Welcome to visit Communications in Theoretical Physics,
Mathematical Physics

Higher-dimensional integrable deformations of the classical Boussinesq–Burgers system*

  • Xiaoyu Cheng ,
  • Qing Huang
Expand
  • School of Mathematics, Northwest University, Xi'an 710127, China

Received date: 2023-09-26

  Revised date: 2024-02-18

  Accepted date: 2024-03-19

  Online published: 2024-05-08

Supported by

*National Natural Science Foundation of China(11871396)

National Natural Science Foundation of China(12271433)

Copyright

© 2024 Institute of Theoretical Physics CAS, Chinese Physical Society and IOP Publishing

Abstract

In this paper, the (1+1)-dimensional classical Boussinesq–Burgers (CBB) system is extended to a (4+1)-dimensional CBB system by using its conservation laws and the deformation algorithm. The Lax integrability, symmetry integrability and a large number of reduced systems of the new higher-dimensional system are given. Meanwhile, for illustration, an exact solution of a (1+1)-dimensional reduced system is constructed from the viewpoint of Lie symmetry analysis and the power series method.

Cite this article

Xiaoyu Cheng , Qing Huang . Higher-dimensional integrable deformations of the classical Boussinesq–Burgers system*[J]. Communications in Theoretical Physics, 2024 , 76(6) : 065001 . DOI: 10.1088/1572-9494/ad3546

1. Introduction

The study of integrable partial differential equations (PDEs) is one of the most prominent fields in nonlinear science. Several of the past decades have witnessed the rapid progress of research on integrable PDEs, especially on the (1+1)-dimensional and (2+1)-dimensional cases. In contrast, higher-dimensional integrable PDEs are relatively rare. Thus, the establishment of more high-dimensional integrable PDEs, especially by the extension of lower-dimensional integrable systems, is an important topic in the fields of mathematics and physics.
It is well known that there are many universal and convenient tools which could be used to simplify a complex equation into a simple one. For example, symmetry reduction can reduce the order of an ordinary differential equation (ODE) or the dimension of a PDE under consideration. Specifically, it can simplify a high-dimensional/order equation to a low-dimensional/order equation. In contrast, it is often very hard to study the laws of a complex equation from the results of its associated simple equation. However, in some special cases, it is also possible to transform the results of a simple equation into those of some of its related complex equations. For example, by using the Miura-type transformation from the Korteweg–de Vries (KdV) equation to the modified KdV equation and Schwarz KdV equation, (1+1)-dimensional and (2+1)-dimensional integrable sine-Gordon equations can be derived from the Riccati equation [1]. In addition, starting from the (2+1)-dimensional Kadomtsev–Petviashvili, nonlinear Schrödinger (NLS) and Schwarz KdV equations, some (3+1)-dimensional integrable models were explicitly given via Painlevé analysis [2].
To obtain more integrable high-dimensional equations and study their properties efficiently and conveniently, very recently Lou et al developed a deformation algorithm, which was first proposed as a deformation conjecture [3] and was soon proved by Casati and Zhang [4]. This deformation algorithm, which demonstrated that a lower-dimensional equation can be extended to higher-dimensional equations on condition that the lower-dimensional equation possesses enough conservation laws, providing more possibilities for the study of higher-dimensional equations. It was firstly, in [3], applied to the usual (1+1)-dimensional KdV equation and the (1+1)-dimensional Ablowitz–Kaup–Newell–Segur system and, furthermore, it is found that for the resultant higher-dimensional equations, there are completely different structures and properties from the traditional integrable equations. In [5], the (1+1)-dimensional Kaup–Newell system was extended to a (4+1)-dimensional system whose Lax integrability and symmetry integrability were also proved. Furthermore, the deformation algorithm also refers to many other integrable equations, such as the modified KdV equation [6], Burgers equation [7], Camassa–Holm equation [8] and the NLS-type Boussinesq equation [9].
In this paper, we consider the integrable deformation of the (1+1)-dimensional classical Boussinesq–Burgers (CBB) system [10, 11]
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}\beta (2-\beta ){v}_{{xxx}}+\displaystyle \frac{1}{2}(1-\beta ){u}_{{xx}}+2{\left({uv}\right)}_{x},\\ {v}_{t}=\displaystyle \frac{1}{2}(\beta -1){v}_{{xx}}+2{{vv}}_{x}+\displaystyle \frac{1}{2}{u}_{x},\end{array}\right.\end{eqnarray}$
where u = u(x, t) is the height deviating from the equilibrium position of water, v = v(x, t) represents the field of horizontal velocity and β is a real constant. For β = 0 (or β = 2, t → − t, x → − x), system (1) reduces to the Broer–Kaup system, which is related to the classical Boussinesq system with a special transformation [12]. If β = 1 and each of the dependent and independent variables is replaced by its negative counterpart, system (1) becomes the Boussinesq–Burgers system [13]. Geng and Wu constructed finite-band solutions of the CBB system (1) based on Lax pairs of stationary evolution equations, in [11]. In [14], Rui established two basic Darboux transformations of a spectral problem to system (1), and exact solutions of the system were obtained as well. For system (1), its rational and special function solutions were derived using Lie symmetries in [15], and there the conservation laws were also established.
To keep this exposition self-contained, we summarize below the main scheme of Lou's deformation algorithm. An interested reader can find further details in the monographs [39]. For a general (1+1)-dimensional m-component integrable evolution system
$\begin{eqnarray*}{{\boldsymbol{u}}}_{t}={\boldsymbol{F}}({\boldsymbol{u}},{{\boldsymbol{u}}}_{x},\cdots ,{{\boldsymbol{u}}}_{{xn}}),\end{eqnarray*}$
endowed with the conservation laws
$\begin{eqnarray*}\begin{array}{l}{[{\rho }_{i}({\boldsymbol{u}})]}_{t}={[{J}_{i}({\boldsymbol{u}},{{\boldsymbol{u}}}_{x},\cdots ,{{\boldsymbol{u}}}_{{xN}})]}_{x},\\ i\,=\,1,2,\cdots ,D-1,\end{array}\end{eqnarray*}$
where ${{\boldsymbol{u}}}_{{xn}}={\partial }_{x}^{n}{\boldsymbol{u}},\,{\boldsymbol{u}}={\left({u}_{1},{u}_{2},\cdots ,{u}_{m}\right)}^{{\rm{T}}}$ and ui = ui(x, t), and the deformed (D+1)-dimensional system
$\begin{eqnarray*}\hat{T}{\boldsymbol{u}}={\boldsymbol{F}}({\boldsymbol{u}},\hat{L}{\boldsymbol{u}},\cdots ,{\hat{L}}^{n}{\boldsymbol{u}})\end{eqnarray*}$
is integrable, where the time and space deformation operators are, respectively,
$\begin{eqnarray*}\begin{array}{l}\hat{T}\equiv {\partial }_{t}+\displaystyle \sum _{i=1}^{D-1}{\bar{J}}_{i}{\partial }_{{x}_{i}},\\ \hat{L}\equiv {\partial }_{x}+\displaystyle \sum _{i=1}^{D-1}{\rho }_{i}{\partial }_{{x}_{i}},\end{array}\end{eqnarray*}$
with the deformed flows ${\bar{J}}_{i}={J}_{i}{| }_{{{\boldsymbol{u}}}_{{xj}}\to {\hat{L}}^{j}{\boldsymbol{u}}}$.
The outline of this paper is as follows. In section 2, the (4+1)-dimensional CBB system is obtained by applying the deformation algorithm to the (1+1)-dimensional system (1). In addition, the Lax integrability and symmetry integrability of the higher-dimensional system are given. In section 3, we study many lower-dimensional reduced integrable systems of the resultant (4+1)-dimensional CBB system. And for illustration, an exact solution of one reduced system is constructed with the help of Lie symmetry analysis and a power series method in section 4. The last section contains a brief discussion of the results obtained and our concluding remarks.

2. Integrable deformation of the CBB system (1)

2.1. The higher-dimensional CBB system

For the (1+1)-dimensional CBB system (1), there are three conservation laws of the form
$\begin{eqnarray*}{\rho }_{{it}}={J}_{{ix}},\,\,\,\,i=1,2,3,\end{eqnarray*}$
where
$\begin{eqnarray*}\begin{array}{l}{\rho }_{1}=u,\,\,\,{J}_{1}=\displaystyle \frac{\beta (2-\beta )}{2}{v}_{{xx}}+\displaystyle \frac{1-\beta }{2}{u}_{x}+2{uv},\\ {\rho }_{2}=v,\,\,\,{J}_{2}=\displaystyle \frac{\beta -1}{2}{v}_{x}+{v}^{2}+\displaystyle \frac{1}{2}u,\\ {\rho }_{3}={uv},\,\,\,{J}_{3}=\displaystyle \frac{\beta (2-\beta )}{2}{{vv}}_{{xx}}+\displaystyle \frac{\beta (\beta -2)}{4}{v}_{x}^{2}\\ +\displaystyle \frac{1-\beta }{2}({{vu}}_{x}-{{uv}}_{x})+2{{uv}}^{2}+\displaystyle \frac{1}{4}{u}^{2}.\end{array}\end{eqnarray*}$
Taking these conservation laws into consideration and applying Lou's deformation algorithm to system (1), we get the (4+1)-dimensional CBB system
$\begin{eqnarray}\left\{\begin{array}{l}\hat{T}u=\hat{L}\left(\displaystyle \frac{\beta (2-\beta )}{2}{\hat{L}}^{2}v+\displaystyle \frac{1-\beta }{2}\hat{L}u+2{uv}\right),\\ {}_{}\hat{T}v=\hat{L}\left(\displaystyle \frac{1-\beta }{2}\hat{L}v+{v}^{2}+\displaystyle \frac{1}{2}u\right),\end{array}\right.\end{eqnarray}$
with the deformation operators
$\begin{eqnarray*}\begin{array}{l}\hat{L}\equiv {\partial }_{x}+u{\partial }_{y}+v{\partial }_{z}+{uv}{\partial }_{\xi },\\ \hat{T}\equiv {\partial }_{t}+{\bar{J}}_{1}{\partial }_{y}+{\bar{J}}_{2}{\partial }_{z}+{\bar{J}}_{3}{\partial }_{\xi },\end{array}\end{eqnarray*}$
where
$\begin{eqnarray*}\begin{array}{l}{\bar{J}}_{1}=\displaystyle \frac{\beta (2-\beta )}{2}{\hat{L}}^{2}v+\displaystyle \frac{1-\beta }{2}\hat{L}u+2{uv},\\ {\bar{J}}_{2}=\displaystyle \frac{\beta -1}{2}\hat{L}v+{v}^{2}+\displaystyle \frac{1}{2}u,\\ {\bar{J}}_{3}=\displaystyle \frac{\beta (2-\beta )}{2}v{\hat{L}}^{2}v+\displaystyle \frac{\beta (\beta -2)}{4}{\left(\hat{L}v\right)}^{2}\\ +\displaystyle \frac{1-\beta }{2}(v\hat{L}u-u\hat{L}v)+2{{uv}}^{2}+\displaystyle \frac{1}{4}{u}^{2}.\end{array}\end{eqnarray*}$

2.2. The Lax integrability of the (4+1)-dimensional CBB system (2)

Now, based on the Lax pair of the previous low-dimensional CBB system (1), we consider the Lax integrability of the higher-dimensional system (2). The Lax equation of system (1) is
$\begin{eqnarray}\begin{array}{l}{\psi }_{x}=M\psi =\left(\begin{array}{cc}\lambda -v & u+\beta {v}_{x}\\ -1 & -\lambda +v\end{array}\right)\psi ,\\ {\psi }_{t}=N\psi =\left(\begin{array}{cc}{\lambda }^{2}+\displaystyle \frac{1}{2}{v}_{x}-{v}^{2} & \lambda (u+\beta {v}_{x})+\displaystyle \frac{1}{2}{\left(u+\beta {v}_{x}\right)}_{x}+(u+\beta {v}_{x})v\\ -\lambda -v & -{\lambda }^{2}-\displaystyle \frac{1}{2}{v}_{x}+{v}^{2}\end{array}\right)\psi .\end{array}\end{eqnarray}$
Here, $\psi ={\left({\psi }_{1},{\psi }_{2}\right)}^{{\rm{T}}}$, and λ is a spectral parameter. The compatibility condition ψxt = ψtx yields a zero curvature equation
$\begin{eqnarray*}{M}_{t}-{N}_{x}+[M,N]=0.\end{eqnarray*}$
Applying the deformation relations
$\begin{eqnarray*}{\partial }_{x}\to \hat{L},\,\,\,\,{\partial }_{t}\to \hat{T}\end{eqnarray*}$
to the Lax equation (3) yields the Lax pair of system (2)
$\begin{eqnarray}\begin{array}{l}\hat{M}\psi =\left(\begin{array}{cc}\lambda -v-\hat{L} & u+\beta \hat{L}v\\ -1 & -\lambda +v-\hat{L}\end{array}\right)\psi =0,\\ \hat{N}\psi =\left(\begin{array}{cc}{\lambda }^{2}+\displaystyle \frac{1}{2}\hat{L}v-{v}^{2}-\hat{T} & \lambda (u+\beta \hat{L}v)+\displaystyle \frac{1}{2}\hat{L}(u+\beta \hat{L}v)+{uv}+\beta v\hat{L}v\\ -\lambda -v & -{\lambda }^{2}-\displaystyle \frac{1}{2}\hat{L}v+{v}^{2}-\hat{T}\end{array}\right)\psi =0.\end{array}\end{eqnarray}$
The compatibility condition $[\hat{M},\hat{N}]=\hat{M}\hat{N}-\hat{N}\hat{M}=0$ just gives the (4+1)-dimensional CBB system (2).

2.3. Higher-order symmetries of the extended CBB system (2)

To construct the higher-order symmetries of the obtained (4+1)-dimensional CBB system (2), we now apply the deformation algorithm to the higher-order flow systems of system (1). Note that these symmetries cannot be obtained from the direct deformation of the original system.
The simplest higher-order flow system for system (1) is given by
$\begin{eqnarray}{u}_{\tau }={K}_{1x},\qquad {v}_{\tau }={K}_{2x},\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{l}{K}_{1}=\displaystyle \frac{1}{4}{u}_{{xx}}+\displaystyle \frac{3}{4}\beta (2-\beta )(2{{vv}}_{{xx}}+{v}_{x}^{2})\\ \,+\displaystyle \frac{3}{2}(1-\beta ){{vu}}_{x}+\displaystyle \frac{3}{4}{u}^{2}+3{{uv}}^{2},\\ {K}_{2}=\displaystyle \frac{1}{4}{v}_{{xx}}+\displaystyle \frac{3}{2}(\beta -1){{vv}}_{x}+\displaystyle \frac{3}{2}{uv}+{v}^{3}.\end{array}\end{eqnarray*}$
In addition to u and v, the derivative-independent conserved density uv of the higher-order flow system (5) exists, and the corresponding conservation law is
$\begin{eqnarray*}{\left({uv}\right)}_{\tau }={K}_{3x},\end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{l}{K}_{3}=\displaystyle \frac{3}{2}\beta (2-\beta ){v}^{2}{v}_{{xx}}\\ +\displaystyle \frac{1}{4}({{vu}}_{{xx}}+{{uv}}_{{xx}}-{u}_{x}{v}_{x})\\ +\displaystyle \frac{3}{2}(\beta -1)({{uvv}}_{x}-{v}^{2}{u}_{x})+3{{uv}}^{3}+\displaystyle \frac{3}{2}{u}^{2}v.\end{array}\end{eqnarray*}$
Applying the deformation algorithm to the higher-order flow system (5), we arrive at the following (4+1)-dimensional higher-order flow system
$\begin{eqnarray}\begin{array}{l}\hat{\tau }u=\hat{L}{\bar{K}}_{1},\,\,\,\,\hat{\tau }v=\hat{L}{\bar{K}}_{2},\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{l}\hat{\tau }={\partial }_{\tau }+{\bar{K}}_{1}{\partial }_{y}+{\bar{K}}_{2}{\partial }_{z}+{\bar{K}}_{3}{\partial }_{\xi },\\ {\bar{K}}_{1}=\displaystyle \frac{1}{4}{\hat{L}}^{2}u+\displaystyle \frac{3}{4}\beta (2-\beta )(2v{\hat{L}}^{2}v+{\left(\hat{L}v\right)}^{2})\\ +\displaystyle \frac{3}{2}(1-\beta )v\hat{L}u+\displaystyle \frac{3}{4}{u}^{2}+3{{uv}}^{2},\\ {\bar{K}}_{2}=\displaystyle \frac{1}{4}{\hat{L}}^{2}v+\displaystyle \frac{3}{2}(\beta -1)v\hat{L}v+\displaystyle \frac{3}{2}{uv}+{v}^{3},\end{array}\end{eqnarray*}$
with
$\begin{eqnarray*}\begin{array}{l}{\bar{K}}_{3}=\displaystyle \frac{3}{2}\beta (2-\beta ){v}^{2}{\hat{L}}^{2}v\\ +\displaystyle \frac{1}{4}(v{\hat{L}}^{2}u+u{\hat{L}}^{2}v-\hat{L}u\hat{L}v)\\ +\displaystyle \frac{3}{2}(\beta -1)({uv}\hat{L}v-{v}^{2}\hat{L}u)\\ +3{{uv}}^{3}+\displaystyle \frac{3}{2}{u}^{2}v.\end{array}\end{eqnarray*}$
Based on the higher-order flow system (6), in system (2) we obtain the higher-order symmetry of the form
$\begin{eqnarray*}\sigma =\left(\begin{array}{c}\hat{L}{\bar{K}}_{1}-{\bar{K}}_{1}{u}_{y}-{\bar{K}}_{2}{u}_{z}-{\bar{K}}_{3}{u}_{\xi }\\ \hat{L}{\bar{K}}_{2}-{\bar{K}}_{1}{v}_{y}-{\bar{K}}_{2}{v}_{z}-{\bar{K}}_{3}{v}_{\xi }\end{array}\right).\end{eqnarray*}$

3. Reduced systems of the (4+1)-dimensional CBB system (2)

Generally speaking, it is often very difficult to discuss higher-dimensional systems. To find some new characteristics of system (2) more intuitively, we reduce system (2) along the coordinate axes and discuss the properties of the reduced systems. Obviously, when u and v are only dependent on time t and space x, system (2) degenerates into the original (1+1)-dimensional system (1). Therefore, the solutions of system (1) are special solutions of system (2). This trivial case will not be discussed.

3.1. The (1+1)-dimensional reduced systems of system (2)

Here, we intend to discuss some (1+1)-dimensional reduced systems of (4+1)-dimensional integrable system (2).

3.1.1. Reduction with respect to {y, t}

Taking into consideration that u and v depend only on {y, t}, system (2) degenerates into the (1+1)-dimensional system, as below
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{\beta (2-\beta )}{2}({u}^{3}{v}_{{yyy}}+{u}^{2}{v}_{y}{u}_{{yy}}+2{u}^{2}{u}_{y}{v}_{{yy}})+\displaystyle \frac{1-\beta }{2}{u}^{2}{u}_{{yy}}+2{u}^{2}{v}_{y},\\ {v}_{t}=\displaystyle \frac{\beta (\beta -2)}{2}({u}^{2}{v}_{y}{v}_{{yy}}+{{uu}}_{y}{v}_{y}^{2})+\displaystyle \frac{\beta -1}{2}({u}^{2}{v}_{{yy}}+2{{uu}}_{y}{v}_{y})+\displaystyle \frac{1}{2}{{uu}}_{y}.\end{array}\right.\end{eqnarray}$
Recalling the Lax pair (4) of system (2), we obtain the Lax pair of system (7)
$\begin{eqnarray*}\begin{array}{l}\hat{{M}^{y}}\psi =\left(\begin{array}{cc}\lambda -v-u{\partial }_{y} & u+\beta {{uv}}_{y}\\ -1 & -\lambda +v-u{\partial }_{y}\end{array}\right)\psi =0,\\ \hat{{N}^{y}}\psi =\left(\begin{array}{cc}{\lambda }^{2}+\displaystyle \frac{1}{2}{{uv}}_{y}-{v}^{2}-{\bar{J}}_{1}{\partial }_{y}-{\partial }_{t} & {\hat{N}}_{12}^{y}\\ -\lambda -v & -{\lambda }^{2}-\displaystyle \frac{1}{2}{{uv}}_{y}+{v}^{2}-{\bar{J}}_{1}{\partial }_{y}-{\partial }_{t}\end{array}\right)\psi =0,\end{array}\end{eqnarray*}$
where ${\hat{N}}_{12}^{y}=\lambda (u+\beta {{uv}}_{y})+\tfrac{1}{2}{{uu}}_{y}$ + $\tfrac{1}{2}\beta u({u}_{y}{v}_{y}+{{uv}}_{{yy}})\,+{uv}+\beta {{uvv}}_{y},$ and the compatibility condition $[{\hat{M}}^{y},{\hat{N}}^{y}]=0$ is just the (1+1)-dimensional system (7).
The conservation laws of system (7) satisfying the deformation theorem are
$\begin{eqnarray}\begin{array}{l}{\left({u}^{-1}\right)}_{t}=\left(\displaystyle \frac{\beta (\beta -2)}{2}({{uv}}_{{yy}}+{u}_{y}{v}_{y})\right.\\ {\left.+\displaystyle \frac{\beta -1}{2}{u}_{y}-2v\right)}_{y},\\ {v}_{t}={\left(\displaystyle \frac{\beta (\beta -2)}{4}{u}^{2}{v}_{y}^{2}+\displaystyle \frac{\beta -1}{2}{u}^{2}{v}_{y}+\displaystyle \frac{1}{4}{u}^{2}\right)}_{y},\\ {\left({u}^{-1}v\right)}_{t}=\left(\displaystyle \frac{\beta (\beta -2)}{2}({{uvv}}_{{yy}}+{{vu}}_{y}{v}_{y})\right.\\ {\left.+\displaystyle \frac{\beta -1}{2}({{uv}}_{y}+{{vu}}_{y})+\displaystyle \frac{1}{2}u-{v}^{2}\right)}_{y}.\end{array}\end{eqnarray}$
Now, we apply the deformation algorithm to system (7) to obtain a new higher-dimensional system. According to conservation laws (8) we introduce the following deformation operators
$\begin{eqnarray*}\begin{array}{l}{\hat{L}}_{1}={\partial }_{y}+\displaystyle \frac{1}{u}{\partial }_{x}+\displaystyle \frac{v}{u}{\partial }_{z}+v{\partial }_{\xi },\\ {\hat{T}}_{1}={\partial }_{t}+\left(\displaystyle \frac{\beta (\beta -2)}{2}(u{\hat{L}}_{1}^{2}v+{\hat{L}}_{1}u{\hat{L}}_{1}v)\right.\\ \left.+\displaystyle \frac{\beta -1}{2}{\hat{L}}_{1}u-2v\right){\partial }_{x}\\ +\left(\displaystyle \frac{\beta (\beta -2)}{2}({uv}{\hat{L}}_{1}^{2}v+v{\hat{L}}_{1}u{\hat{L}}_{1}v)\right.\\ \left.+\displaystyle \frac{\beta -1}{2}(u{\hat{L}}_{1}v+v{\hat{L}}_{1}u)+\displaystyle \frac{1}{2}u-{v}^{2}\right){\partial }_{z}\\ +\left(\displaystyle \frac{\beta (\beta -2)}{4}{u}^{2}{\left({\hat{L}}_{1}v\right)}^{2}\right.\\ \left.+\displaystyle \frac{\beta -1}{2}{u}^{2}{\hat{L}}_{1}v+\displaystyle \frac{1}{4}{u}^{2}\right){\partial }_{\xi }.\end{array}\end{eqnarray*}$
Based upon the deformation theorem, the (4+1)-dimensional integrable deformation of the (1+1)-dimensional CBB system (7) is of the form
$\begin{eqnarray}\begin{array}{l}{\hat{T}}_{1}u=-{u}^{2}{\hat{L}}_{1}\left(\displaystyle \frac{\beta (\beta -2)}{2}(u{\hat{L}}_{1}^{2}v+{\hat{L}}_{1}u{\hat{L}}_{1}v)\right.\\ \,\left.+\displaystyle \frac{\beta -1}{2}{\hat{L}}_{1}u-2v\right),\\ {\hat{T}}_{1}v={\hat{L}}_{1}\left(\displaystyle \frac{\beta (\beta -2)}{4}{u}^{2}{\left({\hat{L}}_{1}v\right)}^{2}\right.\\ \,\left.+\displaystyle \frac{\beta -1}{2}{u}^{2}{\hat{L}}_{1}v+\displaystyle \frac{1}{4}{u}^{2}\right).\end{array}\end{eqnarray}$
Direct calculation shows that systems (9) and (2) are exactly the same. Hence, system (9) is integrable.

3.1.2. Reduction with respect to {z, t}

If u and v merely contain one spatial variable {z}, then system (2) becomes a (1+1)-dimensional CBB system
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{\beta (2-\beta )}{2}({v}^{3}{v}_{{zzz}}+4{v}^{2}{v}_{z}{v}_{{zz}}+{{vv}}_{z}^{3})+\displaystyle \frac{1-\beta }{2}({v}^{2}{u}_{{zz}}+2{{vu}}_{z}{v}_{z})+{v}^{2}{u}_{z}-\displaystyle \frac{1}{2}{{uu}}_{z}+2{{uvv}}_{z},\\ {v}_{t}=\displaystyle \frac{\beta -1}{2}{v}^{2}{v}_{{zz}}+\displaystyle \frac{1}{2}{{vu}}_{z}+{v}^{2}{v}_{z}-\displaystyle \frac{1}{2}{{uv}}_{z},\end{array}\right.\end{eqnarray}$
which admits the Lax pair
$\begin{eqnarray*}\begin{array}{l}\hat{{M}^{z}}\psi =\left(\begin{array}{cc}\lambda -v-v{\partial }_{z} & u+\beta {{vv}}_{z}\\ -1 & -\lambda +v-v{\partial }_{z}\end{array}\right)\psi =0,\\ \hat{{N}^{z}}\psi =\left(\begin{array}{cc}{\lambda }^{2}+\displaystyle \frac{1}{2}{{vv}}_{z}-{v}^{2}-{\bar{J}}_{2}{\partial }_{z}-{\partial }_{t} & {\hat{N}}_{12}^{z}\\ -\lambda -v & -{\lambda }^{2}-\displaystyle \frac{1}{2}{{vv}}_{z}+{v}^{2}-{\bar{J}}_{2}{\partial }_{z}-{\partial }_{t}\end{array}\right)\psi =0,\end{array}\end{eqnarray*}$
where ${\hat{N}}_{12}^{z}=\lambda (u+\beta {{vv}}_{z})+\tfrac{1}{2}{{vu}}_{z}+\tfrac{1}{2}\beta v({v}_{z}^{2}+{{vv}}_{{zz}})+{uv}+\beta {v}^{2}{v}_{z}.$
The conservation laws
$\begin{eqnarray*}\begin{array}{l}{u}_{t}=\left(\displaystyle \frac{\beta (2-\beta )}{4}(2{v}^{3}{v}_{{zz}}+{v}^{2}{v}_{z}^{2})\right.\\ {\left.+\displaystyle \frac{1-\beta }{2}{v}^{2}{u}_{z}+{{uv}}^{2}-\displaystyle \frac{1}{4}{u}^{2}\right)}_{z},\\ {\left({v}^{-1}\right)}_{t}={\left(\displaystyle \frac{1-\beta }{2}{v}_{z}-\displaystyle \frac{u}{2v}-v\right)}_{z},\\ {\left({{uv}}^{-1}\right)}_{t}=\left(\displaystyle \frac{\beta (2-\beta )}{2}({v}^{2}{v}_{{zz}}+{{vv}}_{z}^{2})\right.\\ {\left.+\displaystyle \frac{1-\beta }{2}({{uv}}_{z}+{{vu}}_{z})-\displaystyle \frac{{u}^{2}}{2v}+{uv}\right)}_{z},\end{array}\end{eqnarray*}$
of system (10) yield the deformation operators
$\begin{eqnarray*}\begin{array}{l}{\hat{L}}_{2}={\partial }_{z}+\displaystyle \frac{1}{v}{\partial }_{x}+\displaystyle \frac{u}{v}{\partial }_{y}+u{\partial }_{\xi },\\ {\hat{T}}_{2}={\partial }_{t}+\left(\displaystyle \frac{\beta (2-\beta )}{2}({v}^{2}{\hat{L}}_{2}^{2}v+v{\left({\hat{L}}_{2}v\right)}^{2})\right.\\ \left.+\displaystyle \frac{1-\beta }{2}(u{\hat{L}}_{2}v+v{\hat{L}}_{2}u)-\displaystyle \frac{{u}^{2}}{2v}+{uv}\right){\partial }_{y}\\ +\left(\displaystyle \frac{\beta (2-\beta )}{4}(2{v}^{3}{\hat{L}}_{2}^{2}v+{v}^{2}{\left({\hat{L}}_{2}v\right)}^{2})\right.\\ \left.+\displaystyle \frac{1-\beta }{2}{v}^{2}{\hat{L}}_{2}u+{{uv}}^{2}-\displaystyle \frac{1}{4}{u}^{2}\right){\partial }_{\xi }\\ +\left(\displaystyle \frac{1-\beta }{2}{\hat{L}}_{2}v-\displaystyle \frac{u}{2v}-v\right){\partial }_{x}.\end{array}\end{eqnarray*}$
With these operators in hand, we have the (4+1)-dimensional integrable deformation of system (10)
$\begin{eqnarray}\begin{array}{l}{\hat{T}}_{2}u=\displaystyle \frac{\beta (2-\beta )}{2}({v}^{3}{\hat{L}}_{2}^{3}v+4{v}^{2}{\hat{L}}_{2}v{\hat{L}}_{z}^{2}v+v{\left({\hat{L}}_{2}v\right)}^{3})\\ \,+\displaystyle \frac{1-\beta }{2}({v}^{2}{\hat{L}}_{2}^{2}u+2v{\hat{L}}_{2}u{\hat{L}}_{2}v)\\ \,+{v}^{2}{\hat{L}}_{2}u-\displaystyle \frac{u}{2}{\hat{L}}_{2}u+2{uv}{\hat{L}}_{2}v,\\ {\hat{T}}_{2}v=\displaystyle \frac{\beta -1}{2}{v}^{2}{\hat{L}}_{2}^{2}v\\ \,+\displaystyle \frac{v}{2}{\hat{L}}_{2}u-\displaystyle \frac{u}{2}{\hat{L}}_{2}v+{v}^{2}{\hat{L}}_{2}v,\end{array}\end{eqnarray}$
which is system (2) again.

3.1.3. Reduction with respect to {ξ, t}

When u and v are {y, z}-independent, system (2) turns into the following (1+1)-dimensional CBB system
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{\beta (2-\beta )}{4}(2{u}^{3}{v}^{3}{v}_{\xi \xi \xi }+2{u}^{2}{v}^{3}{v}_{\xi }{u}_{\xi \xi }+4{u}^{2}{v}^{3}{u}_{\xi }{v}_{\xi \xi }+8{u}^{3}{v}^{2}{v}_{\xi }{v}_{\xi \xi }+7{u}^{2}{v}^{2}{v}_{\xi }^{2}{u}_{\xi }+2{u}^{3}{{vv}}_{\xi }^{3})\\ +\displaystyle \frac{1-\beta }{2}({u}^{2}{v}^{2}{u}_{\xi \xi }+2{u}^{2}{{vu}}_{\xi }{v}_{\xi })-\displaystyle \frac{1}{4}{u}^{2}{u}_{\xi }+2{u}^{2}{{vv}}_{\xi },\\ {v}_{t}=\displaystyle \frac{\beta (\beta -2)}{4}(2{u}^{2}{v}^{3}{v}_{\xi }{v}_{\xi \xi }+2{{uv}}^{3}{v}_{\xi }^{2}{u}_{\xi }+{u}^{2}{v}^{2}{v}_{\xi }^{3})+\displaystyle \frac{\beta -1}{2}({u}^{2}{v}^{2}{v}_{\xi \xi }+2{{uv}}^{2}{u}_{\xi }{v}_{\xi })\\ +\displaystyle \frac{1}{2}{{uvu}}_{\xi }-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi },\end{array}\right.\end{eqnarray}$
which possesses the Lax pair
$\begin{eqnarray*}\begin{array}{l}\hat{{M}^{\xi }}\psi =\left(\begin{array}{cc}\lambda -v-{uv}{\partial }_{\xi } & u+\beta {{uvv}}_{\xi }\\ -1 & -\lambda +v-{uv}{\partial }_{\xi }\end{array}\right)\psi =0,\\ \hat{{N}^{\xi }}\psi =\left(\begin{array}{cc}{\lambda }^{2}+\displaystyle \frac{1}{2}{{uvv}}_{\xi }-{v}^{2}-{\bar{J}}_{3}{\partial }_{\xi }-{\partial }_{t} & {\hat{N}}_{12}^{\xi }\\ -\lambda -v & -{\lambda }^{2}-\displaystyle \frac{1}{2}{{uvv}}_{\xi }+{v}^{2}-{\bar{J}}_{3}{\partial }_{\xi }-{\partial }_{t}\end{array}\right)\psi =0,\end{array}\end{eqnarray*}$
where ${\hat{N}}_{12}^{\xi }=\lambda (u+\beta {{uv}}_{\xi })+\tfrac{1}{2}{{uu}}_{\xi }$ + $\tfrac{1}{2}\beta u({u}_{\xi }{v}_{\xi }$ + uvξξ) + uv + βuvvξ, and the compatibility condition $[{\hat{M}}^{\xi },{\hat{N}}^{\xi }]=0$ just gives system (12).
It can be found that system (12) has the conservation laws
$\begin{eqnarray*}\begin{array}{l}{\left({u}^{-1}\right)}_{t}=\left(\displaystyle \frac{\beta (\beta -2)}{4}(2{{uv}}^{3}{v}_{\xi \xi }+2{v}^{3}{u}_{\xi }{v}_{\xi }+{{uv}}^{2}{v}_{\xi }^{2})\right.\\ \,{\left.+\displaystyle \frac{\beta -1}{2}{v}^{2}{u}_{\xi }+\displaystyle \frac{1}{4}u-{v}^{2}\right)}_{\xi },\\ {\left({v}^{-1}\right)}_{t}={\left(\displaystyle \frac{\beta (2-\beta )}{4}{u}^{2}{{vv}}_{\xi }^{2}+\displaystyle \frac{1-\beta }{2}{u}^{2}{v}_{\xi }-\displaystyle \frac{{u}^{2}}{4v}\right)}_{\xi },\\ {\left({u}^{-1}{v}^{-1}\right)}_{t}=\left(\displaystyle \frac{\beta (\beta -2)}{4}(2{{uv}}^{2}{v}_{\xi \xi }+2{v}^{2}{u}_{\xi }{v}_{\xi }+{{uvv}}_{\xi }^{2})\right.\\ {\left.+\displaystyle \frac{\beta -1}{2}({{vu}}_{\xi }-{{uv}}_{\xi })-2v-\displaystyle \frac{u}{4v}\right)}_{\xi }.\end{array}\end{eqnarray*}$
Thus, applying the deformation algorithm to the (1+1)-dimensional integrable system (12) yields the following (4+1)-dimensional system
$\begin{eqnarray}\begin{array}{l}{\hat{T}}_{3}u=\displaystyle \frac{\beta (2-\beta )}{4}(2{u}^{3}{v}^{3}{\hat{L}}_{3}^{3}v\\ +2{u}^{2}{v}^{3}{\hat{L}}_{3}v{\hat{L}}_{3}^{2}u+4{u}^{2}{v}^{3}{\hat{L}}_{3}u{\hat{L}}_{3}^{2}v\\ +8{u}^{3}{v}^{2}{\hat{L}}_{3}v{\hat{L}}_{3}^{2}v+7{u}^{2}{v}^{2}{\left({\hat{L}}_{3}v\right)}^{2}{\hat{L}}_{3}u\\ +2{u}^{3}v{\left({\hat{L}}_{3}v\right)}^{3})\\ +\displaystyle \frac{1-\beta }{2}({u}^{2}{v}^{2}{\hat{L}}_{3}^{2}u+2{u}^{2}v{\hat{L}}_{3}u{\hat{L}}_{3}v)\\ -\displaystyle \frac{1}{4}{u}^{2}{\hat{L}}_{3}u+2{u}^{2}v{\hat{L}}_{3}v,\\ {\hat{T}}_{3}v=\displaystyle \frac{\beta (\beta -2)}{4}(2{u}^{2}{v}^{3}{\hat{L}}_{3}v{\hat{L}}_{3}^{2}v\\ +2{{uv}}^{3}{\left({\hat{L}}_{3}v\right)}^{2}{\hat{L}}_{3}u+{u}^{2}{v}^{2}{\left({\hat{L}}_{3}v\right)}^{3})\\ +\displaystyle \frac{\beta -1}{2}({u}^{2}{v}^{2}{\hat{L}}_{3}^{2}v+2{{uv}}^{2}{\hat{L}}_{3}u{\hat{L}}_{3}v)\\ +\displaystyle \frac{1}{2}{uv}{\hat{L}}_{3}u-\displaystyle \frac{1}{4}{u}^{2}{\hat{L}}_{3}v,\end{array}\end{eqnarray}$
where
$\begin{eqnarray*}\begin{array}{l}{\hat{L}}_{3}={\partial }_{\xi }+\displaystyle \frac{1}{{uv}}{\partial }_{x}+\displaystyle \frac{1}{u}{\partial }_{z}+\displaystyle \frac{1}{v}{\partial }_{y},\\ {\hat{T}}_{3}={\partial }_{t}+\left(\displaystyle \frac{\beta (\beta -2)}{4}(2{{uv}}^{2}{\hat{L}}_{3}^{2}v\right.\\ +2{v}^{2}{\hat{L}}_{3}u{\hat{L}}_{3}v+{uv}{\left({\hat{L}}_{3}v\right)}^{2})\\ \left.+\displaystyle \frac{\beta -1}{2}(v{\hat{L}}_{3}u-u{\hat{L}}_{3}v)-2v-\displaystyle \frac{u}{4v}\right){\partial }_{x}\\ +\left(\displaystyle \frac{\beta (\beta -2)}{4}(2{{uv}}^{3}{\hat{L}}_{3}^{2}v\right.\\ \left.+2{v}^{3}{\hat{L}}_{3}u{\hat{L}}_{3}v+{{uv}}^{2}{\left({\hat{L}}_{3}v\right)}^{2})+\displaystyle \frac{\beta -1}{2}{v}^{2}{\hat{L}}_{3}u+\displaystyle \frac{1}{4}u-{v}^{2}\right){\partial }_{z}\\ +\left(\displaystyle \frac{\beta (2-\beta )}{4}{u}^{2}v{\left({\hat{L}}_{3}v\right)}^{2}+\displaystyle \frac{1-\beta }{2}{u}^{2}{\hat{L}}_{3}v-\displaystyle \frac{{u}^{2}}{4v}\right){\partial }_{y}.\end{array}\end{eqnarray*}$
Note that systems (2) and (13) are identical.

3.2. The (2+1)-dimensional reduced systems of system (2)

We now consider the (2+1)-dimensional reduced systems of the (4+1)-dimensional CBB system. Here, we assume β = 0 for brevity.
Case (i) If u and v are {z, ξ}-independent, system (2) becomes the (2+1)-dimensional CBB system as follows
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}_{{xx}}+{{uu}}_{{xy}}+\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+2{u}^{2}{v}_{y}+2{{uv}}_{x}+2{u}_{x}v,\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{uv}}_{{xy}}-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}+\displaystyle \frac{1}{2}{u}_{x}-{u}_{x}{v}_{y}-{{uu}}_{y}{v}_{y}+\displaystyle \frac{1}{2}{{uu}}_{y}+2{{vv}}_{x}.\end{array}\right.\end{eqnarray}$
Case (ii) Assuming uy = uξ = vy = vξ = 0, we arrive at the reduced system
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}_{{xx}}+{{vu}}_{{xz}}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}}+2{u}_{x}v+{v}_{x}{u}_{z}+{{vu}}_{z}{v}_{z}+{v}^{2}{u}_{z}-\displaystyle \frac{1}{2}{{uu}}_{z}+2{{uv}}_{x}+2{{uvv}}_{z},\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{vv}}_{{xz}}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}+\displaystyle \frac{1}{2}{u}_{x}+\displaystyle \frac{1}{2}{{vu}}_{z}+2{{vv}}_{x}+{v}^{2}{v}_{z}-\displaystyle \frac{1}{2}{{uv}}_{z}.\end{array}\right.\end{eqnarray}$
Case (iii) If u and v are {x, ξ} dependent, system (2) is equivalent to
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}_{{xx}}+{{uvu}}_{x\xi }+\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }+2{{vu}}_{x}+2{{uv}}_{x}+{{uv}}_{x}{u}_{\xi }+{u}^{2}{{vv}}_{\xi }{u}_{\xi }-\displaystyle \frac{1}{4}{u}^{2}{u}_{\xi }+2{u}^{2}{{vv}}_{\xi },\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{uvv}}_{x\xi }-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }+\displaystyle \frac{1}{2}{u}_{x}-{{vv}}_{\xi }{u}_{x}-{{uv}}^{2}{u}_{\xi }{v}_{\xi }+2{{vv}}_{x}+\displaystyle \frac{1}{2}{{uvu}}_{\xi }-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }.\end{array}\right.\end{eqnarray}$
Case (iv) Considering u and v, which are only dependent on {y, z}, leads to
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+{{uvu}}_{{yz}}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}}+{{uv}}_{y}{u}_{z}+{{vv}}_{z}{u}_{z}+{v}^{2}{u}_{z}-\displaystyle \frac{1}{2}{{uu}}_{z}+2{u}^{2}{v}_{y}+2{{uvv}}_{z},\\ {v}_{t}=-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}-{{uvv}}_{{yz}}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}-{{uu}}_{y}{v}_{y}+\displaystyle \frac{1}{2}{{uu}}_{y}-{{vv}}_{y}{u}_{z}+\displaystyle \frac{1}{2}{{vu}}_{z}+{v}^{2}{v}_{z}-\displaystyle \frac{1}{2}{{uv}}_{z}.\end{array}\right.\end{eqnarray}$
Case (v) If u and v are {x, y}-independent, system (2) turns out to be
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }+{{uv}}^{2}{u}_{\xi z}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}}+{u}^{2}{{vu}}_{\xi }{v}_{\xi }+{{uvv}}_{z}{u}_{\xi }-\displaystyle \frac{1}{4}{u}^{2}{u}_{\xi }+{{uvv}}_{\xi }{u}_{z}+{{vv}}_{z}{u}_{z}+{v}^{2}{u}_{z}\\ -\displaystyle \frac{1}{2}{{uu}}_{z}+2{u}^{2}{{vv}}_{\xi }+2{{uvv}}_{z},\\ {v}_{t}=-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }-{{uv}}^{2}{v}_{\xi z}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}-{{uv}}^{2}{v}_{\xi }{u}_{\xi }+\displaystyle \frac{1}{2}{{uvu}}_{\xi }-{v}^{2}{v}_{\xi }{u}_{z}+\displaystyle \frac{1}{2}{{vu}}_{z}\\ -\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }+{v}^{2}{v}_{z}-\displaystyle \frac{1}{2}{{uv}}_{z}.\end{array}\right.\end{eqnarray}$
Case (vi) By considering {x, z}-independent u and v, we have
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }+{u}^{2}{{vu}}_{\xi y}+\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+{u}^{2}{{vu}}_{\xi }{v}_{\xi }+{u}^{2}{v}_{y}{u}_{\xi }-\displaystyle \frac{1}{4}{u}^{2}{u}_{\xi }+2{u}^{2}{{vv}}_{\xi }+2{u}^{2}{v}_{y},\\ {v}_{t}=-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }-{u}^{2}{{vv}}_{\xi y}-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}-{{uv}}^{2}{u}_{\xi }{v}_{\xi }-{{uvv}}_{y}{u}_{\xi }+\displaystyle \frac{1}{2}{{uvu}}_{\xi }-{{uvu}}_{y}{v}_{\xi }\\ -{{uu}}_{y}{v}_{y}+\displaystyle \frac{1}{2}{{uu}}_{y}-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }.\end{array}\right.\end{eqnarray}$
Remark 3.1 Since (2+1)-dimensional systems (14)–(19) are all reduced systems of system (2), their Lax pairs can be obtained by directly removing the derivatives of two independent variables from the Lax pair (4) of system (2).

3.3. The (3+1)-dimensional reduced systems of system (2)

Here, we reduce system (2) to a variety of (3+1)-dimensional systems. For brevity, we only consider the reduction in the case of β = 0.
Case (i) Provided that uξ = vξ = 0, system (2) reduces to
$\begin{eqnarray}\begin{array}{c}\left\{\begin{array}{c}{u}_{t}=2{{uv}}_{x}+2{{vu}}_{x}+\left({v}_{x}+{{uv}}_{y}+{{vv}}_{z}+{v}^{2}-\displaystyle \frac{1}{2}u\right){u}_{z}+2{u}^{2}{v}_{y}+\displaystyle \frac{1}{2}{u}_{{xx}}+\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+{{uvu}}_{{yz}}\\ +{{uu}}_{{xy}}+{{vu}}_{{xz}}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}}+2{{uvv}}_{z},\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{uv}}_{{xy}}-{{vv}}_{{xz}}-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}-{{uvv}}_{{yz}}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}+\left(\displaystyle \frac{1}{2}-{v}_{y}\right){u}_{x}+\left(\displaystyle \frac{1}{2}u-{{uv}}_{y}\right){u}_{y}\\ +\left(\displaystyle \frac{1}{2}v-{{vv}}_{y}\right){u}_{z}+2{{vv}}_{x}+\left({v}^{2}-\displaystyle \frac{1}{2}u\right){v}_{z}.\end{array}\right.\end{array}\end{eqnarray}$
Case (ii) If u and v are both z-independent, we have
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+{{uvu}}_{x\xi }+{{uu}}_{{xy}}+\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }+{u}^{2}{{vu}}_{\xi y}+2{{uv}}_{x}+2{u}^{2}{{vv}}_{\xi }+2{{vu}}_{x}\\ +\left({{uv}}_{x}+{u}^{2}{{vv}}_{\xi }+{u}^{2}{v}_{y}-\displaystyle \frac{1}{4}{u}^{2}\right){u}_{\xi }+2{u}^{2}{v}_{y}+\displaystyle \frac{1}{2}{u}_{{xx}},\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{uvv}}_{x\xi }-{{uv}}_{{xy}}-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }-{u}^{2}{{vv}}_{\xi y}-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}+\left(\displaystyle \frac{1}{2}-{{vv}}_{\xi }-{v}_{y}\right){u}_{x}\\ +\left(\displaystyle \frac{1}{2}{uv}-{{uv}}^{2}{v}_{\xi }-{{uvv}}_{y}\right){u}_{\xi }+\left(\displaystyle \frac{1}{2}u-{{uvv}}_{\xi }-{{uv}}_{y}\right){u}_{y}+2{{vv}}_{x}-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }.\end{array}\right.\end{eqnarray}$
Case (iii) When u and v are y-independent functions, we obtain
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=2{{uvv}}_{z}+2{{uv}}_{x}+2{u}^{2}{{vv}}_{\xi }+2{{vu}}_{x}+\left({{uv}}_{x}+{u}^{2}{{vv}}_{\xi }+{{uvv}}_{z}-\displaystyle \frac{1}{4}{u}^{2}\right){u}_{\xi }+\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }\\ +{{uv}}^{2}{u}_{\xi z}+\left({v}_{x}+{{uvv}}_{\xi }+{{vv}}_{z}+{v}^{2}-\displaystyle \frac{1}{2}u\right){u}_{z}+\displaystyle \frac{1}{2}{u}_{{xx}}+{{uvu}}_{x\xi }+{{vu}}_{{xz}}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}},\\ {v}_{t}=-\displaystyle \frac{1}{2}{v}_{{xx}}-{{uvv}}_{x\xi }-{{vv}}_{{xz}}-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }-{{uv}}^{2}{v}_{\xi z}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}+\left(\displaystyle \frac{1}{2}-{{vv}}_{\xi }\right){u}_{x}\\ +\left(\displaystyle \frac{1}{2}{uv}-{{uv}}^{2}{v}_{\xi }\right){u}_{\xi }+\left(\displaystyle \frac{1}{2}v-{v}^{2}{v}_{\xi }\right){u}_{z}+2{{vv}}_{x}-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }+\left({v}^{2}-\displaystyle \frac{1}{2}u\right){v}_{z}.\end{array}\right.\end{eqnarray}$
Case (iv) On the condition that u and v are x-independent, system (2) gives rise to
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=2{{uvv}}_{z}+{{uvu}}_{{yz}}+\displaystyle \frac{1}{2}{v}^{2}{u}_{{zz}}+\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{u}_{\xi \xi }+{u}^{2}{{vu}}_{\xi y}+{{uv}}^{2}{u}_{\xi z}+2{u}^{2}{{vv}}_{\xi }+2{u}^{2}{v}_{y}+\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}\\ +\left({u}^{2}{{vv}}_{\xi }+{u}^{2}{v}_{y}+{{uvv}}_{z}-\displaystyle \frac{1}{4}{u}^{2}\right){u}_{\xi }+\left({{uvv}}_{\xi }+{{uv}}_{y}+{{vv}}_{z}+{v}^{2}-\displaystyle \frac{1}{2}u\right){u}_{z},\\ {v}_{t}=-\displaystyle \frac{1}{2}{u}^{2}{v}^{2}{v}_{\xi \xi }-{u}^{2}{{vv}}_{\xi y}-{{uv}}^{2}{v}_{\xi z}-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}-{{uvv}}_{{yz}}-\displaystyle \frac{1}{2}{v}^{2}{v}_{{zz}}+\left(\displaystyle \frac{1}{2}{uv}-{{uv}}^{2}{v}_{\xi }-{{uvv}}_{y}\right){u}_{\xi }\\ +\left(\displaystyle \frac{1}{2}u-{{uvv}}_{\xi }-{{uv}}_{y}\right){u}_{y}+\left(\displaystyle \frac{1}{2}v-{v}^{2}{v}_{\xi }-{{vv}}_{y}\right){u}_{z}-\displaystyle \frac{1}{4}{u}^{2}{v}_{\xi }+\left({v}^{2}-\displaystyle \frac{1}{2}u\right){v}_{z}.\end{array}\right.\end{eqnarray}$

4. Exact solutions of a reduced system

It is well known that exact solutions often play crucial roles in the study of asymptotic behavior, blow up (or extinction) and geometric properties of invariant geometric flows related to the PDEs under study. The purpose of this section is to construct exact solutions of (1+1)-dimensional CBB system (7) with β = 0, which takes the form of
$\begin{eqnarray}\left\{\begin{array}{l}{u}_{t}=\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}+2{u}^{2}{v}_{y},\\ {v}_{t}=-\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}-{{uu}}_{y}{v}_{y}+\displaystyle \frac{1}{2}{{uu}}_{y}.\end{array}\right.\end{eqnarray}$
In recent decades, a large number of approaches have been developed to construct the exact solutions of integrable PDEs, such as Darboux transformation [16], Hirota's direct method [17], inverse scattering transformation [18] and Lie symmetry analysis [19, 20]. Whereas, it is very difficult to find exact solutions for system (24) since it is related to the CBB equation with a reciprocal transformation. We now construct exact solutions of system (24) based on Lie symmetry analysis and the power series method.
The Lie group method of infinitesimal transformations, introduced by Sophus Lie, is a powerful and universal method for constructing exact solutions and performing symmetry reductions of differential equations (DEs). More information about the symmetry group method can be found in [19, 20]. To apply the classical method to system (24), we consider the one-parameter Lie group of infinitesimal transformations in (y, t, u, v) given by
$\begin{eqnarray*}\begin{array}{l}y\to y+\varepsilon \zeta (y,t,u,v),\,\,t\to t+\varepsilon \tau (y,t,u,v),\\ u\to u\,+\,\varepsilon \eta (y,t,u,v),\,\,v\to v+\varepsilon \phi (y,t,u,v),\end{array}\end{eqnarray*}$
where ϵ is the group parameter. The associated Lie algebra is realized by vector fields
$\begin{eqnarray}\begin{array}{l}V=\zeta (y,t,u,v){\partial }_{y}+\tau (y,t,u,v){\partial }_{t}\\ +\eta (y,t,u,v){\partial }_{u}+\phi (y,t,u,v){\partial }_{v}.\end{array}\end{eqnarray}$
The infinitesimal invariance criterion of system (24) with respect to the Lie symmetry (25) requires that the prolonged field annihilates system (24) on its solution manifold, namely,
$\begin{eqnarray}\begin{array}{l}{\Pr }^{(2)}V\left({u}_{t}-\displaystyle \frac{1}{2}{u}^{2}{u}_{{yy}}-2{u}^{2}{v}_{y}\right){| }_{(24)}=0,\\ {\Pr }^{(2)}V\left({v}_{t}+\displaystyle \frac{1}{2}{u}^{2}{v}_{{yy}}+{{uu}}_{y}{v}_{y}-\displaystyle \frac{1}{2}{{uu}}_{y}\right){| }_{(24)}=0,\end{array}\end{eqnarray}$
where Pr(2)V is the standard second-order prolongation operator of the vector field (25), keeping only the necessary terms
$\begin{eqnarray*}\begin{array}{l}{\Pr }^{(2)}V=V+{\eta }^{y}{\partial }_{{u}_{y}}+{\phi }^{y}{\partial }_{{v}_{y}}+{\eta }^{t}{\partial }_{{u}_{t}}+{\phi }^{t}{\partial }_{{v}_{t}}+{\eta }^{{yy}}{\partial }_{{u}_{{yy}}}+{\phi }^{{yy}}{\partial }_{{v}_{{yy}}},\end{array}\end{eqnarray*}$
where ηy, φy, ηt, φt, ηyy and φyy are given explicitly in terms of the infinitesimals [19]. Setting its coefficients of the linearly dependent derivatives uy, vy, uyy, vyy, ⋯ to be zero, system (26) yields an overdetermined system of PDEs
$\begin{eqnarray}\begin{array}{l}{\eta }_{t}-\displaystyle \frac{1}{2}{u}^{2}{\eta }_{{yy}}-2{u}^{2}{\phi }_{y}=0,\\ \displaystyle \frac{1}{2}u{\tau }_{t}+\eta -u{\zeta }_{y}=0,\\ u({\eta }_{u}-{\tau }_{t})-2\eta -u({\phi }_{v}-{\zeta }_{y})=0,\\ {\zeta }_{t}+\displaystyle \frac{1}{2}{u}^{2}(2{\eta }_{{uy}}-{\zeta }_{{yy}})=0,\\ {\phi }_{t}+\displaystyle \frac{1}{2}{u}^{2}{\phi }_{{yy}}-\displaystyle \frac{1}{2}u{\eta }_{y}=0,\\ {\zeta }_{t}-\displaystyle \frac{1}{2}{u}^{2}(2{\phi }_{{yv}}-{\zeta }_{{yy}})-u{\eta }_{y}=0,\\ \eta +u{\tau }_{t}+u({\eta }_{u}-2{\zeta }_{y})=0,\\ u({\phi }_{v}-{\tau }_{t})+2u{\phi }_{y}-\eta -u({\eta }_{u}-{\zeta }_{y})=0,\\ {\zeta }_{u}={\zeta }_{v}={\phi }_{u}={\eta }_{v}={\phi }_{{vv}}\\ ={\eta }_{{uu}}={\tau }_{u}={\tau }_{v}={\tau }_{y}=0.\end{array}\end{eqnarray}$
Solving system (27) gives the Lie symmetries of system (24)
$\begin{eqnarray*}\zeta ={c}_{1}+{c}_{2}y,\,\,\tau =-2{c}_{2}t+{c}_{3},\,\,\eta =2{c}_{2}u,\,\,\phi ={c}_{2}v+{c}_{4},\end{eqnarray*}$
where ci are arbitrary constants. Hence, we have the following assertion.
Theorem 4.1. System (24) admits four-dimensional Lie algebra generated by the vector fields
$\begin{eqnarray*}\begin{array}{l}{V}_{1}={\partial }_{y},\,\,\,\,{V}_{2}={\partial }_{t},\\ {V}_{3}={\partial }_{v},\,\,\,\,{V}_{4}=y{\partial }_{y}-2t{\partial }_{t}+2u{\partial }_{u}+v{\partial }_{v}.\end{array}\end{eqnarray*}$
We now perform similarity reduction for system (24). Having determined the infinitesimals, the symmetry variables are found by solving the characteristic equation
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}y}{\zeta }=\displaystyle \frac{{\rm{d}}t}{\tau }=\displaystyle \frac{{\rm{d}}u}{\eta }=\displaystyle \frac{{\rm{d}}v}{\phi },\end{eqnarray*}$
or the corresponding invariant surface condition.
To construct a non-trivial invariant solution of system (24), here we just consider the vector field V4. By integrating the characteristic equation
$\begin{eqnarray*}\displaystyle \frac{{\rm{d}}y}{y}=\displaystyle \frac{{\rm{d}}t}{-2t}=\displaystyle \frac{{\rm{d}}u}{2u}=\displaystyle \frac{{\rm{d}}v}{v},\end{eqnarray*}$
we have the similarity transformation
$\begin{eqnarray}u(y,t)=\displaystyle \frac{1}{t}f(\omega ),\,\,\,\,v(y,t)=\displaystyle \frac{1}{\sqrt{t}}g(\omega ),\end{eqnarray}$
with the reduced variable $\omega =y\sqrt{t}$.
Substituting system (28) into system (24) gives
$\begin{eqnarray}\left\{\begin{array}{l}-f+\displaystyle \frac{1}{2}\omega f^{\prime} -\displaystyle \frac{1}{2}{f}^{2}f^{\prime\prime} -2{f}^{2}g^{\prime} =0,\\ -\displaystyle \frac{1}{2}g+\displaystyle \frac{1}{2}\omega g^{\prime} +\displaystyle \frac{1}{2}{f}^{2}g^{\prime\prime} +{ff}^{\prime} g^{\prime} -\displaystyle \frac{1}{2}{ff}^{\prime} =0.\end{array}\right.\end{eqnarray}$
As explained before, we need the solutions of system (29) to construct the solutions of system (24). In what follows, we derive the solution of system (29) in a power series of the form
$\begin{eqnarray}f(\omega )=\displaystyle \sum _{n=0}^{\infty }{a}_{n}{\omega }^{n},\,\,\,\,g(\omega )=\displaystyle \sum _{n=0}^{\infty }{b}_{n}{\omega }^{n}.\end{eqnarray}$
Inserting system (30) into system (29), we have
$\begin{eqnarray}\begin{array}{l}-\displaystyle \sum _{n=0}^{\infty }{a}_{n}{\omega }^{n}+\displaystyle \frac{1}{2}\displaystyle \sum _{n=1}^{\infty }{{na}}_{n}{\omega }^{n}\\ -\displaystyle \frac{1}{2}\displaystyle \sum _{n=0}^{\infty }\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }({n}^{* }+1){a}_{k}{a}_{{m}^{* }-1}{a}_{{n}^{* }+1}{\omega }^{n}\\ -2\displaystyle \sum _{n=0}^{\infty }\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }{a}_{k}{a}_{{m}^{* }-1}{b}_{{n}^{* }}{\omega }^{n}=0,\\ -\displaystyle \frac{1}{2}\displaystyle \sum _{n=0}^{\infty }{b}_{n}{\omega }^{n}\\ +\displaystyle \frac{1}{2}\displaystyle \sum _{n=1}^{\infty }{{nb}}_{n}{\omega }^{n}+\displaystyle \frac{1}{2}\displaystyle \sum _{n=0}^{\infty }\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }({n}^{* }+1){a}_{k}{a}_{{m}^{* }-1}{b}_{{n}^{* }+1}{\omega }^{n}\\ +\displaystyle \sum _{n=0}^{\infty }\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }{m}^{* }{a}_{k}{a}_{{m}^{* }}{b}_{{n}^{* }}\\ -\displaystyle \frac{1}{2}\displaystyle \sum _{n=0}^{\infty }\displaystyle \sum _{m=0}^{n}{n}^{* }{a}_{m}{a}_{{n}^{* }}{\omega }^{n}=0,\end{array}\end{eqnarray}$
where n* = nm + 1, m* = mk + 1.
In view of system (31), by comparing coefficients for n = 0, we obtain
$\begin{eqnarray}\begin{array}{l}{a}_{2}=-\displaystyle \frac{1}{{a}_{0}}-2{b}_{1},\\ {b}_{2}=\displaystyle \frac{{a}_{1}}{2{a}_{0}}-\displaystyle \frac{{a}_{1}{b}_{1}}{{a}_{0}}+\displaystyle \frac{{b}_{0}}{2{a}_{0}^{2}},\end{array}\end{eqnarray}$
where a0 ≠ 0, a1, b0 and b1 are arbitrary constants. Similarly, when n ≥ 1, by comparing the coefficients of ωn in system (31), we can determine the coefficients recursively
$\begin{eqnarray}\begin{array}{l}{a}_{n+2}=\displaystyle \frac{1}{(n+1)(n+2){a}_{0}^{2}}\left((n-2){a}_{n}\right.\\ -\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }({n}^{* }+1){a}_{k}{a}_{{m}^{* }-1}{a}_{{n}^{* }+1}\\ \left.-4\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }{a}_{k}{a}_{{m}^{* }-1}{b}_{{n}^{* }}\right),\\ {b}_{n+2}=\displaystyle \frac{1}{(n+1)(n+2){a}_{0}^{2}}\left((1-n){b}_{n}\right.\\ -\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }({n}^{* }+1){a}_{k}{a}_{{m}^{* }-1}{b}_{{n}^{* }+1}\\ \left.-2\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{n}^{* }{m}^{* }{a}_{k}{a}_{{m}^{* }}{b}_{{n}^{* }}+\displaystyle \sum _{m=0}^{n}{n}^{* }{a}_{m}{a}_{{n}^{* }}\right).\end{array}\end{eqnarray}$
Now, we prove the convergence of the power series solution (30), with the coefficients recursively given by systems (32) and (33). In view of system (33), we have the following estimation
$\begin{eqnarray*}\begin{array}{l}| {a}_{n+2}| \leqslant P\left(| {a}_{n}| \right.\\ +\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}| {a}_{k}| | {a}_{{m}^{* }-1}| | {a}_{{n}^{* }+1}| \\ \left.+\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}| {a}_{k}| | {a}_{{m}^{* }-1}| | {b}_{{n}^{* }}| \right),\\ | {b}_{n+2}| \leqslant P\left(| {b}_{n}| \right.\\ +\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}| {a}_{k}| | {a}_{{m}^{* }-1}| | {b}_{{n}^{* }+1}| \\ +\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}| {a}_{k}| | {a}_{{m}^{* }}| | {b}_{{n}^{* }}| \\ \left.+\displaystyle \sum _{m=0}^{n}| {a}_{m}| | {a}_{{n}^{* }}| \right),\end{array}\end{eqnarray*}$
where $P=\tfrac{1}{| {a}_{0}^{2}| }$. Next, we define two new power series
$\begin{eqnarray}\begin{array}{l}R=R(\omega )=\displaystyle \sum _{n=0}^{\infty }{r}_{n}{\omega }^{n},\\ S=S(\omega )=\displaystyle \sum _{n=0}^{\infty }{s}_{n}{\omega }^{n},\end{array}\end{eqnarray}$
with rn = ∣an∣, sn = ∣bn∣, n = 0, 1, 2 and
$\begin{eqnarray*}\begin{array}{l}{r}_{n+2}=P\left({r}_{n}\right.\\ +\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}{r}_{k}{r}_{{m}^{* }-1}{r}_{{n}^{* }+1}\\ \left.+\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{r}_{k}{r}_{{m}^{* }-1}{s}_{{n}^{* }}\right),\\ {s}_{n+2}=P\left({s}_{n}\right.\\ +\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}{r}_{k}{r}_{{m}^{* }-1}{s}_{{n}^{* }+1}\\ \left.+\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}{r}_{k}{r}_{{m}^{* }}{s}_{{n}^{* }}+\displaystyle \sum _{m=0}^{n}{r}_{m}{r}_{{n}^{* }}\right),\end{array}\end{eqnarray*}$
for n = 1, 2, ⋯ . We derive that
$\begin{eqnarray*}\begin{array}{l}| {a}_{n}| \leqslant {r}_{n},\,\,\,\,| {b}_{n}| \leqslant {s}_{n},\\ n=0,1,2,\cdots .\end{array}\end{eqnarray*}$
Thus, R(ω) and S(ω) are majorant series of f(ω) and g(ω), respectively, and we obtain
$\begin{eqnarray*}\begin{array}{c}R(\omega )={r}_{0}+{r}_{1}\omega +{r}_{2}{\omega }^{2}\\ +P(R-{r}_{0}){\omega }^{2}+{PR}({R}^{2}-{r}_{0}^{2})(R-{r}_{0}-{r}_{1}\omega )\\ +P({R}^{2}(S-{s}_{0})-{r}_{0}^{2}{s}_{1}\omega )\omega ,\\ S(\omega )={s}_{0}+{s}_{1}\omega +{s}_{2}{\omega }^{2}+P(S-{s}_{0}){\omega }^{2}\\ +{PR}({R}^{2}-{r}_{0}^{2})(S-{s}_{0}-{s}_{1}\omega )\\ +P(R(R-{r}_{0})(S-{S}_{0})-{r}_{0}{r}_{1}{s}_{0}{\omega }^{2})\omega \\ +P(R(R-{r}_{0})-{r}_{0}{r}_{1}\omega )\omega .\end{array}\end{eqnarray*}$
Now, we consider the following implicit functional system
$\begin{eqnarray*}\begin{array}{c}{ \mathcal F }(\omega ,R,S)=R-{r}_{0}-{r}_{1}\omega -{r}_{2}{\omega }^{2}\\ -{PR}({R}^{2}-{r}_{0}^{2})(R-{r}_{0}-{r}_{1}\omega )\\ -P({R}^{2}(S-{s}_{0})-{r}_{0}^{2}{s}_{1}\omega )\omega ,\\ { \mathcal G }(\omega ,R,S)=S-{s}_{0}-{s}_{1}\omega -{s}_{2}{\omega }^{2}\\ -{PR}({R}^{2}-{r}_{0}^{2})(S-{s}_{0}-{s}_{1}\omega )\\ -P(S-{s}_{0}){\omega }^{2}\\ -P(R(R-{r}_{0})(S-{S}_{0})-{r}_{0}{r}_{1}{s}_{1}{\omega }^{2})\omega \\ -P(R(R-{r}_{0})-{r}_{0}{r}_{1}\omega )\omega .\end{array}\end{eqnarray*}$
Since ${ \mathcal F }$ and ${ \mathcal G }$ are analytic in the neighborhood of (0, r0, s0), ${ \mathcal F }(0,{r}_{0},{s}_{0})={ \mathcal G }(0,{r}_{0},{s}_{0})=0$, $\tfrac{\partial ({ \mathcal F },{ \mathcal G })}{\partial (R,S)}{| }_{(0,{r}_{0},{s}_{0})}=1\ne 0,$ according to the implicit function theorem, the convergence of power series (34) is proved, thus the power series (30) are convergent.
Therefore, the exact power series solution for system (24) reads as
$\begin{eqnarray*}\begin{array}{c}u(y,t)=\displaystyle \frac{{a}_{0}}{t}+\displaystyle \frac{{a}_{1}y}{\sqrt{t}}-\left(\displaystyle \frac{1}{{a}_{0}}+2{b}_{1}\right){y}^{2}\\ +\displaystyle \sum _{n=1}^{\infty }\displaystyle \frac{1}{\left(n+1)(n+2){a}_{0}^{2}t\right.}\left(\left(n-2\right){a}_{n}\right.\\ -\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}(n-m+1)(n-m+2){a}_{k}{a}_{m-k}{a}_{n-m+2}\\ \left.-4\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}(n-m+1){a}_{k}{a}_{m-k}{b}_{n-m+1}\right){\left(y\sqrt{t}\right)}^{n+2},\end{array}\end{eqnarray*}$
$\begin{eqnarray*}\begin{array}{c}v(y,t)=\displaystyle \frac{{b}_{0}}{\sqrt{t}}+{b}_{1}y\\ +\left(\displaystyle \frac{{a}_{1}}{2{a}_{0}}-\displaystyle \frac{{a}_{1}{b}_{1}}{{a}_{0}}+\displaystyle \frac{{b}_{0}}{2{a}_{0}^{2}}\right){y}^{2}\sqrt{t}\\ +\displaystyle \sum _{n=1}^{\infty }\displaystyle \frac{1}{\left(n+1)(n+2){a}_{0}^{2}\sqrt{t}\right.}\left(\left(1-n\right){b}_{n}\right.\\ -\displaystyle \sum _{m=1}^{n}\displaystyle \sum _{k=0}^{m}(n-m+1)\\ \times (n-m+2){a}_{k}{a}_{m-k}{b}_{n-m+2}\\ -2\displaystyle \sum _{m=0}^{n}\displaystyle \sum _{k=0}^{m}(m-k+1)\\ \times (n-m+1){a}_{k}{a}_{m-k+1}{b}_{n-m+1}\\ \left.+\displaystyle \sum _{m=0}^{n}(n-m+1){a}_{m}{a}_{n-m+1}\right){\left(y\sqrt{t}\right)}^{n+2}.\end{array}\end{eqnarray*}$

5. Conclusion

In this paper, the deformation operators of CBB system (1) were constructed using three conservation laws of system (1) satisfying the deformation theorem; then, the (4+1)-dimensional system (2) was obtained. Moreover, following the Lax pair and higher-order flow system of the former low-dimensional system (1), the Lax integrability and symmetry integrability of the (4+1)-dimensional CBB system (2) were also established. We also obtained a large number of reduced integrable systems of (4+1)-dimensional system (2) along the coordinate axes, which included three (1+1)-dimensional systems (7), (10) and (12), six (2+1)-dimensional systems (14)–(19), and four (3+1)-dimensional systems (20)–(23). Three kinds of different deformation operators were applied to the reduced (1+1)-dimensional systems (7), (10) and (12), respectively, and derived the corresponding (4+1)-dimensional systems (9), (11) and (13), which are equivalent systems of system (2). For illustration, we constructed the exact solution of a (1+1)-dimensional system using Lie symmetry analysis and the power series method.
1
Lou S Y 1997 Deformations of the Riccati equation by using Miura-type transformations J. Phys. A: Math. Gen. 30 7259 7267

DOI

2
Lou S Y 1998 Searching for higher dimensional integrable models from lower ones via Painlevé analysis Phys. Rev. Lett. 80 5027 5031

DOI

3
Lou S Y, Hao X Z, Jia M 2023 Deformation conjecture: deforming lower dimensional integrable systems to higher dimensional ones by using conservation laws J. High Energy Phys. 2023 1 14

DOI

4
Casati M, Zhang D D 2023 Multidimensional integrable deformations of integrable PDEs J. Phys. A: Math. Theor. 56 505701

DOI

5
Lou S Y, Hao X Z, Jia M 2023 Higher dimensional reciprocal integrable Kaup–Newell systems Acta Phys. Sin. 72 38 47

DOI

6
Hao X Z, Lou S Y 2023 Higher dimensional integrable deformations of the modified KdV equation Commun. Theor. Phys. 75 075002

DOI

7
Wang F R, Lou S Y 2023 Lax integrable higher dimensional Burgers systems via a deformation algorithm and conservation laws Chaos Soliton Fract. 169 113253

DOI

8
Lou S Y, Jia M, Hao X Z 2023 Higher dimensional Camassa–Holm equations Chin. Phys. Lett. 40 020201

DOI

9
Jia M, Lou S Y 2023 Searching for (2+1)-dimensional nonlinear Boussinesq equation from (1+1)-dimensional nonlinear Boussinesq equation Commun. Theor. Phys. 75 075006

DOI

10
Kupershmidt B A 1985 Mathematics of dispersive water waves Commun. Math. Phys. 99 51 73

DOI

11
Geng X G, Wu Y T 1999 Finite-band solutions of the classical Boussinesq–Burgers equations J. Math. Phys. 40 2971 2982

DOI

12
Li Y S, Ma W X, Zhang J E 2000 Darboux transformations of classical Boussinesq system and its new solutions Phys. Lett. A 275 60 66

DOI

13
Wazwaz A M 2017 A variety of soliton solutions for the Boussinesq–Burgers equation and the higher-order Boussinesq–Burgers equation Filomat 31 831 840

DOI

14
Rui X 2008 Darboux transformations and soliton solutions for classical Boussinesq–Burgers equation Commun. Theor. Phys. 50 579 582

DOI

15
Abdulwahhab M A 2022 Hamiltonian structure, optimal classification, optimal solutions and conservation laws of the classical Boussinesq–Burgers system Part. Differ. Equ. Appl. Math. 6 100442

DOI

16
Matveev V B, Salle M A 1991 Darboux Transformations and Solitons (Berlin Springer)

17
Hirota R 1971 Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons Phys. Rev. Lett. 27 1192 1194

DOI

18
Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Method for solving the Korteweg–deVries equation Phys. Rev. Lett. 19 1095 1097

DOI

19
Olver P J 1986 Application of Lie Groups to Differential Equations (Berlin Springer)

20
Bluman G W, Anco S C 2002 Symmetry and Integration Methods for Differential Equations (Berlin Springer)

Outlines

/