({q}_{{xy}}^{* }q-{q}^{* }{q}_{{xy}})=0,\\ & & {w}_{x}-2{\epsilon }_{2}\,\tau {\left(\,,| q{| }^{2}\right)}_{y}=0,\\ & & {p}_{x}-2{\rm{i}}\omega p-2\eta q=0,\\ & & {\eta }_{x}+\tau \,({q}^{* }p+{p}^{* }q)=0,\end{array}\end{eqnarray}$
where ‘*’ is the complex conjugate, q(x, y, t), p(x, y, t) are complex functions, v(x, y, t), w(x, y, t), η(x, y, t) are real functions, and ω, ε1, ε2 are arbitrary constants. Here, τ = ± 1 represents two different cases of the ML-IV equation. To be precise, τ = 1 and τ = –1 mean that the ML-IV equation has an attractive interaction and repulsive interaction respectively.
In [26], the soliton, breather, rogue wave and DT of (2) were researched. Its modulational instability and mixed solution have also been studied [27]. Based on (2), which has a variety of parameter selections, these parameters will produce abundant reduction results. When ε1 = 0, ε2 = 1, p = 0, η = 0, (2) can reduce to the (2+1)-dimensional complex mKdV equation, in which multi-soliton and periodic solutions have been studied via DT [28, 29]. The rogue periodic waves of the (2+1)-dimensional complex mKdV equation have also been studied [30]. If we choose ε1 = 1, ε2 = 0, p = 0, η = 0, (2) can reduce to the (2+1)-dimensional NLS equation, its DT, soliton, breather, abundant rogue wave shapes, rational and semi-rational solutions and the dynamic process have been investigated [3133]. In [34], the author especially studied the lump and rogue wave solutions based on a periodic background in a Heisenberg ferromagnetic spin chain. As far as we know, there are few studies on the rogue periodic waves of (2 + 1)-dimensional ML-IV equation. Thus, this will become the main content of our next research.
In this work, we mainly construct the rogue periodic wave solutions for the (2 + 1)-dimensional ML-IV equation. In section 2, we give the Lax pairs and classical Darboux transformation of (2). In section 3, we give the periodic traveling wave solutions. In section 4, we describe the eigenvalues based on the results of the nonlinearization of the Lax pair. In section 5, we obtain the periodic and non-periodic wave solutions of (2). In section 6, the expression and figures of the rogue periodic wave solutions are given. In section 7, we give some conclusions.

2. The Lax pair and Darboux transformation

(2) has the Lax pair in the form
$\begin{eqnarray}\begin{array}{c}{\phi }_{x}=U\phi ,U=\left(\begin{array}{cc}\lambda & q\\ -{q}^{\ast } & -\lambda \end{array}\right),\\ \phi =\left(\begin{array}{c}{\phi }_{1}\\ {\phi }_{2}\end{array}\right).\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl} & & {\phi }_{t}=(2{\epsilon }_{1}\,\lambda +4{\epsilon }_{2}\,{\lambda }^{2})\,{\phi }_{y}+V\phi ,\\ & & V=\left(\begin{array}{cc}-\displaystyle \frac{1}{2}{\rm{i}}v-\lambda w+\displaystyle \frac{\eta }{\lambda -{\rm{i}}\omega } & -\displaystyle \frac{p+(\lambda -{\rm{i}}\omega )\,({qw}+(-{\rm{i}}{\epsilon }_{1}+2{\epsilon }_{2}\,\lambda )\,{q}_{y}+{\epsilon }_{2}\,{q}_{{xy}})}{\lambda -{\rm{i}}\omega }\\ \displaystyle \frac{-{\rm{i}}{p}^{* }+({\rm{i}}\lambda +\omega )\,({q}^{* }w+{\rm{i}}\,({\epsilon }_{1}+2{\rm{i}}{\epsilon }_{2}\,\lambda )\,{q}_{y}^{* }+{\epsilon }_{2}\,{q}_{{xy}}^{* })}{{\rm{i}}\lambda -\omega } & \displaystyle \frac{1}{2}{\rm{i}}v+\lambda w-\displaystyle \frac{\eta }{\lambda -{\rm{i}}\omega }\end{array}\right),\end{array}\end{eqnarray}$
where λ is a complex spectral parameter. The zero curvature equation UtVx − (2ε1λ + 4ε2λ2)Uy + [U, V] = 0 gives rise to (2). According to [26], the elementary Darboux transformation of (2) can be redefined as
$\begin{eqnarray}q\,[1]=q+\displaystyle \frac{2\,({\lambda }_{1}+{\lambda }_{1}^{* })\,{\phi }_{11}\,{\phi }_{21}^{* }}{| {\phi }_{11}{| }^{2}+| {\phi }_{21}{| }^{2}},\end{eqnarray}$
where ${({\phi }_{11},{\phi }_{21})}^{\top }$ is a non-zero solution of the Lax pair (3)–(4) with λ = λ1.

3. Two families of periodic solutions

In order to construct the periodic wave solutions of (2), we suppose the complex periodic wave solutions in the form
$\begin{eqnarray}q\,(x,y,t)=Q\,(\xi )\,{{\rm{e}}}^{{\rm{i}}\zeta },\end{eqnarray}$
where ξ = xc1yc2t, ζ = xb1yb2t, Q(ξ) is a real periodic function and c1, c2, b1, b2 are real constants. It is also easy to find that ∣q2 = qq* = Q2.
Substituting equations (6) into (2) yields a fifth-order nonlinear ordinary differential equation, in which it is difficult to obtain exact solutions. However, the fifth-order nonlinear ordinary differential equation can be simplified to a first-order nonlinear ordinary differential equation by means of the Jacobian elliptic function expansion approach [35]. Then, we finally obtain two families of periodic solutions for (2), which are expressed by Jacobian elliptic functions dn and cn as
$\begin{eqnarray}\begin{array}{rcl} & & Q\,(\xi )=\mathrm{dn}\,(\xi ;k),\\ & & -\,{b}_{2}-2{b}_{1}\,{\epsilon }_{1}+{c}_{1}\,{\epsilon }_{1}-{c}_{1}\,{k}^{2}{\epsilon }_{1}+{b}_{1}\,{\epsilon }_{2}\\ & & -\,5{c}_{1}\,{\epsilon }_{2}+3{c}_{1}\,{k}^{2}{\epsilon }_{2}+2{b}_{1}\,{\epsilon }_{1}\,\omega +2{c}_{1}\,{\epsilon }_{1}\,\omega \\ & & -\,4{b}_{1}\,{\epsilon }_{2}\,\omega +2{c}_{1}\,{\epsilon }_{2}\,\omega -2{c}_{1}\,{k}^{2}{\epsilon }_{2}\,\omega \\ & & +\,{c}_{2}\,(-1+2\omega )=0,\end{array}\end{eqnarray}$
and
$\begin{eqnarray}\begin{array}{rcl} & & Q\,(\xi )=k\;\mathrm{cn}\,(\xi ;k),\\ & & {b}_{2}+{c}_{2}-2{c}_{2}\,\omega +2\,({b}_{1}\,{\epsilon }_{1}+{c}_{1}\,{\epsilon }_{1}-{c}_{1}\,{k}^{2}{\epsilon }_{1}\\ & & -\,2{b}_{1}\,{\epsilon }_{2}-2{c}_{1}\,{\epsilon }_{2}+{b}_{1}\,{k}^{2}{\epsilon }_{2}-{b}_{1}\,{\epsilon }_{1}\,\omega \\ & & -\,{c}_{1}\,{\epsilon }_{1}\,\omega +2{b}_{1}\,{\epsilon }_{2}\,\omega +2{c}_{1}\,{\epsilon }_{2}\,\omega -2{c}_{1}\,{k}^{2}{\epsilon }_{2}\,\omega )=0,\end{array}\end{eqnarray}$
where ξ = xc1yc2t, k ∈ (0, 1) is the elliptic modulus and equations (7)–(8) satisfy the following two elliptic equation:
$\begin{eqnarray}\begin{array}{rcl} & & {Q}_{{xx}}=-2{Q}^{3}+{a}_{0}\,Q,\\ & & {Q}_{x}^{2}=-{Q}^{4}+{a}_{0}\,{Q}^{2}+{a}_{1},\end{array}\end{eqnarray}$
where a0 and a1 are two real constants. As for the dn-function solution, we take a0 = 2 − k2 and a1 = k2 − 1. As for the cn-function solution, we take a0 = 2k2 − 1 and a1 = k2(1 − k2) on the other side.

4. Squared periodic eigenfunctions of Lax pair

In this section, we introduce the Bargmann constraint [3638] to make the nonlinearization of the Lax pair (3)–(4). Considering the following Bargmann constraint
$\begin{eqnarray}q\,(x,y,t)={\phi }_{1}^{2}+{{\phi }_{2}^{2}}^{* },\end{eqnarray}$
where $\phi ={({\phi }_{1},{\phi }_{2})}^{\top }$ is a non-zero solution of the Lax pair (3)–(4) with λ = λ1.
Substituting (10) into (3), we obtain a finite-dimensional Hamiltonian system as
$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{\phi }_{1}}{{\rm{d}}x}=\displaystyle \frac{\partial H}{\partial {\phi }_{2}},\,\,\displaystyle \frac{{\rm{d}}{\phi }_{2}}{{\rm{d}}x}=-\displaystyle \frac{\partial H}{\partial {\phi }_{1}},\end{eqnarray}$
with
$\begin{eqnarray}H={\lambda }_{1}\,{\phi }_{1}\,{\phi }_{2}+{\lambda }_{1}^{* }{\phi }_{1}^{* }{\phi }_{2}^{* }+\displaystyle \frac{1}{2}\,({\phi }_{1}^{2}+{{\phi }_{2}^{2}}^{* })\,({{\phi }_{1}^{2}}^{* }+{\phi }_{2}^{2}).\end{eqnarray}$
For the Hamiltonian system (11) and (12), there are two conserved integrals
$\begin{eqnarray}{H}_{0}={\rm{i}}\,({\phi }_{1}\,{\phi }_{2}-{\phi }_{1}^{* }{\phi }_{2}^{* }),\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{H}_{1}={\lambda }_{1}\,{\phi }_{1}\,{\phi }_{2}+{\lambda }_{1}^{* }{\phi }_{1}^{* }{\phi }_{2}^{* } & \Space{0ex}{1.54em}{0ex}\\ +\displaystyle \frac{1}{2}{\left(\,,| {\phi }_{1}{| }^{2}+| {\phi }_{2}{| }^{2}\right)}^{2},\end{array}\end{eqnarray}$
where H0, H1 is constant with respect to x and $H={H}_{1}-\tfrac{1}{2}{H}_{0}^{2}$.
Considering equations (10) and (13) together, we have
$\begin{eqnarray}{\lambda }_{1}\,{\phi }_{1}^{2}-{\lambda }_{1}^{* }{{\phi }_{1}^{2}}^{* }=\displaystyle \frac{1}{2}{q}_{x}+{\rm{i}}{{qH}}_{0}.\end{eqnarray}$
Some other constraints with λ1 = α + iβ can be referred from [4]
$\begin{eqnarray}\begin{array}{l}{q}_{x}\,{q}^{* }-{{qq}}_{x}^{* }=2{\rm{i}}| q{| }^{2}\,(2\beta -{H}_{0})\\ +2{\rm{i}}{H}_{0}\,({H}_{0}^{2}+2{H}_{0}\,\beta -2{H}_{1}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{l}{q}_{{xx}}+2| q{| }^{2}q-4q\,({\alpha }^{2}+{\beta }^{2}+{H}_{1}\\ -\displaystyle \frac{1}{2}{H}_{0}^{2}-2\beta {H}_{0})=2{\rm{i}}{q}_{x}\,(2\beta -{H}_{0}),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl} & & | {q}_{x}{| }^{2}=-| q{| }^{4}+4| q{| }^{2}\,\left({\alpha }^{2}+{\beta }^{2}+{H}_{1}-\displaystyle \frac{1}{2}{H}_{0}^{2}-2\beta {H}_{0}\right.)\\ & & +\,4{\alpha }^{2}{H}_{0}^{2}-({H}_{0}^{2}+2\beta {H}_{0}-2{H}_{1})\,(5{H}_{0}^{2}-2\beta {H}_{0}-2{H}_{1}),\end{array}\end{eqnarray}$
where α, β are the real and imaginary parts of λ1. Substituting (6) into (16), it is easy to notice that the left-hand side of (16) is 2iQ2, which yields
$\begin{eqnarray}{H}_{0}=2\beta -1,\,\,(2\beta -1)\,(1-2{H}_{1}-6\beta +8{\beta }^{2})=0.\end{eqnarray}$
Substituting (6) into (17)–(18) and comparing them with the two equations in (9), we have
$\begin{eqnarray}\begin{array}{rcl} & & {a}_{0}=-1-2{H}_{0}^{2}+4{H}_{1}+4{\alpha }^{2}-8{H}_{0}\,\beta +4{\beta }^{2}, & \Space{0ex}{1.44em}{0ex}\\ & & {a}_{1}=-5{H}_{0}^{4}-4{H}_{1}^{2}-8{H}_{0}^{3}\,\beta +4{H}_{0}^{2}\,(3{H}_{1}+{\alpha }^{2}+{\beta }^{2}).\end{array}\end{eqnarray}$
According to the second equation in (19), we have two cases as $\beta =\tfrac{1}{2}$ or $\beta \ne \tfrac{1}{2}$ with ${H}_{1}=4{\beta }^{2}-3\beta +\tfrac{1}{2}$.
Case 1. When $\beta =\tfrac{1}{2}$, that is H0 = 0, then the expression of a0, a1 can be simplified as
$\begin{eqnarray}{a}_{0}=4{H}_{1}+4{\alpha }^{2},\,\,{a}_{1}=-4{H}_{1}^{2}.\end{eqnarray}$
As a result of ${a}_{1}=-4{H}_{1}^{2}\lt 0$, we discuss the dn-periodic background $Q\,(\xi )=\mathrm{dn}\,(\xi ;k)$. Based on the above analysis, we have ${H}_{1}=\pm \tfrac{\sqrt{1-{k}^{2}}}{2}$, ${\alpha }^{2}=\tfrac{1}{4}\,(2-{k}^{2}\mp 2\sqrt{1-{k}^{2}})$. The H1 and λ1 = α + iβ are expressed by the elliptic modulus k. That is to say, the eigenvalues of the Lax pair have two pairs of complex values λ in the right half-plane and −λ in the left half-plane.
$\begin{eqnarray}{\lambda }_{1\pm }=\displaystyle \frac{1}{2}\,\left(1\pm \sqrt{1-{k}^{2}}+\displaystyle \frac{1}{2}{\rm{i}}\right).\end{eqnarray}$
Case 2. When $\beta \ne \tfrac{1}{2}$, then the expression of a0, a1 will become
$\begin{eqnarray}{a}_{0}=4{\alpha }^{2}-{\left(1-2\beta \right)}^{2},\,\,{a}_{1}=4{\alpha }^{2}{\left(\,,1-2\beta \right)}^{2}.\end{eqnarray}$
As a result of a1 > 0, we discuss $Q\,(\xi )=k\;\mathrm{cn}\,(\xi ;k)$. The eigenvalue for λ1 in the first quadrant can be given as
$\begin{eqnarray}{\lambda }_{1}=\displaystyle \frac{k}{2}+\displaystyle \frac{{\rm{i}}}{2}\,(1+\sqrt{1-{k}^{2}}),\end{eqnarray}$
and there also exist some other eigenvalues with −λ1, ${\lambda }_{1}^{* }$, $-{\lambda }_{1}^{* }$ in other quadrants.

5. Periodic and non-periodic solutions of the Lax pair

In this section, we firstly give the definitions of the squared periodic eigenfunctions of the Lax pair (3)–(4) and obtain various relationships between the solutions of the Lax pair (3)–(4) on the background of the Jacobian elliptic functions dn and cn respectively. Then, we introduce a function θ(x, y, t) to establish a connection between periodic solutions and non-periodic solutions for the Lax pair (3)–(4). Therefore, the chief aim of this section is to find out the expression of θ(x, y, t).
Based on (10), (13) and (15), we have
$\begin{eqnarray}\begin{array}{l}{\phi }_{1}^{2}=\displaystyle \frac{2{\lambda }_{1}\,q+{q}_{x}-2{\rm{i}}q}{2\,({\lambda }_{1}+{\lambda }_{1}^{* })},\\ \,\,{{\phi }_{2}^{2}}^{* }=\displaystyle \frac{2{\lambda }_{1}^{* }q-{q}_{x}+2{\rm{i}}q}{2\,({\lambda }_{1}+{\lambda }_{1}^{* })}.\end{array}\end{eqnarray}$
Due to q(x, y, t) = Q(ξ)eiζ, we take
$\begin{eqnarray}\begin{array}{l}{\phi }_{1}\,(x,y,t)={{\rm{\Phi }}}_{1}\,(\xi )\,{{\rm{e}}}^{\tfrac{1}{2}{\rm{i}}\zeta },\\ \ {\phi }_{2}\,(x,y,t)={{\rm{\Phi }}}_{2}\,(\xi )\,{{\rm{e}}}^{-\tfrac{1}{2}{\rm{i}}\zeta },\\ \ \xi =x-{c}_{1}\,y-{c}_{2}\,t,\,\zeta =x-{b}_{1}\,y-{b}_{2}\,t.\end{array}\end{eqnarray}$
Substituting (6) and (26) into (25) yields
$\begin{eqnarray}{{\rm{\Phi }}}_{1}^{2}\,(\xi )=\displaystyle \frac{2{\lambda }_{1}\,Q+{Q}_{x}-{\rm{i}}Q}{2\,({\lambda }_{1}+{\lambda }_{1}^{* })},\,\,{{{\rm{\Phi }}}_{2}^{2}}^{* }(\xi )=\displaystyle \frac{2{\lambda }_{1}^{* }Q-{Q}_{x}+{\rm{i}}Q}{2\,({\lambda }_{1}+{\lambda }_{1}^{* })}.\end{eqnarray}$
According to (12) and (14), we derive ${{\rm{\Phi }}}_{1}^{* }{{\rm{\Phi }}}_{2}^{* }={{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}+{\rm{i}}{H}_{0}$, ${\lambda }_{1}\,{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}+{\lambda }_{1}^{* }{{\rm{\Phi }}}_{1}^{* }{{\rm{\Phi }}}_{2}^{* }-H+\tfrac{1}{2}{Q}^{2}=0$. The sum, difference and product of the squares for Φ1, Φ2 are expressed by
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Phi }}}_{1}^{2}+{{\rm{\Phi }}}_{2}^{2}=\displaystyle \frac{2{\lambda }_{1}\,Q-{\rm{i}}Q}{({\lambda }_{1}+{\lambda }_{1}^{* })},\\ & & {{\rm{\Phi }}}_{1}^{2}-{{\rm{\Phi }}}_{2}^{2}=\displaystyle \frac{{Q}_{x}}{({\lambda }_{1}+{\lambda }_{1}^{* })},\\ & & {{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}=-\displaystyle \frac{{Q}^{2}-2H+2{\rm{i}}{\lambda }_{1}^{* }{H}_{0}}{2\,({\lambda }_{1}+{\lambda }_{1}^{* })}.\end{array}\end{eqnarray}$
As for the dn-function solution $Q\,(\xi )=\mathrm{dn}\,(\xi ;k)$ , ${\lambda }_{1}\,={\lambda }_{\pm }=\tfrac{1}{2}\,(1\pm \sqrt{1-{k}^{2}})+\tfrac{{\rm{i}}}{2}$. Because of H0 = 0 and $H\,={H}_{1}=-\tfrac{1}{2}\sqrt{1-{k}^{2}}$, we can get $2{\lambda }_{1}\,{\phi }_{1}\,{\phi }_{2}+2{\lambda }_{1}^{* }{\phi }_{1}^{* }{\phi }_{2}^{* }\,=-| q{| }^{2}-\sqrt{1-{k}^{2}}$ and ${\left(| {\phi }_{1}{| }^{2}+| {\phi }_{2}{| }^{2}\right)}^{2}=| q{| }^{2}$. Therefore,
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}=-\displaystyle \frac{1}{4\alpha }\left(\,,{Q}^{2}+\sqrt{1-{k}^{2}}\right),\\ & & {{\rm{\Phi }}}_{1}^{2}+{{\rm{\Phi }}}_{2}^{2}=Q=\mathrm{dn}\,(\xi ;k),\\ & & {{\rm{\Phi }}}_{1}^{2}-{{\rm{\Phi }}}_{2}^{2}=\displaystyle \frac{1}{2\alpha }{Q}_{x}.\end{array}\end{eqnarray}$
According to (28) with λ1 = λ±, we find ${{\rm{\Phi }}}_{1}^{2}$ and ${{\rm{\Phi }}}_{2}^{2}$ are real. Also, because ${{\rm{\Phi }}}_{1}^{2}+{{\rm{\Phi }}}_{2}^{2}=Q=\mathrm{dn}\,(\xi ;k)\gt 0$, we finally determine that Φ1 and Φ2 are real so that the first equation of (29) can be rewritten as
$\begin{eqnarray}{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}^{* }=-\displaystyle \frac{1}{4\alpha }\left(\,,{Q}^{2}+\sqrt{1-{k}^{2}}\right).\end{eqnarray}$
As for the cn-function solution $Q\,(\xi )=k\;\mathrm{cn}\,(\xi ;k)$ in (20), we already know that H0 = 2β − 1, ${H}_{1}=4{\beta }^{2}-3\beta +\tfrac{1}{2}$, H = β(2β − 1) and $\alpha =\tfrac{k}{2}$, $\beta =\tfrac{1}{2}\,(1+\sqrt{1-{k}^{2}})$. Therefore, equation (28) can be rewritten as
$\begin{eqnarray}{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}=-\displaystyle \frac{1}{2k}\left(\,,{Q}^{2}+{\rm{i}}k\sqrt{1-{k}^{2}}\right).\end{eqnarray}$
Equations (12) and (14) yield ${\left(| {{\rm{\Phi }}}_{1}{| }^{2}+| {{\rm{\Phi }}}_{2}{| }^{2}\right)}^{2}=\,1-{k}^{2}+| q{| }^{2}$. If we consider the positive square root, we have
$\begin{eqnarray}| {{\rm{\Phi }}}_{1}{| }^{2}+| {{\rm{\Phi }}}_{2}{| }^{2}=\mathrm{dn}\,(\xi ;k).\end{eqnarray}$
Since ${H}_{1}={H}_{0}^{2}+\beta -\tfrac{1}{2}$, we have
$\begin{eqnarray}\begin{array}{l}{\lambda }_{1}\,{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}+{\lambda }_{1}^{* }{{\rm{\Phi }}}_{1}^{* }{{\rm{\Phi }}}_{2}^{* }+{{\rm{\Phi }}}_{1}^{2}\,{{\rm{\Phi }}}_{2}^{2}+{{{\rm{\Phi }}}_{1}^{2}}^{* }{{{\rm{\Phi }}}_{2}^{2}}^{* }\\ +\displaystyle \frac{1}{2}{\left(\,,| {{\rm{\Phi }}}_{1}{| }^{2}-| {{\rm{\Phi }}}_{2}{| }^{2}\right)}^{2}-\beta +\displaystyle \frac{1}{2}=0,\end{array}\end{eqnarray}$
so we obtain
$\begin{eqnarray}{\left(| {{\rm{\Phi }}}_{1}{| }^{2}-| {{\rm{\Phi }}}_{2}{| }^{2}\right)}^{2}={Q}^{2}-\displaystyle \frac{1}{{k}^{2}}{Q}^{4}.\end{eqnarray}$
We choose roots of the relation
$\begin{eqnarray}| {{\rm{\Phi }}}_{1}{| }^{2}-| {{\rm{\Phi }}}_{2}{| }^{2}=\pm k\;\mathrm{sn}\,(\xi ;k)\,\mathrm{cn}\,(\xi ;k).\end{eqnarray}$
According to (32) and (35), we have
$\begin{eqnarray}\begin{array}{rcl} & & | {{\rm{\Phi }}}_{1}{| }^{2}=\displaystyle \frac{1}{2}\,[\mathrm{dn}\,(\xi ;k)\pm k\;\mathrm{sn}\,(\xi ;k)\,\mathrm{cn}\,(\xi ;k)],\\ & & | {{\rm{\Phi }}}_{2}{| }^{2}=\displaystyle \frac{1}{2}\,[\mathrm{dn}\,(\xi ;k)\mp k\;\mathrm{sn}\,(\xi ;k)\,\mathrm{cn}\,(\xi ;k)].\end{array}\end{eqnarray}$
According to (24) and (27), we have
$\begin{eqnarray}{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}^{* }=-\displaystyle \frac{1}{2}\,[\mathrm{cn}\,(\xi ;k)\,\mathrm{dn}\,(\xi ;k)+{\rm{i}}\sqrt{1-{k}^{2}}\;\mathrm{sn}\,(\xi ;k)].\end{eqnarray}$
Here, we introduce a function θ(x, y, t). Let us make an assumption that ${({\phi }_{1},{\phi }_{2})}^{\top }$ is the periodic solution of the Lax pair (3)–(4) with λ = λ1, and ${({\psi }_{1},{\psi }_{2})}^{\top }$ is the second linearly independent solution of the Lax pair (3)–(4) with the same λ = λ1, where ψ1 and ψ2 are non-periodic solutions and have the following forms
$\begin{eqnarray}{\psi }_{1}=\displaystyle \frac{\theta -1}{{\phi }_{2}},\,\ {\psi }_{2}=\displaystyle \frac{\theta +1}{{\phi }_{1}},\end{eqnarray}$
where θ = θ(x, y, t) is a function to be determined.
Using (38) and (3) yields
$\begin{eqnarray}{\theta }_{x}=\theta \displaystyle \frac{q{\phi }_{2}^{2}-{q}^{* }{\phi }_{1}^{2}}{{\phi }_{1}\,{\phi }_{2}}+\displaystyle \frac{q{\phi }_{2}^{2}+{q}^{* }{\phi }_{1}^{2}}{{\phi }_{1}\,{\phi }_{2}}.\end{eqnarray}$
Using (26), we rewrite (39) as
$\begin{eqnarray}{\theta }_{x}=\theta Q\displaystyle \frac{{{\rm{\Phi }}}_{2}^{2}-{{\rm{\Phi }}}_{1}^{2}}{{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}}+Q\displaystyle \frac{{{\rm{\Phi }}}_{2}^{2}+{{\rm{\Phi }}}_{1}^{2}}{{{\rm{\Phi }}}_{1}\,{{\rm{\Phi }}}_{2}}.\end{eqnarray}$
Substituting (28) into (40) yields
$\begin{eqnarray}\begin{array}{l}{\left(\displaystyle \frac{\theta }{{Q}^{2}-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* }}\right)}_{x}\\ =\displaystyle \frac{-4{\lambda }_{1}\,{Q}^{2}+2{\rm{i}}{Q}^{2}}{{\left({Q}^{2}-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* }\right)}^{2}}.\end{array}\end{eqnarray}$
Integrating (41) yields
$\begin{eqnarray}\begin{array}{l}\theta =({Q}^{2}-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* })\\ \left[{\displaystyle \int }_{0}^{\xi }\,\displaystyle \frac{-4{\lambda }_{1}\,{Q}^{2}\,(z)+2{\rm{i}}{Q}^{2}\,(z)}{{\left({Q}^{2}\,(z)-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* }\right)}^{2}}{\rm{d}}z+{\theta }_{0}\,(\,y,t)\,\right],\end{array}\end{eqnarray}$
where θ0(y, t) is an undetermined integral constant of y, t.
If we substitute (38) into (4), a rather complex expression for θt will be derived, which is difficult to deal with. By using the Jacobian elliptic function expansion method to simplify, we get
$\begin{eqnarray}\begin{array}{l}{\theta }_{t}=\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\,({{\rm{\Delta }}}_{0}\,(-2H+{Q}^{2}+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* })\\ +4{\lambda }_{1}\,({\epsilon }_{1}+2{\rm{i}}{\epsilon }_{2}\,{\lambda }_{1})\,({\lambda }_{1}-{\rm{i}}\omega )\,{\theta }_{y}+{{\rm{\Delta }}}_{1}\,{\theta }_{x},\end{array}\end{eqnarray}$
where
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Delta }}}_{0}=2{\rm{i}}\,({c}_{2}+{b}_{1}\,({\epsilon }_{1}+2{\epsilon }_{2}\,(-1+{\rm{i}}{\lambda }_{1}+\omega ))\\ & & +\,{c}_{1}\,({\epsilon }_{1}\,(1-2{\rm{i}}{\lambda }_{1}-2\omega )\\ & & +\,{\epsilon }_{2}\,(-1+{a}_{0}+2{\rm{i}}{\lambda }_{1}+4{\lambda }_{1}^{2}+2\omega -4{\rm{i}}{\lambda }_{1}\,\omega ))),\end{array}\end{eqnarray}$
$\begin{eqnarray}\begin{array}{rcl} & & {{\rm{\Delta }}}_{1}={b}_{2}+{c}_{2}+2{b}_{1}\,{\epsilon }_{1}+{c}_{1}\,{\epsilon }_{1}-{a}_{0}\,{c}_{1}\,{\epsilon }_{1}\\ & & \,-\,3{b}_{1}\,{\epsilon }_{2}+{a}_{0}\,{b}_{1}\,{\epsilon }_{2}-{c}_{1}\,{\epsilon }_{2}+3{a}_{0}\,{c}_{1}\,{\epsilon }_{2}\\ & & \,+\,2{\rm{i}}{c}_{2}\,{\lambda }_{1}+4{c}_{1}\,{\epsilon }_{1}\,{\lambda }_{1}^{2}+8{\rm{i}}{c}_{1}\,{\epsilon }_{2}\,{\lambda }_{1}^{3}\\ & & \,-\,2{b}_{1}\,{\epsilon }_{1}\,\omega -2{c}_{1}\,{\epsilon }_{1}\,\omega +4{b}_{1}\,{\epsilon }_{2}\,\omega +2{c}_{1}\,{\epsilon }_{2}\,\omega \\ & & \,-\,2{a}_{0}\,{c}_{1}\,{\epsilon }_{2}\,\omega -4{\rm{i}}{c}_{1}\,{\epsilon }_{1}\,{\lambda }_{1}\,\omega +8{c}_{1}\,{\epsilon }_{2}\,{\lambda }_{1}^{2}\,\omega .\end{array}\end{eqnarray}$
In order to determine the form of θ, we suppose that
$\begin{eqnarray}\theta =({Q}^{2}-2H+2{\rm{i}}{\lambda }_{1}^{* }{H}_{0})\,\chi .\end{eqnarray}$
Based on the equations (43)–(46), the differential equation about χ becomes
$\begin{eqnarray}\begin{array}{l}{\chi }_{t}=\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\,({{\rm{\Delta }}}_{0}+4{\lambda }_{1}\\ ({\epsilon }_{1}+2{\rm{i}}{\epsilon }_{2}\,{\lambda }_{1})\,({\lambda }_{1}-{\rm{i}}\omega )\,{\chi }_{y}+{{\rm{\Delta }}}_{1}\,{\chi }_{x},\end{array}\end{eqnarray}$
where χ can be rewritten as
$\begin{eqnarray}\chi =\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\,({{\rm{\Delta }}}_{0}\,t+f\,(x,y,t)),\end{eqnarray}$
where
$\begin{eqnarray}f\,(x,y,t)={\int }_{0}^{\xi }\,\displaystyle \frac{\left.{Q}^{2}\,(z\,\right)}{{\left({Q}^{2}\,(z)-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{\ast }\,\right)}^{2}}{\rm{d}}z.\end{eqnarray}$
We finally arrive at the expression of θ(x, y, t) as
$\begin{eqnarray}\begin{array}{rcl} & & \theta \,(x,y,t)=\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\,({Q}^{2}-2H+2\,{\rm{i}}\,{H}_{0}\,{\lambda }_{1}^{* })\\ & & \left[{\displaystyle \int }_{0}^{\xi }\,\displaystyle \frac{(-4{\lambda }_{1}+2{\rm{i}})\,{Q}^{2}\,(z)}{{\left({Q}^{2}\,(z)-2H+2{\rm{i}}{H}_{0}\,{\lambda }_{1}^{* }\right)}^{2}}{\rm{d}}z\right.\\ & & \,\,\,\,+\,2{\rm{i}}\,({c}_{2}+{b}_{1}\,({\epsilon }_{1}+2{\epsilon }_{2}\,(-1+{\rm{i}}{\lambda }_{1}+\omega ))+\,{c}_{1}\,({\epsilon }_{1}\,(1-2{\rm{i}}{\lambda }_{1}-2\omega )\\ & & \,\,\,\,\left.+\,{\epsilon }_{2}\,(-1+{a}_{0}+2{\rm{i}}{\lambda }_{1}+4{\lambda }_{1}^{2}+2\omega -4{\rm{i}}{\lambda }_{1}\,\omega )))\,t\right].\end{array}\end{eqnarray}$

6. Rogue waves on the periodic background

Proposition. The periodic rogue wave solutions of w(x, y, t), v(x, y, t), p(x, y, t), η(x, y, t) are related to the periodic rogue wave solutions of q(x, y, t) as follows
${w}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}=-2{c}_{1}\,{\epsilon }_{2}\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2};$
${v}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}=(-2{c}_{1}\,{\epsilon }_{1}-2{\rm{i}}{c}_{1}\,{\epsilon }_{2}+2{\rm{i}}{b}_{1}\,{\epsilon }_{2})\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2};$
${p}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}=-\tfrac{1}{2}{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}$ (b2 + c2 − 2i(b1(ε1 + $2{\epsilon }_{2}+\,{\rm{i}}{\epsilon }_{1}\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2})+{c}_{1}\,({\epsilon }_{1}$ $-{\epsilon }_{1}\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2}$ $+2{\epsilon }_{2}+5{\rm{i}}{\epsilon }_{2}\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2})));$
${\eta }_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}=\tfrac{1}{4}\,({b}_{2}\,(-3+2{\rm{i}}\omega )$ +c2( − 3 + 2iω) + 2(b1(ε1 × (3i + 2ω) + 2ε2(3i + 2ω + i $(3{\rm{i}}+\omega )\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2}))+{c}_{1}\,({\epsilon }_{1}\,(3{\rm{i}}$ $+2\omega -2\,(3{\rm{i}}+\omega )\,{q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2})$ + 2ε2(3i + 2ω + $5{\rm{i}}\,(3{\rm{i}}+\omega ){q}_{\mathrm{dn}/\mathrm{cn}-\mathrm{rogue}}^{2}))))$.

6.1. Rogue waves on the dn-periodic background

In order to construct the rogue waves of (2) on the dn-periodic background, we apply one-fold Darboux transformation (5) to the Jacobian elliptic function dn, take the seed solution as q = Q(ξ)eiζ and choose the eigenvalue ${\lambda }_{1}={\lambda }_{+}=\tfrac{1}{2}\,\left(1+\sqrt{1-{k}^{2}}+\tfrac{{\rm{i}}}{2}\right)$ in (35). Substituting ${({\phi }_{11},{\phi }_{21})}^{\top }={({\psi }_{1},{\psi }_{2})}^{\top }$ defined by (22) and (38) into the one-fold DT formula, we construct the rogue wave solution of equation (2) on the dn-periodic background as
$\begin{eqnarray}\begin{array}{rcl} & & {q}_{\mathrm{dn}-\mathrm{rogue}}={{\rm{e}}}^{{\rm{i}}\,(x-{b}_{1}\,y-{b}_{2}\,t)}\\ & & \times \,\left[\mathrm{dn}\,(\xi ;k)+\displaystyle \frac{4\alpha \,(| {\theta }_{\mathrm{dn}}{| }^{2}+2\mathrm{iIm}{\theta }_{\mathrm{dn}}-1)\,({\mathrm{dn}}^{2}\,(\xi ;k)+\sqrt{1-{k}^{2}})}{(| {\theta }_{\mathrm{dn}}{| }^{2}+1)\,\mathrm{dn}\,(\xi ,k)+2\,(1-\sqrt{1-{k}^{2}}\;\mathrm{Re}\;{\theta }_{\mathrm{dn}}\;\mathrm{cn}\,(\xi ,k)\,\mathrm{sn}\,(\xi ,k))}\right],\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{rcl} & & {\theta }_{\mathrm{dn}}=\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\left(\,,{\mathrm{dn}}^{2}\,(\xi ;k)+\sqrt{1-{k}^{2}}\right)\\ & & \times \,\left[-2\left(\,,1+\sqrt{1-{k}^{2}},\,\right)\right.\\ & & \times \,{\displaystyle \int }_{0}^{\xi }\left.\displaystyle \frac{{\mathrm{dn}}^{2}\,(z)}{{\left({\mathrm{dn}}^{2}\,(z)+\sqrt{1-{k}^{2}}\right)}^{2}}{\rm{d}}z+{{\rm{\Delta }}}_{0}\,t\right],\end{array}\end{eqnarray}$
where Δ0 is defined in (44).
According to the relation in the proposition, the rogue dn-periodic waves of the other four potentials can be obtained.
It is evident from figure 1 that the periodic rogue waves of the (2+1) dimensional ML-IV equation are mainly linear rogue waves. Figures 1 and 3 illustrate the rogue dn-periodic waves for k = 0.5 and k = 0.99, we find that the amplitude of rogue periodic waves reaches a maximum value at their origin. The corresponding two dimensional plots are presented in figures 2 and 4. In these figures, with the increase of the elliptic modulus k, the amplitude of the rogue periodic waves also increases. Moreover, we can see from figures 2 and 4 that the amplitudes of the rogue periodic waves of the five potentials are different, η(x, y, t) is the largest , q(x, y, t) is the smallest, and the frequencies of the periodic background waves of q(x, y, t), w(x, y, t), v(x, y, t), p(x, y, t), and η(x, y, t) are also different. When the range of fixed t is between 0 and 10, it can be observed that the q(x, y, t), w(x, y, t), v(x, y, t) periodic wave speed and the shape of the periodic wave remain consistent, while the p(x, y, t), η(x, y, t) periodic background wave shows an irregular periodic amplitude. It has the same property when k is equal to 0.99. When the values of c1, c2, b1 and b2 are changed, the frequency of the periodic background wave will change accordingly.
Figure 1. Three-dimensional plots of the rogue waves on the dn-periodic background, with k = 0.5, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t = 0.
Figure 2. Transverse plots of the rogue waves on the dn-periodic background, with k = 0.5, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t-axis.
Figure 3. Three-dimensional plots of the rogue waves on the dn-periodic background, with k = 0.99, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t = 0.
Figure 4. Transverse plots of the rogue waves on the dn-periodic background, with k = 0.99, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t-axis.

6.2. Rogue waves on the cn-periodic background

In order to construct the rogue waves of (2) on the cn-periodic background, we apply the one-fold Darboux transformation (5) to the Jacobian elliptic function cn, take the seed solution as q = Q(ξ)ei(ζ) and choose the complex eigenvalue ${\lambda }_{1}={\lambda }_{\pm }=\tfrac{k}{2}+\tfrac{{\rm{i}}}{2}\,(1+\sqrt{1-{k}^{2}})$ in (24). Substituting ${({\phi }_{11},{\phi }_{21})}^{\top }={({\psi }_{1},{\psi }_{2})}^{\top }$ defined by (38) into (5) and using (41), (43) and (45), we obtain the rogue wave solution of (2) on the cn-periodic background as
$\begin{eqnarray}\begin{array}{rcl} & & {q}_{\mathrm{cn}-\mathrm{rogue}}={{\rm{e}}}^{{\rm{i}}\,(x-{c}_{1}\,y-{c}_{2}\,t)}\\ & & \times \,\left[\Space{0ex}{3.29ex}{0ex}k\;\mathrm{cn}\,(\xi ;k)\right.\\ & & +\,\left.\displaystyle \frac{k\left(\,,-1+2\mathrm{iIm}{\theta }_{\mathrm{cn}}+| {\theta }_{\mathrm{cn}}{| }^{2},\,\right)\left(\mathrm{cn}\,(\xi ;k)\,\mathrm{dn}\,(\xi ;k)+{\rm{i}}\sqrt{1-{k}^{2}}\;\mathrm{sn}\,(\xi ;k)\right)}{\left(1+| {\theta }_{\mathrm{cn}}{| }^{2}\right)\;\mathrm{dn}\,(\xi ;k)+2k\;\mathrm{Re}\;{\theta }_{\mathrm{cn}}\;\mathrm{sn}\,(\xi ;k)\,\mathrm{cn}\,(\xi ;k)}\right],\end{array}\end{eqnarray}$
with
$\begin{eqnarray}\begin{array}{rcl} & & {\theta }_{\mathrm{cn}}=\displaystyle \frac{{\rm{i}}}{2\,({\lambda }_{1}-{\rm{i}}\omega )}\left(\,,{k}^{2}{\;\mathrm{cn}}^{2}\,(\xi ;k)+{\rm{i}}k\sqrt{1-{k}^{2}}\right)\\ & & \times \,\left[-2\left(\,,k+{\rm{i}}\sqrt{1-{k}^{2}},\,\right)\right.\\ & & \times \,{\displaystyle \int }_{0}^{\xi }\left.\displaystyle \frac{{k}^{2}{\;\mathrm{cn}}^{2}\,(z)}{{\left({k}^{2}{\;\mathrm{cn}}^{2}\,(z)+{\rm{i}}k\sqrt{1-{k}^{2}}\right)}^{2}}{\rm{d}}z+{{\rm{\Delta }}}_{0}\,t\right].\end{array}\end{eqnarray}$
Figures 5 and 7 illustrate the rogue cn-periodic waves for k = 0.5 and k = 0.99, we find that the amplitude of the rogue periodic waves reach a maximum value at their origin. The corresponding two dimensional plots are presented in figures 6 and 8. In these figures, with the increase of the elliptic modulus k, the amplitude of the rogue periodic wave also increases. Moreover, we can see from figures 6 and 8 that the amplitudes of the rogue periodic waves of the five potentials are different, η(x, y, t) is the largest , q(x, y, t) is the smallest, and the frequencies of the periodic background waves of q(x, y, t), w(x, y, t), v(x, y, t), p(x, y, t), and η(x, y, t) are also different. When the range of fixed t is between 0 and 10, it can be observed that the q(x, y, t), w(x, y, t), v(x, y, t) periodic wave speed and the shape of the periodic wave remain consistent, while the p(x, y, t), η(x, y, t) periodic background wave shows an irregular periodic amplitude. Different from the dn-background, when k is equal to 0.5, the amplitude of p(x, y, t), η(x, y, t) periodic background wave changes significantly. It has the same property when k is equal to 0.99. When the values of c1, c2, b1 and b2 are changed, the frequency of the periodic background wave will change accordingly.
Figure 5. Three-dimensional plots of the rogue waves on the cn-periodic background, with k = 0.5, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t = 0.
Figure 6. Transverse plots of the rogue waves on the cn-periodic background, with k = 0.5, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t-axis.
Figure 7. Three-dimensional plots of the rogue waves on the cn-periodic background, with k = 0.99, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1, t = 0.
Figure 8. Transverse plot of the rogue waves on the cn-periodic background, with k = 0.99, ε1 = 1, ε2 = 1, ω = 2, b1 = 1, ${c}_{1}=\tfrac{1}{2}$, b2 = 3, c2 = 2, τ = 1 t-axis.

7. Conclusion

In this paper, we constructed rogue wave solutions of (2 + 1)-dimensional ML-IV equation on the elliptic dn- and cn-periodic background. Using the nonlinearization of Lax pair, we have determined the eigenvalues and squared eigenfunctions that correspond to the elliptic traveling wave solutions of (2 + 1)-dimensional ML-IV equation. After that, we gave the non-periodic solution of the Lax pair under the same eigenvalue. Compared with the existing research, the periodic rogue wave solutions studied in this paper mainly present the state of linear rogue waves. Firstly, under the premise of the same elliptic mode, the periodic rogue wave solution with different potential is analyzed. When the elliptic modulus changes, the linear solitons will also change. These results have considerable significance when exploring other high-dimensional generalized integrable equations in the future. However, all the research results are still under the framework of AKNS system. In the future, we expect to apply the method in this paper to other spectral problems and expand the periodic background to other Jacobian elliptic functions. We hope that our research results can provide some implications for rogue wave phenomena in the field of nonlinear physics.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 12 361 052), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414), the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007), and the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02).


X H Wang: Methodology, writing—original draft, software, visualization, data curation. Zhaqilao: Conceptualization, formal analysis, writing—review and editing, supervision, project administration, funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
1
Akhmediev N, Ankiewicz A, Taki M 2009 Waves that appear from nowhere and disappear without a trace J. Phys. Lett. A 373 675 678

2
Benjamin T B 1967 The disintegration of wave trains on deep water J. Fluid Mech. 27 417 430

DOI

3
Turing A M 1952 The chemical basis of morphogenesis Phil Philos. Trans. Roy. Soc. London Ser. B 237 37 72

4
Zakharov V E 1972 Collapse of Langmuir Waves Sov. Phys. Zh. Eksp. Teor. Fiz 62 1745

5
Chen J B, Pelinovsky D E 2018 Rogue periodic waves of the focusing nonlinear Schrödinger equation Proc. R. Soc. A 474 20170814

DOI

6
Chen J B, Pelinovsky D E 2018 Rogue Periodic Waves of the Modified KdV Equation Nonlinearity 31 1955 1980

7
Chen F, Zhang H Q 2021 Periodic travelling waves and rogue waves for the higher-order modified Korteweg-de Vries equation Commun. Nonlinear Sci. Numer. Simul. 97 105767

DOI

8
Zhang H Q, Gao X, Pei Z J, Chen F 2020 Rogue periodic waves in the fifth-order Ito equation Appl. Math. Lett. 107 106464

DOI

9
Zhang H Q, Chen F 2021 Rogue Waves for the Fourth-Order Nonlinear Schrödinger Equation on the Periodic Background Chaos 31 023129

10
Shi W, Zhaqilao 2022 Rogue waves of the sixth-order nonlinear Schrödinger equation on a periodic background Commun. Theor. Phys. 74 055001

DOI

11
Wang Z J, Zhaqilao 2022 Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background Wave Motion 108 102839

DOI

12
Jiang D Z, Zhaqilao 2023 Solitons, breathers and periodic rogue waves forthe variable-coefficient seventh-order nonlinear Schrödinger equation Phys. Scr. 98 085236

DOI

13
Li R M, Geng X G 2020 Rogue periodic waves of the sine-Gordon equation Appl. Math. Lett. 102 106147

DOI

14
Peng W Q, Tian S F, Wang X B, Zhang T T 2020 Characteristics of rogue waves on a periodic background for the Hirota equation Wave Motion 93 102454

DOI

15
Gao X, Zhang H Q 2020 Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background Nonlinear Dyn. 101 1159 1168

DOI

16
Cheng L, Zhang Y, Ma W X, Hu Y W 2024 Wronskian rational solutions to the generalized (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation in fluid dynamics Phys. Fluids 36 017116

DOI

17
Chen S J, Lu X, Yin Y H X 2023 Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model Commun. Theor. Phys. 75 055005

DOI

18
Hillebrands B, Ounadjela K 2002 Spin Dynamics in Confined Magnetic Structures Berlin Springer

19
Mayergoyz I D, Bertotti G, Serpico C 2009 Nonlinear Magnetization Dynamics in Nanosystems Amsterdam Elsevier

20
Stiles M D, Miltat J 2006 Spin Transfer Torque and Dynamics Spin Dynamics in Confined Magnetic Structures III Berlin Springer Topics in Applied Science 101

21
Slonczewski J C 1996 Current-driven excitation of magnetic multilayers J. Magn. Magn. Mater. 159 L261 L268

DOI

22
Lakshmanan M 1977 Continuum spin system as an exactly solvable dynamical system Phys. Lett. A 61 53 54

23
Takhtajan L A 1977 Integration of the continuous Heisenberg spin chain through the inverse scattering method Phys. Lett. A 64 235 237

24
Myrzakulov R, Vijayalakshmi S, Syzdykova R N, Lakshmanan M 1998 On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrödinger equations J. Math. Phys. 39 2122 2140

DOI

25
Myrzakulov R, Mamyrbekova G, Nugmanova G, Lakshmanan M 2015 Integrable (2+1)-Dimensional Spin Models with Self-Consistent Potentials Symmetry 7 1352 1375

26
Wang H R, Guo R 2021 Soliton, breather and rogue wave solutions for the Myrzakulov-Lakshmanan-IV equation Optik 242 166353

DOI

27
Cui X Q, Wen X Y, Zhang B J 2022 Modulational instability and location controllable lump solutions with mixed interaction phenomena for the (2+1)-dimensional Myrzakulov-Lakshmanan-IV Equation J. Nonlinear. Math. Phys. 30 600 627

DOI

28
Yuan F, Jiang Y 2020 Periodic solutions of the (2+1)-dimensional complex modified Korteweg-de Vries equation Mod. Phys. Lett. B 34 2050202

DOI

29
Zha Q L, Li Z B 2008 Darboux transformation and multi-solitons for complex mKdV equation Chin. Phys. Lett. 25 8 11

30
Sun H Y 2023 Modulation instability of the (2+1)-dimensional complex modified Korteweg-de Vries equation on the periodic background Wave Motion 116 103073

DOI

31
Chen Y, Wang X B, Han B 2020 Breathers, rogue waves and their dynamics in a (2+1)-dimensional nonlinear Schrödinger equation Mod. Phys. Lett. B 34 2050234

DOI

32
Zhang H Q, Liu X L, Wen L L 2016 Soliton, breather, and rogue wave for a (2+1)-dimensional nonlinear Schrödinger equation Z. Naturforsch. A 71 95 101

DOI

33
Peng W Q, Tian S F, Zhang T T, Fang Y 2019 Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrödinger equation Math. Method. Appl. Sci. 42 6865 6877

DOI

34
Wang X B, Tian S F, Zhang T T 2018 Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation Proc. Am. Math. Soc. 146 3353 3365

DOI

35
Liu S K, Fu Z T, Liu S D, Zhao Q 2001 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations Phys. Lett. A 289 69 74

DOI

36
Cao C W 1990 Nonlinearization of AKNS hierachy Sci. China, Ser. A: Math., Phys., Astron. 33 528 536

37
Zhou R G 2009 Finite-dimensional integrable Hamiltonian systems related to the nonlinear Schrödinger equation Stud. Appl. Math. 123 311 335

DOI

38
Zhou R G 2007 Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued modified Korteweg–de Vries equation J. Math. Phys. 48 013510

Outlines

/