1. Introduction
2. The direct scattering problem
2.1. Jost solutions of the Lax pair and scattering data
2.2. The Riemann–Hilbert problem with higher-order poles
• | Analyticity : M(k; x, t) is a meromorphic function in ${\mathbb{C}}\setminus {\mathbb{R}}$ and has double poles at kj ∈ K and ${k}_{j}^{* }\in \overline{K};$ |
• | Jump relation: M(k; x, t) has continuous boundary values M±(k; x, t) on ${\mathbb{R}}$, and $\begin{eqnarray}{M}_{+}(k)={M}_{-}(k)V(k;x,t),\qquad k\in {\mathbb{R}},\end{eqnarray}$ where the jump matrix is $\begin{eqnarray}\begin{array}{rcl}V(k;x,t) & = & \left(\begin{array}{cc}{{\mathbb{I}}}_{2\times 2}+{\gamma }^{\dagger }({k}^{\ast })\gamma (k) & {\gamma }^{\dagger }({k}^{\ast }){{\rm{e}}}^{\left.-2{\rm{i}}t\theta (k;x,t\right)}\\ \gamma (k){{\rm{e}}}^{\left.2{\rm{i}}t\theta (k;x,t\right)} & 1\end{array}\right),\\ \theta (k;x,t) & = & k\left(\displaystyle \frac{x}{t}+4{k}^{2}\right).\end{array}\end{eqnarray}$ |
• | Asymptotics: $\begin{eqnarray}M(k;x,t)=I+O\left(\displaystyle \frac{1}{k}\right),\,k\to \infty .\end{eqnarray}$ |
3. The mixed $\bar{\partial }$-RH problem and its decomposition
3.1. Two factorizations of jump matrix V(k)
Figure 1. The signature table of $\mathrm{Re}i\theta (k)=4\mathrm{Im}k\left({\mathrm{Im}}^{2}k-3{\mathrm{Re}}^{2}k+3{k}_{0}^{2}\right)$ with ±k0 being phase points. |
The matrix function $\delta (k)$ and scalar function $\det \delta (k)$ satisfy the following properties:
• | $\delta (k)$ and $\det (\delta (k))$ are analytic, and $\delta (k){\delta }^{\dagger }({k}^{* })=I$, $\det (\delta (k))\det ({\delta }^{* }({k}^{* }))=1$ in ${\mathbb{C}}\setminus [-{k}_{0},{k}_{0}]$. |
• | For $k\in (-{k}_{0},{k}_{0})$, $\begin{eqnarray}\begin{array}{l}{\delta }_{+}(k)={\delta }_{-}(k)(1+{\gamma }^{\dagger }(k)\gamma (k)),\\ \quad \det ({\delta }_{+}(k))=\det ({\delta }_{-}(k))(1+| \gamma (k){| }^{2});\end{array}\end{eqnarray}$ |
• |
$\begin{eqnarray}| {\delta }_{+}(k){| }^{2}=\left\{\begin{array}{ll}| \gamma (k){| }^{2}+2, & k\in (-{k}_{0},{k}_{0}),\\ 2, & \mathrm{otherwise}.\end{array}\right.\end{eqnarray}$ $\begin{eqnarray}| {\delta }_{-}(k){| }^{2}=\left\{\begin{array}{ll}2-\displaystyle \frac{| \gamma (k){| }^{2}}{1+| \gamma (k){| }^{2}}, & k\in (-{k}_{0},{k}_{0}),\\ 2, & \mathrm{otherwise}.\end{array}\right.\end{eqnarray}$ |
• | As $| k| \to \infty $ with $| \arg (k)| \leqslant c\lt \pi $, $\begin{eqnarray}\begin{array}{l}\delta (k)=I+{ \mathcal O }({k}^{-1}),\quad \det (\delta (k))=1\\ \,+\,\displaystyle \frac{{\rm{i}}}{k}\left[\displaystyle \frac{1}{2\pi }{\int }_{-{k}_{0}}^{{k}_{0}}\mathrm{log}\left(\displaystyle \frac{1+| \gamma (\xi ){| }^{2}}{1+| \gamma ({k}_{0}){| }^{2}}\right){\rm{d}}\xi -2\nu {k}_{0}\right]\\ \,+\,{ \mathcal O }({k}^{-2});\end{array}\end{eqnarray}$ |
• |
$\begin{eqnarray}\det (\delta (k))={\left(\displaystyle \frac{k-{k}_{0}}{k+{k}_{0}}\right)}^{{\rm{i}}\nu ({k}_{0})}{{\rm{e}}}^{{ \mathcal X }(k)},\end{eqnarray}$ where $\begin{eqnarray}\begin{array}{rcl}\nu ({k}_{0}) & = & -\displaystyle \frac{1}{2\pi }\mathrm{log}\left(1+| \gamma ({k}_{0}){| }^{2}\right),\\ { \mathcal X }(k) & = & \displaystyle \frac{1}{2\pi {\rm{i}}}{\displaystyle \int }_{-{k}_{0}}^{{k}_{0}}\mathrm{log}\left(\displaystyle \frac{1+| \gamma (\xi ){| }^{2}}{1+| \gamma ({k}_{0}){| }^{2}}\right)\displaystyle \frac{{\rm{d}}\xi }{\xi -k}.\end{array}\end{eqnarray}$ |
• | Along the ray $k=\pm {k}_{0}+{{\mathbb{R}}}^{+}{{\rm{e}}}^{{\rm{i}}\phi }$ with $| \phi | \leqslant c\lt \pi $, as $k\to \pm {k}_{0}$, $\begin{eqnarray}| \det (\delta (k))-{\left(\displaystyle \frac{k-{k}_{0}}{k+{k}_{0}}\right)}^{{\rm{i}}\nu ({k}_{0})}{{\rm{e}}}^{{ \mathcal X }(\pm {k}_{0})}| \lesssim | k\mp {k}_{0}{| }^{1/2}.\end{eqnarray}$ |
The proof of the above properties is similar to the proof of proposition 3.1 in [12].
• | Analyticity: M(1)(k) is analytic in ${\rm{{\mathbb{C}}}}\setminus \left({\rm{{\mathbb{R}}}}\cup K\cup \bar{K}\right).$ |
• | Jump condition: ${M}_{+}^{(1)}(k)={M}_{-}^{(1)}(k){V}^{(1)}(k),\quad k\in {\mathbb{R}}$, where the jump matrix is $\begin{eqnarray}{V}^{(1)}(k)=\left\{\begin{array}{cc}\left(\begin{array}{cc}I & {T}_{1}{T}_{2}{\gamma }^{\dagger }(k){{\rm{e}}}^{-2{\rm{i}}t\theta (k)}\\ 0 & 1\end{array}\right)\left(\begin{array}{cc}I & 0\\ {\left({T}_{1}{T}_{2}\right)}^{-1}\gamma (k){{\rm{e}}}^{2{\rm{i}}t\theta (k)} & 1\end{array}\right), & k\in {\rm{{\mathbb{R}}}}\setminus [-{k}_{0},{k}_{0}],\\ \left(\begin{array}{cc}I & 0\\ \displaystyle \frac{{\left({T}_{1-}{T}_{2-}\right)}^{-1}\gamma (k)}{1+\gamma (k){\gamma }^{\dagger }(k)}{{\rm{e}}}^{2{\rm{i}}t\theta (k)} & 1\end{array}\right)\left(\begin{array}{cc}I & \displaystyle \frac{{T}_{1+}{T}_{2+}{\gamma }^{\dagger }(k)}{1+\gamma (k){\gamma }^{\dagger }(k)}{{\rm{e}}}^{-2{\rm{i}}t\theta (k)}\\ 0 & 1\end{array}\right), & k\in (-{k}_{0},{k}_{0}).\end{array}\right.\end{eqnarray}$ |
• | Asymptotics: ${M}^{(1)}(k)=I+{ \mathcal O }({k}^{-1}),\quad \mathrm{as}\quad k\to \infty $. |
Figure 2. Deformation of the jump countor from ${\mathbb{R}}$ to Σ(2). |
Figure 3. Pole distribution. The red, green and yellow points generate the breather solutions. Moreover, the red points lie in the region ${K}^{+}({ \mathcal I })$, the green points lie in the region $K({ \mathcal I })$, and the yellow points on the line $\mathrm{Re}i\theta (k)=0$. |
Figure 4. The jump contour for the jump matrix V(in). |
Figure 5. The jump contour Σ(E) for the error function E(k). |
Let $D=(-{k}_{0},{k}_{0}),{D}_{-}=(-\infty ,-{k}_{0}),{D}_{+}=({k}_{0},+\infty )$. Then there exists the continuous functions ${R}_{j}^{\pm }$: ${\overline{{\rm{\Omega }}}}_{j}^{\pm }\to C$, $j=1,2,3,4$ such that
• | Continuity: M(2)(k) is continuous in ${\mathbb{C}}\setminus \left({{\rm{\Sigma }}}^{(2)}\cup K\cup \overline{K}\right)$. |
• | Jump condition: ${M}_{+}^{(2)}(k)={M}_{-}^{(2)}(k){V}^{(2)}(k),\,k\in {{\rm{\Sigma }}}^{(2)}$, where $\begin{eqnarray}{V}^{(2)}(k)=\left\{\begin{array}{l}\left(\begin{array}{cc}I & 0\\ {\left(-1\right)}^{j}{R}_{j}^{\pm }{{\rm{e}}}^{2{\rm{i}}t\theta } & 1\end{array}\right),\quad k\in {{\rm{\Sigma }}}_{j}^{\pm },\,j=1,4,\\ \left(\begin{array}{cc}I & {\left(-1\right)}^{j}{R}_{j}^{\pm }{{\rm{e}}}^{-2{\rm{i}}t\theta }\\ 0 & 1\end{array}\right),\quad k\in {{\rm{\Sigma }}}_{j}^{\pm },\,j=2,3,\\ \left(\begin{array}{cc}I & ({R}_{3}^{+}-{R}_{3}^{-}){{\rm{e}}}^{2{\rm{i}}t\theta }\\ 0 & 1\end{array}\right),\quad k\in ({\rm{i}}{k}_{0}\tan (\displaystyle \frac{\pi }{12}),{\rm{i}}{k}_{0}),\\ \left(\begin{array}{cc}I & 0\\ ({R}_{4}^{+}-{R}_{4}^{-}){{\rm{e}}}^{2{\rm{i}}t\theta } & 1\end{array}\right),\quad k\in (-{\rm{i}}{k}_{0}\tan (\displaystyle \frac{\pi }{12}),-{\rm{i}}{k}_{0}),\\ {I}_{3\times 3},\quad k\in (-{\rm{i}}{k}_{0}\tan (\displaystyle \frac{\pi }{12}),{\rm{i}}{k}_{0}\tan (\displaystyle \frac{\pi }{12})).\end{array}\right.\end{eqnarray}$ |
• | Asymptotics: M(2)(k) → I, k → ∞ ; |
3.2. Analysis on a pure RH problem
• | Analyticity: ${M}_{\mathrm{RHP}}^{(2)}(k)$ is analytic in ${\mathbb{C}}\setminus \left({{\rm{\Sigma }}}^{(2)}\cup K\cup \overline{K}\right)$. |
• | Jump condition: ${M}_{\mathrm{RHP}+}^{(2)}(k)={M}_{\mathrm{RHP}-}^{(2)}(k){V}^{(2)}(k),k\in {{\rm{\Sigma }}}^{(2)}$, where V(2)(k) is given by equation ( |
• | Asymptotics: ${M}_{\mathrm{RHP}}^{(2)}(k)\to I$, k → ∞ . |
The jump matrix ${V}^{(2)}$ has the following estimate:
3.2.1. Soliton solutions corresponding to discrete spectra
• | Analyticity: M(k; x, t∣σd) is analytical in ${\rm{{\mathbb{C}}}}\setminus \left({{\rm{\Sigma }}}^{(2)}\cup K\cup \bar{K}\right).$ |
• | Jump condition: $\begin{eqnarray}{M}_{+}(k;x,t| {\sigma }_{d})={M}_{-}(k;x,t| {\sigma }_{d})V(k),\end{eqnarray}$ |
• | Asymptotics: $M(k;x,t| {\sigma }_{d})=I+{ \mathcal O }({k}^{-1})$, k → ∞ . |
Given scattering data ${\sigma }_{d}=({k}_{j},{{ \mathcal A }}_{j},{{ \mathcal B }}_{j}){)}_{k=1}^{2N}$ and discrete spectra $K={\left\{{k}_{j}\right\}}_{j=1}^{2N}$, the RH problem has a unique solution
The uniqueness of the solution can be guaranteed by Liouville's theorem. For the reflectionless case $V(k)=I$, it follows from equation (
• | Analyticity: ${M}^{(\mathrm{out})}(k| {\sigma }_{d}^{\mathrm{out}})$ is analytic in ${\mathbb{C}}\setminus \left({{\rm{\Sigma }}}^{(2)}\cup K\cup \overline{K}\right)$. |
• | Asymptotics: ${M}^{(\mathrm{out})}(k| {\sigma }_{d}^{\mathrm{out}})\to I$, k → ∞ , |
RHP-5 has the uniqueness solution, and its potential is equivalent to one of the reflectionless cases of RHP-4, that is
According to the reconstruction formula (
Given scattering data ${\sigma }_{d}={\left\{({k}_{j},{{ \mathcal A }}_{j},{{ \mathcal B }}_{j})\right\}}_{j\,=\,1}^{2N}$ and ${\sigma }_{d}({ \mathcal I })=\left\{({k}_{j},{c}_{j}({ \mathcal I }))| {k}_{j}\in K({ \mathcal I })\right\}$. At $t\to +\infty $ with $(x,t)\in { \mathcal D }\left({v}_{1},{v}_{2}\right)$, we have
Suppose that qsol is the soliton solution of the SS equation corresponding to its scattering data ${\sigma }_{d}\,={\left\{({k}_{j},{{ \mathcal A }}_{j},{{ \mathcal B }}_{j})\right\}}_{j\,=\,1}^{2N}$, then one has
3.2.2. The solvable local RH problem
• | Analyticity: M(in)(k; x, t) is analytical in ${\mathbb{C}}\setminus {{\rm{\Sigma }}}^{(2)}$ with symmetry: M(in)(k) = ϱM(in)*(− k*)ϱ. |
• | Jump condition: M(in)(k; x, t) has the jump condition $\begin{eqnarray}{M}_{+}^{(\mathrm{in})}(k)={M}_{-}^{(\mathrm{in})}(k){V}^{(\mathrm{in})}(k),k\in {{\rm{\Sigma }}}^{(2)}.\end{eqnarray}$ where the jump matrix V(in)(k) = V(2)(k) is given by equation ( |
• | Asymptotics: M(in)(k) → I, k → ∞ . |
3.2.3. A small norm RH problem
• | Analyticity: E(k) is continuous in ${\mathbb{C}}\setminus {{\rm{\Sigma }}}^{(E)}$, where ${{\rm{\Sigma }}}^{(E)}=\partial {{ \mathcal U }}_{\pm {k}_{0}}\cup \left({{\rm{\Sigma }}}^{(E)}\setminus {{ \mathcal U }}_{\pm {k}_{0}}\right).$ |
• | Jump condition: E(k) has the following jump condition (see figure 5) $\begin{eqnarray}{E}_{+}(k)={E}_{-}(k){V}^{(E)}(k),\hspace{0.5cm}k\in {{\rm{\Sigma }}}^{(E)},\end{eqnarray}$ where matrix V(E)(k) is defined by $\begin{eqnarray}{V}^{(E)}(k)=\left\{\begin{array}{cc}{M}^{(\mathrm{out})}(k){V}^{(2)}(k){M}^{(\mathrm{out})}{\left(k\right)}^{-1}, & k\in {{\rm{\Sigma }}}^{(2)}\setminus {{ \mathcal U }}_{\pm {k}_{0}},\\ {M}^{(\mathrm{out})}(k){M}^{(\mathrm{in})}(k){M}^{(\mathrm{out})}{\left(k\right)}^{-1}, & k\in \partial {{ \mathcal U }}_{\pm {k}_{0}}.\end{array}\right.\end{eqnarray}$ |
• | Asymptotic behaviors: E(k) → I, k → ∞ . |
The jump matrix ${V}^{(E)}(k)$ has the following uniform estimate
The proof can be seen in [32].
${V}^{(E)}$ and ${\kappa }_{E}$ admit the following important estimates
The matrix function E(k) has the following asymptotics
The proof is similar as [32].
3.3. Analysis on a pure $\overline{\partial }$-problem
• | Continuity: M(3)(k) is continuous in ${\rm{{\mathbb{C}}}}\setminus {{\rm{\Sigma }}}^{(2)}.$ |
• | Jump condition: $\overline{\partial }{M}^{(3)}(k)={M}^{(3)}(k){W}^{(3)}(k)$, $k\in {\mathbb{C}}$, where ${W}^{(3)}={M}_{\mathrm{RHP}}^{(2)}(k)\bar{\partial }{R}^{(2)}(k){M}_{\mathrm{RHP}}^{(2)}{\left(k\right)}^{-1}.$ |
• | Asymptotic behaviors: M(3)(k) → I, k → ∞ . |
For large time t, there exists the estimate for F:
For large time t, there exists the estimate for ${M}_{1}^{(3)}$
4. Long-time asymptotics in the region $x\lt 0,| x/t| ={ \mathcal O }(1)$ and $x\gt 0,| x/t| ={ \mathcal O }(1)$
Let ${\sigma }_{d}={\left\{({k}_{j},{{ \mathcal A }}_{j},{{ \mathcal B }}_{j}),{k}_{j}\in K\right\}}_{j\,=\,1}^{2N}$ denote the scattering data generated by initial data ${q}_{0}(x)\in { \mathcal S }({\mathbb{R}})$ with the second-order discrete spectra. For fixed ${v}_{2}\leqslant {v}_{1}\in {{\mathbb{R}}}^{-}$, define ${ \mathcal I }=[-{v}_{1}/4,-{v}_{2}/4]$ and a space-time cone ${ \mathcal D }({v}_{1},{v}_{2})$ for variables x and t. Let ${q}_{\mathrm{sol}}(x,t,{\sigma }_{d}({ \mathcal I }))$ be the $N({ \mathcal I })$ solution corresponding to the modified scattering data ${\sigma }_{d}({ \mathcal I })=\left\{({k}_{j},{c}_{j}({ \mathcal I })),{k}_{j}\in K({ \mathcal I })\right\}$. When $x\lt 0$, as $t\to +\infty $ with $(x,t)\in { \mathcal D }({v}_{1},{v}_{2})$, we have the long-time asymptotics of the SS equation
Based on a series of transformations (
Though the large-time asymptotics of the potential given by equation (
Theorem